
DM502
Programming A

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM502/!

PROJECT PART 2

June 2009 2

Organizational Details

§  2 possible projects, each consisting of 2 parts
§  for 1st part, you have to pick one
§  for 2nd part, you can STAY or you may SWITCH

§  projects must be done individually, so no co-operation
§  you may talk about the problem and ideas how to solve them

§  deliverables:
§  written 4 page report as specified in project description
§  handed in BOTH electronically and as paper
§  deadline: October 28, 12:00

§  ENOUGH - now for the CLASSY part …

June 2009 3

Fractals and the Beauty of Nature

§  geometric objects similar to themselves at different scales

§  many structures in nature are fractals:

§  snowflakes
§  lightning
§  ferns

§  Goal: generate fractals from Fractal Description Language

§  Challenges: Representation, Interpretation, File Handling

June 2009 4

Fractals and the Beauty of Nature
§  Task 0: Preparation

§  understanding descriptions
given in .fdl files

§  Task 1: Rules
§  representing and applying

rewriting rules

§  Task 2: Commands
§  representing and executing

turtle commands

June 2009 5

F -> F L F R F L F	

F -> F L F L F L F F	

F fd	

L lt 60	

R rt 120	

F fd	

L lt 120	

Fractals and the Beauty of Nature
§  Task 3: Loading Files

§  load and interpret fractal
descripton language files

§  Task 4: Generating Fractals
§  compute new states and

draw the fractal

§  Task 5 (optional): Colors / LW
§  add support for colors and

line widths

F -> F L F R F L F	

F -> F L F L F L F F	

F fd	

L lt 60	

R rt 120	

F fd	

L lt 120	

June 2009 6

From DNA to Proteins

§  proteins encoded by DNA base sequence using A, C, G, and T

§  Background:
§  proteins are sequences of amino acids
§  amino acids encoded using three bases
§  chromosomes given as base sequences

§  Goal: build proteins from base sequences

§  Challenges: Nested Data Structures, Representation

June 2009 7

From DNA to Proteins

§  Task 0: Preparation
§  output base sequences OR read them from file

§  Task 1: Representing Amino Acids
§  create user-defined type and read instances from file

§  Task 2: Setting up the Translation
§  create user-defined type Ribsome as translator

§  Task 3: Creating Proteins
§  represent and assemble proteins as amino acid sequences

§  Task 4 (optional): Representing Codons
§  replace strings of length 3 by a user-defined type

June 2009 8

FILE HANDLING

June 2009 9

Persistence

§  persistent = keeping (some) data stored during runs
§  transient = beginning from input data each time over

§  most programs so far have been transient

§  examples of persistent programs:
§  operating systems
§  web servers
§  most app(lication)s on recent iOS and Mac OS X

§  text files are easiest way to save some program state
§  alternatively, program states can be saved in databases

June 2009 10

Writing to a File

§  we know how to read a file using open(name)
§  we can specify read/write mode using open(name, mode)
§  Example: f1 = open("anna_karenina.txt", "r")

 f2 = open(“myfile.txt", "w")

§  use method write(str) of file object to append string to file
§  Example: f2.write("This is my first line!\n")

 f2.write("This is my second line!\n")
§  each invocation of write(str) will append, not overwrite!

§  when you are finished with a file, please close() it
§  Example: f1.close()

 f2.close()
 June 2009 11

Format Operator

§  values need to be converted to a string for use in write(str)
§  for single value, the str(object) function can be used
§  Example: f.write(str(42))

§  alternatively, use format operator “%”
§  Example: f.write("%d" % 42)

 f.write("The answer is %d, my friend!" % 42)
§  first argument format string, second argument value
§  format sequence %d for integer, %g for float, %s for string

§  for multiple values, use tuple as value
§  Example: f.write("The %s is %g!" % ("answer", 42.0))

June 2009 12

Directories

§  file are organized in directories
§  every program has a current directory
§  the current directory is used by default, e.g. for open(name)
§  get current directory by importing getcwd() from os module
§  Example: import os

 print os.getcwd()
§  change current working directory by using chdir(path)
§  Example: os.chdir("..")

 print os.getcwd()
§  list contents of a given directory by using os.listdir(path)
§  Example: print os.listdir("dm502")

June 2009 13

Filenames and Paths

§  path = directory & file name
§  relative paths start from current directory
§  Example:
path1 = "dm502/tools/anna_karenina.txt"

§  absolute paths are independent from current directory
§  Example:
path2 = "/Users/petersk/sdu/dm502/tools/anna_karenina.py"

§  can be obtained from relative path using os.path.abspath(path)
§  Example:
path3 = os.path.abspath(path1)

June 2009 14

Operations on Paths

§  check whether a directory or file exists using os.path.exists
§  Example: os.path.exists(path1) == True

 os.path.exists("no_name") == False

§  check whether a path is a directory using os.path.isdir
§  Example: os.path.isdir(path1) == False

 os.path.isdir("..") == True

§  check whether a path is a file using os.path.isfile
§  Example: os.path.isfile(path1) == True

 os.path.isfile("..") == False

June 2009 15

Traversing Directories

§  build a path from directory and realtive path using os.path.join
§  Example: path4 = os.path.join("..", "dm502")

§  Case: recursively find all files in a directory
def find_files(dir):
 for name in os.listdir(dir):
 path = os.path.join(dir, name)
 if os.path.isfile(path): # print file name
 print path
 else: # recursively search subdirectory
 find_files(path)

June 2009 16

Catching Exceptions

§  file operations are error-prone
§  Example: open("no_name") # raises IOError

§  good idea to avoid errors using os.path.exists etc.
§  not possible to check all possible situations

§  use try-except statement to handle error situations
§  Example: try:

 f = open(name)
 lines = f.readlines()
 except:
 lines = ["ERROR"]

June 2009 17

Databases

§  import module anydbm to open (& possibly create) database
§  Example: import anydbm

 db = anydbm.open("phonebook.db", "c")
 db["Schneider-Kamp, Peter"] = "65502327"
 print db["Schneider-Kamp, Peter"]

§  persistent, i.e., mapping still available after closing program
§  Example: import anydbm

 db = anydbm.open("phonebook.db", "c")
 print db["Schneider-Kamp, Peter"]

§  in principle works exactly like a dictionary
§  BUT can only map strings to strings!

June 2009 18

Pickling

§  import module pickle to translate objects into strings
§  function dumps(obj) translates any object into a string
§  Example: blocked = [6550, 555]

 db["blocked"] = pickle.dumps(blocked)

§  function loads(str) translates such a string into an object
§  Example: my_blocked = pickle.loads(db["blocked"])

§  dumps + loads results in a copy of the object
§  Example: blocked == my_blocked

 blocked is my_blocked == False

June 2009 19

Shells and Pipes

§  import module os for access to shells and pipes
§  you can execute arbitrary shell commands using os.system
§  Example: os.system("ls -l") # print current directory

§  you can grab the output of commands using pipes
§  Example: f = os.popen("ls -l")

 print f.read()

§  useful e.g. for reading a (g-)zipped files line by line
§  Example: f = os.popen("gunzip -c test.gz")

 for line in f.readlines(): print line

June 2009 20

Writing Modules

§  any file containing Python code can be imported as module
§  Example:

 open("test.py", "w").write("def f(): return 42\nprint f()")
 import test

§  any code in module will be executed
§  to avoid that, it is common to test whether a program is run
§  Example: better test.py
def f():
 return 42
if __name__ == "__main__":
 print f()

June 2009 21

Debugging File Operations

§  when working with files, whitespace can be hard to debug
§  printing a string containing whitespace makes it invisible
§  use built-in function repr(object) instead
§  Example: s = "Hello\n\r\tWorld \t \t!"

 print s
 print repr(s)

§  different operating systems use different line ends
§  Linux & Mac OS X use "\n", Windows uses "\r\n"
§  use a tool (e.g. dos2unix, unix2dos) to convert
§  alternatively, write your own Python program J

June 2009 22

CLASSES & OBJECTS

June 2009 23

User-Defined Types

§  we want to represent points (x,y) in 2-dimensional space
§  which data structure to use?

§  use two variables x and y
§  store coordinates in a list or tuple of length 2
§  create user-defined type

§  we can use Python’s classes to implement new types
§  Example:
class Point(object):
 """represents a point in 2-dimensional space"""
print Point # class
p = Point() # create new instance of class Point
print p # instance

June 2009 24

Attributes

§  using dot notation, you can assign values to instance variables
§  Example: p.x = 3.0

 p.y = 4.0

§  instance variables are called attributes
§  attributes can be assigned to and read like any variable
§  Example: print "(%g, %g)" % (p.x, p.y)

 distance = math.sqrt(p.x**2 + p.y**2)
 print distance, "units from the origin"

June 2009 25

p
Point

x 3.0	

y	

 4.0	

§  rectangles can be represented in many ways, e.g.
§  width, height, and one corner or the center
§  two opposing corners

§  here we choose width, breadth and the lower-left corner
§  Example:
class Rectangle(object):
 "represents a rectangle using attributes width, height, corner”
box = Rectangle()
box.width = 5.0
box.height = 3.0
box.corner = p corner	

Point

x 3.0	

y	

 4.0	

box	

Rectangle

width	

 5.0	

height	

 3.0	

Representing a Rectangle

June 2009 26

Instances as Return Values

§  functions can return instances
§  Example: find the center point of a rectangle
def find_center(box):
 p = Point()
 p.x = box.corner.x + box.width / 2.0
 p.y = box.corner.y + box.height / 2.0
 return p
box = Rectangle()
box.width = 5.0; box.height = 3.0
box.corner = Point()
box.corner.x = 3.0; box.corner.y = 4.0
print find_center(box)

June 2009 27

Objects are Mutable

§  by assigning to attributes, an object is changed
§  Example: update size of rectangle

 box.width = box.width + 5.0
 box.height = box.height + 3.0

§  consequently, also functions can change object arguments
§  Example:

 def double_rectangle(box):
 box.width *= 2
 box.height *= 2
 double_rectangle(box)

June 2009 28

Copying Objects

§  import module copy to make copies of objects
§  Example: import copy

 new = copy.copy(box)

§  shallow copy, use copy.deepcopy(object) to also copy Point

June 2009 29

corner	

Point

x 3.0	

y	

 4.0	

box	

Rectangle

width	

 5.0	

height	

 3.0	

corner	

new	

Rectangle

width	

 5.0	

height	

 3.0	

Debugging User-Defined Types

§  you can obtain type of an instance by using type(object)
§  Example: print type(box)

§  you can check if an object has an attribute using hasattr
§  Example: hasattr(box, "corner") == True

§  you can get a list of all attributes using dir(object)
§  Example: dir(box)

§  print __doc__ and __module__ for more information!

June 2009 30

CLASSSES & FUNCTIONS

June 2009 31

Representing Time

§  Example: user-defined type for representing time
class Time(object):
 """represents time of day using hours, minutes, seconds"""
time = Time()
time.hours = 13
time.minutes = 57
time.seconds = 42

June 2009 32

time	

Time

hours	

 13	

minutes	

 57	

seconds	

 42	

Pure Functions

§  pure function = does not modify mutable arguments
§  Example: add two times
def add_time(t1, t2):
 sum = Time()
 sum.hours = t1.hours + t2.hours
 sum.minutes = t1.minutes + t2.minutes
 sum.seconds = t1.seconds + t2.seconds
 return sum
time = add_time(time, time)
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds)

June 2009 33

Modifiers

§  modifiers = functions that modify mutable arguments
§  Example: incrementing time
def increment(time, seconds):
 time.seconds += seconds

increment(time, 86400)
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds)

June 2009 34

Modifiers

§  modifiers = functions that modify mutable arguments
§  Example: incrementing time
def increment(time, seconds):
 time.seconds += seconds
 minutes, time.seconds = divmod(time.seconds, 60)
 time.minutes += minutes
 time.hours, time.minutes = divmod(time.minutes, 60)
increment(time, 86400)
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds)

§  this was prototype and patch (or trial and error)

June 2009 35

Prototyping vs Planning

§  alternative to protyping is planned development
§  high-level observation: time representable by just seconds
§  Example: refactoring function working with time
def time_to_int(time):
 return time.seconds + 60 * (time.minutes + 60 * time.hours)
def int_to_time(seconds):
 time = Time(); minutes, time.seconds = divmod(seconds, 60)
 time.hours, time.minutes = divmod(minutes, 60); return time
def add_time(t1, t2):
 return int_to_time(time_to_int(t1) + time_to_int(t2))

June 2009 36

Prototyping vs Planning

§  alternative to protyping is planned development
§  high-level observation: time representable by just seconds
§  Example: refactoring function working with time
def time_to_int(time):
 return time.seconds + 60 * (time.minutes + 60 * time.hours)
def int_to_time(seconds):
 time = Time(); minutes, time.seconds = divmod(seconds, 60)
 time.hours, time.minutes = divmod(minutes, 60); return time
def increment(time, seconds):
 t = int_to_time(seconds + time_to_int(time))
 time.seconds = t.seconds; time.minutes = t.minutes
 time.hours = t.hours

June 2009 37

Prototyping vs Planning

§  alternative to protyping is planned development
§  high-level observation: time representable by just seconds
§  Example: refactoring function working with time
def time_to_int(time):
 return time.seconds + 60 * (time.minutes + 60 * time.hours)
def int_to_time(seconds):
 time = Time(); minutes, time.seconds = divmod(seconds, 60)
 time.hours, time.minutes = divmod(minutes, 60); return time
def increment(time, seconds):
 return int_to_time(seconds + time_to_int(time))

June 2009 38

Debugging using Invariants

§  invariant = requirement that is always true
§  assertion = statement of an invariant using assert
§  Example: check that time is valid
def valid_time(time):
 if time.hours < 0 or time.minutes < 0 or time.seconds < 0:
 return False
 return time.minutes < 60 and time.seconds < 60
def add_time(t1, t2):
 assert valid_time(t1) and valid_time(t2)
 return int_to_time(time_to_int(t1) + time_to_int(t2))
§  also useful to check before return value

June 2009 39

CLASSES & METHODS

June 2009 40

Object-Oriented Features

§  object-oriented programming in a nutshell:
§  programs consists of class definitions and functions
§  classes describe real or imagined objects
§  most functions and computations work on objects

§  so far we have only used classes to store attributes
§  i.e., functions were not linked to objects

§  methods = functions defined inside a class definition
§  first argument is always the object the method belongs to
§  calling by using dot notation
§  Example: "Slartibartfast".count("a")

June 2009 41

Printing Objects

§  printing can be done by a normal function
§  better done with a method
§  Example:
class Time(object):
 """represents time of day using hours, minutes, seconds""”
 def print_time(time):
 t = (time.hours, time.minutes, time.seconds)
 print "%02dh %02dm %02ds" % t

def print_time(time):
 t = (time.hours, time.minutes, time.seconds)
 print "%02dh %02dm %02ds" % t

June 2009 42

Printing Objects

§  printing can be done by a normal function
§  better done with a method
§  Example:
class Time(object):
 """represents time of day using hours, minutes, seconds""”
 def print_time(self):
 t = (self.hours, self.minutes, self.seconds)
 print "%02dh %02dm %02ds" % t

def print_time(time):
 t = (time.hours, time.minutes, time.seconds)
 print "%02dh %02dm %02ds" % t
 June 2009 43

Printing Objects

§  printing can be done by a normal function
§  better done with a method
§  Example:
class Time(object):
 """represents time of day using hours, minutes, seconds"""
 def print_time(self):
 t = (self.hours, self.minutes, self.seconds)
 print "%02dh %02dm %02ds" % t
end = Time()
end.hours = 12; end.minutes = 15; end.seconds = 37
Time.print_time(end) # what really happens
end.print_time() # how to write it!

June 2009 44

Incrementing as a Method

§  Example: add increment as a method
class Time(object):
 """represents time of day using hours, minutes, seconds"""
 def time_to_int(self):
 return self.seconds + 60 * (self.minutes + 60 * self.hours)
 def int_to_time(self, seconds):
 minutes, self.seconds = divmod(seconds, 60)
 self.hours, self.minutes = divmod(minutes, 60)
 def increment(self, seconds):
 return self.int_to_time(seconds + self.time_to_int())

June 2009 45

Comparing with Methods

§  Example: add is_after as a method
class Time(object):
 """represents time of day using hours, minutes, seconds""”
 def time_to_int(self):
 return self.seconds + 60 * (self.minutes + 60 * self.hours)
 def int_to_time(self, seconds):
 minutes, self.seconds = divmod(seconds, 60)
 self.hours, self.minutes = divmod(minutes, 60)
 def increment(self, seconds):
 return self.int_to_time(seconds + self.time_to_int())
 def is_after(self, other):
 return self.time_to_int() > other.time_to_int()

June 2009 46

Initializing Objects

§  special method __init__(self, …) to create new objects
§  usually first method written for any new class!
§  Example: initialize Time objects using __init__
class Time(object):
 """represents time of day using hours, minutes, seconds""”
 def __init__(self, hours, minutes, seconds):
 self.hours = hours
 self.minutes = minutes
 self.seconds = seconds
start = Time(12, 23, 42)
start = Time()
start.hours = 12; start.minutes = 23; start.seconds = 42

June 2009 47

String Representation of Objects

§  special method __str__(self) to convert objects to strings
§  Example: print Time objects using __str__
class Time(object):
 """represents time of day using hours, minutes, seconds""”
 def __init__(self, hours, minutes, seconds):
 self.hours = hours
 self.minutes = minutes
 self.seconds = seconds
 def __str__(self):
 t = (self.hours, self.minutes, self.seconds)
 return "%dh %dm %ds" % t
print Time(7, 42, 23)

June 2009 48

Representation of Objects

§  special method __repr__(self) to represent objects
§  Example: make Time objects more usable in lists
class Time(object):
 """represents time of day using hours, minutes, seconds"""
 def __str__(self):
 t = (self.hours, self.minutes, self.seconds)
 return "%dh %dm %ds" % t
 def __repr__(self):
 t = (self.hours, self.minutes, self.seconds)
 return "Time(%s, %s, %s)" % t
print [Time(7, 42, 23), Time(12, 23, 42)]

June 2009 49

Representation of Objects

§  special method __repr__(self) to represent objects
§  Example: make Time objects more usable in lists
class Time(object):
 """represents time of day using hours, minutes, seconds""”
 def as_tuple(self):
 return (self.hours, self.minutes, self.seconds)
 def __str__(self):
 return ”%dh %dm %ds" % self.as_tuple()
 def __repr__(self):
 return "Time(%s, %s, %s)" % self.as_tuple()
print [Time(7, 42, 23), Time(12, 23, 42)]

June 2009 50

