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Organizational Details 

§  2 possible projects, each consisting of 2 parts 
§  for 1st part, you have to pick one 
§  for 2nd part, you can STAY or you may SWITCH 

§  projects must be done individually, so no co-operation 
§  you may talk about the problem and ideas how to solve them 

§  deliverables: 
§  written 4 page report as specified in project description 
§  handed in BOTH electronically and as paper 
§  deadline:  October 28, 12:00 

§  ENOUGH - now for the CLASSY part … 
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Fractals and the Beauty of Nature 

§  geometric objects similar to themselves at different scales 
 
§  many structures in nature are fractals: 

§  snowflakes 
§  lightning 
§  ferns 

§  Goal:   generate fractals from Fractal Description Language 

§  Challenges:   Representation, Interpretation, File Handling 
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Fractals and the Beauty of Nature 
§  Task 0: Preparation 

§  understanding descriptions 
given in .fdl files 

§  Task 1: Rules 
§  representing and applying 

rewriting rules 

§  Task 2: Commands 
§  representing and executing 

turtle commands 
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Fractals and the Beauty of Nature 
§  Task 3: Loading Files 

§  load and interpret fractal 
descripton language files 

§  Task 4: Generating Fractals 
§  compute new states and 

draw the fractal 
 

§  Task 5 (optional): Colors / LW 
§  add support for colors and 

line widths 
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From DNA to Proteins 

§  proteins encoded by DNA base sequence using A, C, G, and T 

§  Background: 
§  proteins are sequences of amino acids 
§  amino acids encoded using three bases 
§  chromosomes given as base sequences 

§  Goal:   build proteins from base sequences 

§  Challenges:   Nested Data Structures, Representation 
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From DNA to Proteins 

§  Task 0: Preparation 
§  output base sequences OR read them from file 

§  Task 1: Representing Amino Acids 
§  create user-defined type and read instances from file 

§  Task 2: Setting up the Translation 
§  create user-defined type Ribsome as translator 

§  Task 3: Creating Proteins 
§  represent and assemble proteins as amino acid sequences 

§  Task 4 (optional): Representing Codons 
§  replace strings of length 3 by a user-defined type 
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FILE HANDLING 
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Persistence 

§  persistent  =   keeping (some) data stored during runs 
§  transient  =   beginning from input data each time over 

§  most programs so far have been transient 

§  examples of persistent programs: 
§  operating systems 
§  web servers 
§  most app(lication)s on recent iOS and Mac OS X 

§  text files are easiest way to save some program state 
§  alternatively, program states can be saved in databases 
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Writing to a File 

§  we know how to read a file using open(name) 
§  we can specify read/write mode using open(name, mode) 
§  Example:  f1 = open("anna_karenina.txt", "r") 

  f2 = open(“myfile.txt", "w") 

§  use method write(str) of file object to append string to file 
§  Example:  f2.write("This is my first line!\n") 

  f2.write("This is my second line!\n") 
§  each invocation of write(str) will append, not overwrite! 

§  when you are finished with a file, please close() it 
§  Example:  f1.close() 

  f2.close() 
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Format Operator 

§  values need to be converted to a string for use in write(str) 
§  for single value, the str(object) function can be used 
§  Example:  f.write(str(42)) 

§  alternatively, use format operator “%” 
§  Example:  f.write("%d" % 42) 

  f.write("The answer is %d, my friend!" % 42) 
§  first argument format string, second argument value 
§  format sequence %d for integer, %g for float, %s for string 

§  for multiple values, use tuple as value 
§  Example:  f.write("The %s is %g!" % ("answer", 42.0)) 
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Directories 

§  file are organized in directories 
§  every program has a current directory 
§  the current directory is used by default, e.g. for open(name) 
§  get current directory by importing getcwd() from os module 
§  Example:  import os 

  print os.getcwd() 
§  change current working directory by using chdir(path) 
§  Example:  os.chdir("..") 

  print os.getcwd() 
§  list contents of a given directory by using os.listdir(path) 
§  Example:  print os.listdir("dm502") 
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Filenames and Paths 

§  path   =   directory & file name 
§  relative paths start from current directory 
§  Example: 
path1 = "dm502/tools/anna_karenina.txt" 

§  absolute paths are independent from current directory 
§  Example: 
path2 = "/Users/petersk/sdu/dm502/tools/anna_karenina.py" 

§  can be obtained from relative path using os.path.abspath(path) 
§  Example: 
path3 = os.path.abspath(path1) 
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Operations on Paths 

§  check whether a directory or file exists using os.path.exists 
§  Example:  os.path.exists(path1) == True 

  os.path.exists("no_name") == False 

§  check whether a path is a directory using os.path.isdir 
§  Example:  os.path.isdir(path1) == False 

  os.path.isdir("..") == True 

§  check whether a path is a file using os.path.isfile 
§  Example:  os.path.isfile(path1) == True 

  os.path.isfile("..") == False 
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Traversing Directories 

§  build a path from directory and realtive path using os.path.join 
§  Example:  path4 = os.path.join("..", "dm502") 

§  Case:  recursively find all files in a directory 
def find_files(dir): 
    for name in os.listdir(dir): 
        path = os.path.join(dir, name) 
        if os.path.isfile(path):  # print file name 
            print path 
        else:    # recursively search subdirectory 
            find_files(path) 
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Catching Exceptions 

§  file operations are error-prone 
§  Example:  open("no_name")  # raises IOError 

§  good idea to avoid errors using os.path.exists etc. 
§  not possible to check all possible situations 

§  use try-except statement to handle error situations 
§  Example:  try: 

      f = open(name) 
      lines = f.readlines() 
  except: 
      lines = ["ERROR"] 
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Databases 

§  import module anydbm to open (& possibly create) database 
§  Example:  import anydbm 

  db = anydbm.open("phonebook.db", "c") 
  db["Schneider-Kamp, Peter"] = "65502327" 
  print db["Schneider-Kamp, Peter"] 

§  persistent, i.e., mapping still available after closing program 
§  Example:  import anydbm 

  db = anydbm.open("phonebook.db", "c") 
  print db["Schneider-Kamp, Peter"] 

 

§  in principle works exactly like a dictionary 
§  BUT can only map strings to strings! 
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Pickling 

§  import module pickle to translate objects into strings 
§  function dumps(obj) translates any object into a string 
§  Example:  blocked = [6550, 555] 

  db["blocked"] = pickle.dumps(blocked) 

§  function loads(str) translates such a string into an object 
§  Example:  my_blocked = pickle.loads(db["blocked"]) 

§  dumps + loads results in a copy of the object 
§  Example:  blocked == my_blocked 

  blocked is my_blocked == False 
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Shells and Pipes 

§  import module os for access to shells and pipes 
§  you can execute arbitrary shell commands using os.system 
§  Example:  os.system("ls -l")  # print current directory 

§  you can grab the output of commands using pipes 
§  Example:  f = os.popen("ls -l") 

  print f.read() 

§  useful e.g. for reading a (g-)zipped files line by line 
§  Example:  f = os.popen("gunzip -c test.gz") 

  for line in f.readlines():  print line 
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Writing Modules 

§  any file containing Python code can be imported as module 
§  Example: 

 open("test.py", "w").write("def f(): return 42\nprint f()") 
 import test 

§  any code in module will be executed 
§  to avoid that, it is common to test whether a program is run 
§  Example:  better test.py 
def f(): 
    return 42 
if __name__ == "__main__": 
    print f() 
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Debugging File Operations 

§  when working with files, whitespace can be hard to debug 
§  printing a string containing whitespace makes it invisible 
§  use built-in function repr(object) instead 
§  Example:  s = "Hello\n\r\tWorld \t \t!" 

  print s 
  print repr(s) 

§  different operating systems use different line ends 
§  Linux & Mac OS X use "\n", Windows uses "\r\n" 
§  use a tool (e.g. dos2unix, unix2dos) to convert 
§  alternatively, write your own Python program J 
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CLASSES & OBJECTS 
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User-Defined Types 

§  we want to represent points (x,y) in 2-dimensional space 
§  which data structure to use? 

§  use two variables x and y 
§  store coordinates in a list or tuple of length 2 
§  create user-defined type 

§  we can use Python’s classes to implement new types 
§  Example: 
class Point(object): 
    """represents a point in 2-dimensional space""" 
print Point  # class 
p = Point()  # create new instance of class Point 
print p  # instance 
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Attributes 

§  using dot notation, you can assign values to instance variables 
§  Example:  p.x = 3.0 

  p.y = 4.0 
 
 
 
§  instance variables are called attributes 
§  attributes can be assigned to and read like any variable 
§  Example:  print "(%g, %g)" % (p.x, p.y) 

  distance = math.sqrt(p.x**2 + p.y**2) 
  print distance, "units from the origin" 
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§  rectangles can be represented in many ways, e.g. 
§  width, height, and one corner or the center 
§  two opposing corners 

§  here we choose width, breadth and the lower-left corner 
§  Example: 
class Rectangle(object): 
    "represents a rectangle using attributes width, height, corner” 
box = Rectangle() 
box.width = 5.0 
box.height = 3.0 
box.corner = p corner	
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Representing a Rectangle 
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Instances as Return Values 

§  functions can return instances 
§  Example:  find the center point of a rectangle 
def find_center(box): 
    p = Point() 
    p.x = box.corner.x + box.width / 2.0 
    p.y = box.corner.y + box.height / 2.0 
    return p 
box = Rectangle() 
box.width = 5.0;  box.height = 3.0 
box.corner = Point() 
box.corner.x = 3.0;  box.corner.y = 4.0 
print find_center(box) 
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Objects are Mutable 

§  by assigning to attributes, an object is changed 
§  Example:  update size of rectangle 

 box.width = box.width + 5.0 
 box.height = box.height + 3.0 

§  consequently, also functions can change object arguments 
§  Example: 

 def double_rectangle(box): 
     box.width *= 2 
     box.height *= 2 
 double_rectangle(box) 
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Copying Objects 

§  import module copy to make copies of objects 
§  Example:  import copy 

  new = copy.copy(box) 
 
 
 
 
 
 

§  shallow copy, use copy.deepcopy(object) to also copy Point 
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Debugging User-Defined Types 

§  you can obtain type of an instance by using type(object) 
§  Example:  print type(box) 

§  you can check if an object has an attribute using hasattr 
§  Example:  hasattr(box, "corner") == True 

§  you can get a list of all attributes using dir(object) 
§  Example:  dir(box) 

§  print __doc__ and __module__ for more information! 
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CLASSSES & FUNCTIONS 
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Representing Time 

§  Example:  user-defined type for representing time 
class Time(object): 
  """represents time of day using hours, minutes, seconds""" 
time = Time() 
time.hours = 13 
time.minutes = 57 
time.seconds = 42 
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Pure Functions 

§  pure function   =   does not modify mutable arguments 
§  Example:  add two times 
def add_time(t1, t2): 
  sum = Time() 
  sum.hours = t1.hours + t2.hours 
  sum.minutes = t1.minutes + t2.minutes 
  sum.seconds = t1.seconds + t2.seconds 
  return sum 
time = add_time(time, time) 
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds) 
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Modifiers 

§  modifiers   =   functions that modify mutable arguments 
§  Example:  incrementing time 
def increment(time, seconds): 
    time.seconds += seconds 
 
 
 
increment(time, 86400) 
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds) 
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Modifiers 

§  modifiers   =   functions that modify mutable arguments 
§  Example:  incrementing time 
def increment(time, seconds): 
    time.seconds += seconds 
    minutes, time.seconds = divmod(time.seconds, 60) 
    time.minutes += minutes 
    time.hours, time.minutes = divmod(time.minutes, 60) 
increment(time, 86400) 
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds) 
 
§  this was prototype and patch (or trial and error) 
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Prototyping vs Planning 

§  alternative to protyping is planned development 
§  high-level observation:   time representable by just seconds 
§  Example:  refactoring function working with time 
def time_to_int(time): 
    return time.seconds + 60 * (time.minutes + 60 * time.hours) 
def int_to_time(seconds): 
    time = Time();  minutes, time.seconds = divmod(seconds, 60) 
    time.hours, time.minutes = divmod(minutes, 60);   return time 
def add_time(t1, t2): 
    return int_to_time(time_to_int(t1) + time_to_int(t2)) 
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Prototyping vs Planning 

§  alternative to protyping is planned development 
§  high-level observation:   time representable by just seconds 
§  Example:  refactoring function working with time 
def time_to_int(time): 
    return time.seconds + 60 * (time.minutes + 60 * time.hours) 
def int_to_time(seconds): 
    time = Time();  minutes, time.seconds = divmod(seconds, 60) 
    time.hours, time.minutes = divmod(minutes, 60);   return time 
def increment(time, seconds): 
    t = int_to_time(seconds + time_to_int(time)) 
    time.seconds = t.seconds;  time.minutes = t.minutes 
    time.hours = t.hours 
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Prototyping vs Planning 

§  alternative to protyping is planned development 
§  high-level observation:   time representable by just seconds 
§  Example:  refactoring function working with time 
def time_to_int(time): 
    return time.seconds + 60 * (time.minutes + 60 * time.hours) 
def int_to_time(seconds): 
    time = Time();  minutes, time.seconds = divmod(seconds, 60) 
    time.hours, time.minutes = divmod(minutes, 60);   return time 
def increment(time, seconds): 
    return int_to_time(seconds + time_to_int(time)) 
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Debugging using Invariants 

§  invariant  =   requirement that is always true 
§  assertion  =   statement of an invariant using assert 
§  Example:  check that time is valid 
def valid_time(time): 
    if time.hours < 0 or time.minutes < 0 or time.seconds < 0: 
        return False 
    return time.minutes < 60 and time.seconds < 60 
def add_time(t1, t2): 
    assert valid_time(t1) and valid_time(t2) 
    return int_to_time(time_to_int(t1) + time_to_int(t2)) 
§  also useful to check before return value 
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CLASSES & METHODS 
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Object-Oriented Features 

§  object-oriented programming in a nutshell: 
§  programs consists of class definitions and functions 
§  classes describe real or imagined objects 
§  most functions and computations work on objects 

§  so far we have only used classes to store attributes 
§  i.e., functions were not linked to objects 

§  methods   =   functions defined inside a class definition 
§  first argument is always the object the method belongs to 
§  calling by using dot notation 
§  Example:  "Slartibartfast".count("a") 
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Printing Objects 

§  printing can be done by a normal function 
§  better done with a method 
§  Example: 
class Time(object): 
    """represents time of day using hours, minutes, seconds""” 
    def print_time(time): 
        t = (time.hours, time.minutes, time.seconds) 
        print "%02dh %02dm %02ds" % t 
 
def print_time(time): 
    t = (time.hours, time.minutes, time.seconds) 
    print "%02dh %02dm %02ds" % t  
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Printing Objects 

§  printing can be done by a normal function 
§  better done with a method 
§  Example: 
class Time(object): 
    """represents time of day using hours, minutes, seconds""” 
    def print_time(self): 
        t = (self.hours, self.minutes, self.seconds) 
        print "%02dh %02dm %02ds" % t 
 
def print_time(time): 
    t = (time.hours, time.minutes, time.seconds) 
    print "%02dh %02dm %02ds" % t 
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Printing Objects 

§  printing can be done by a normal function 
§  better done with a method 
§  Example: 
class Time(object): 
    """represents time of day using hours, minutes, seconds""" 
    def print_time(self): 
        t = (self.hours, self.minutes, self.seconds) 
        print "%02dh %02dm %02ds" % t 
end = Time() 
end.hours = 12;  end.minutes = 15;  end.seconds = 37 
Time.print_time(end)  # what really happens 
end.print_time()   # how to write it! 
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Incrementing as a Method 

§  Example:  add increment as a method 
class Time(object): 
    """represents time of day using hours, minutes, seconds""" 
    def time_to_int(self): 
        return self.seconds + 60 * (self.minutes + 60 * self.hours) 
    def int_to_time(self, seconds): 
        minutes, self.seconds = divmod(seconds, 60) 
        self.hours, self.minutes = divmod(minutes, 60) 
    def increment(self, seconds): 
        return self.int_to_time(seconds + self.time_to_int()) 
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Comparing with Methods 

§  Example:  add is_after as a method 
class Time(object): 
    """represents time of day using hours, minutes, seconds""” 
    def time_to_int(self): 
        return self.seconds + 60 * (self.minutes + 60 * self.hours) 
    def int_to_time(self, seconds): 
        minutes, self.seconds = divmod(seconds, 60) 
        self.hours, self.minutes = divmod(minutes, 60) 
    def increment(self, seconds): 
        return self.int_to_time(seconds + self.time_to_int()) 
    def is_after(self, other): 
        return self.time_to_int() > other.time_to_int()    
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Initializing Objects 

§  special method __init__(self, …) to create new objects 
§  usually first method written for any new class! 
§  Example:  initialize Time objects using __init__ 
class Time(object): 
    """represents time of day using hours, minutes, seconds""” 
    def __init__(self, hours, minutes, seconds): 
        self.hours = hours 
        self.minutes = minutes 
        self.seconds = seconds 
start = Time(12, 23, 42) 
start = Time() 
start.hours = 12;  start.minutes = 23; start.seconds = 42 

June 2009 47 



String Representation of Objects 

§  special method __str__(self) to convert objects to strings 
§  Example:  print Time objects using __str__ 
class Time(object): 
    """represents time of day using hours, minutes, seconds""” 
    def __init__(self, hours, minutes, seconds): 
        self.hours = hours 
        self.minutes = minutes 
        self.seconds = seconds 
   def __str__(self): 
        t = (self.hours, self.minutes, self.seconds) 
        return "%dh %dm %ds" % t 
print Time(7, 42, 23) 
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Representation of Objects 

§  special method __repr__(self) to represent objects 
§  Example:  make Time objects more usable in lists 
class Time(object): 
    """represents time of day using hours, minutes, seconds""" 
    def __str__(self): 
        t = (self.hours, self.minutes, self.seconds) 
        return "%dh %dm %ds" % t 
    def __repr__(self): 
        t = (self.hours, self.minutes, self.seconds) 
        return "Time(%s, %s, %s)" % t 
print [Time(7, 42, 23), Time(12, 23, 42)] 
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Representation of Objects 

§  special method __repr__(self) to represent objects 
§  Example:  make Time objects more usable in lists 
class Time(object): 
    """represents time of day using hours, minutes, seconds""” 
    def as_tuple(self): 
        return (self.hours, self.minutes, self.seconds) 
    def __str__(self): 
        return ”%dh %dm %ds" % self.as_tuple() 
    def __repr__(self): 
        return "Time(%s, %s, %s)" % self.as_tuple() 
print [Time(7, 42, 23), Time(12, 23, 42)] 
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