
DM503 
Programming B 

Peter Schneider-Kamp 
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM503/!



COURSE ORGANIZATION 

June 2009 2 



Course Elements 

§  Lectures Monday 12-14 (every week) 
§  Lectures Wednesday 10-12 (every other week from next) 

§  4 sections (???): 
§  M1: Mathematics-Economy (2nd year) 
§  S2: Mathematics / Applied Mathematics / Physics (2nd year) 
§  S7 & S17: Computer Science (1st year) 

§  Discussion sections (marked “E” in your schedule) 
§  Labs (marked  “L” in your schedule) 

§  Exam = practical project in 2 parts 

June 2009 3 



Course Goals 

§  Write non-trivial computer programs 

§  To this end, you will learn 
§  how to structure programs into classes 
§  to use advanced object-oriented techniques 
§  to encapsulate functionality in abstract data types 

§  Focus on general principles, NOT on the language Java 

June 2009 4 



Practical Issues / Course Material 

§  Regularly check the course home page: 
§  http://imada.sdu.dk/~petersk/DM503/ 
§  Slides, weekly notes, definite schedule, additional notes 

§  Reading material: 
§  David J. Eck: Introd. to Programming using Java, Lulu, 2011. 
§  Available as PDF and HTML from: 

http://math.hws.edu/javanotes/ 

§  Allen B. Downey: Think Java, Green Tea Press, 2011. 
§  Available as PDF and HTML from: 

http://greenteapress.com/thinkapjava/ 

June 2009 5 



Course Contract 2.0 

§  I am offering you the following: 
1.  I explain all needed concepts (as often as needed) 
2.  I am available and always willing to help you 
3.  I guide your learning by assigning exercises 

§  From you I expect the following: 
1.  You ask questions, when something is unclear 
2.  You contact me (or a TA), when you need help 
3.  You program early and you program often! 

§  You and I have the right and duty to call upon the contract! 

June 2009 6 



PROGRAMMING 

June 2009 7 



Programming as Problem Solving 

June 2009 8 

Problem 

Specification 

Design 

Implementation 

Program 

Customer 

Product 

analysis	


choices	


coding	


testing	


Programming A	


Programming B	




Simple Instructions 

§  Administrative:   import java.util.Scanner;   
 
 
§  Input:    s = new Scanner(System.in); 

    a = s.nextInt(); 
    b = s.nextInt(); 

§  Arithmetic operations:  c = Math.sqrt(a*a+b*b); 
§  Output:    System.out.println("Result: "+c); 

§  That is basically ALL a computer can do. 

June 2009 9 



Simple Instructions 

    import java.util.Scanner; 
 
 

    s = new Scanner(System.in); 
    a = s.nextInt(); 
    b = s.nextInt(); 
    c = Math.sqrt(a*a+b*b); 
    System.out.println("Result: "+c); 

June 2009 10 



Simple Instructions 

import java.util.Scanner; 
public class Pythagoras { 

 public static void main(String[] as) { 
  s = new Scanner(System.in); 
  a = s.nextInt(); 
  b = s.nextInt(); 
  c = Math.sqrt(a*a+b*b); 
  System.out.println("Result: "+c); 
 } // main 

} // Pythagoras 

June 2009 11 



Simple Instructions 

import java.util.Scanner; 
public class Pythagoras { 

 public static void main(String[] as) { 
  Scanner s = new Scanner(System.in); 
  int a = s.nextInt(); 
  int b = s.nextInt(); 
  double c = Math.sqrt(a*a+b*b); 
  System.out.println("Result: "+c); 
 } // main 

} // Pythagoras 

June 2009 12 



Combining Instructions 

§  Sequence:     <instr1>;  <instr2>;  <instr3>; 
§  Conditional Execution:   if (<cond>) { 

         <instr1>;  <instr2>; 
     } else { 
         <instr3>; <instr4>; <instr5>; 
     } 

§  Subprograms / Functions:   <type> <function>(<argument>) { 
         <instr1>;  <instr2>; 
     } 

§  Repetition:     while (<cond>) { 
         <instr1>;  <instr2>;  <instr3>; 
        } 

June 2009 13 



Executing Programs 

§  Program stored in a file (source code file) 
§  Program is compiled to machine-readable code (byte code) 
§  Java Virtual Machine (JVM) executes byte code 

June 2009 14 

Source 
Code 

Input 

java 

Output 

Byte 
Code javac 



Debugging 

§  Any reasonably complex program contains errors 
§  Three types of errors (in Java) 

§  Compiler Errors 
§  Syntactic Errors   public ssalc HelloWorld {} 
§ Type Errors    int a = new Scanner(); 

§  Runtime Errors   int c = 42 / 0; 

§  Semantic Errors   int c = a*a+b*b; 

§  Debugging is finding out why an error occurred 
June 2009 15 



VARIABLES, EXPRESSIONS 
& STATEMENTS 

June 2009 16 



Values and Types 

§  Values = basic data objects   42  23.0   "Hello!" 
§  Types  = classes of values          int  double  String 

§  Types need to be declared 
§  <type> <var>;    int answer; 

 
§  Values can be printed: 

§  System.out.println(<value>);  System.out.println(23.0); 

§  Values can be compared: 
§  <value> == <value>    -3 == -3.0 

June 2009 17 



Variables 

§  variable   = name that refers to value of certain type 
§  program state  = mapping from variables to values 

§  values are assigned to variables using “=”: 
§  <var> = <value>;   answer = 42; 

§  the value referred to by a variable can be printed: 
§  System.out.println(<var>);  System.out.println(answer); 

§  the type of a variable is given by its declaration 

June 2009 18 



Primitive Types 

    Type  Bits  Range 
§  boolean  1  {true, false} 

§  byte  8  {-27 = -128, …, 127 = 27-1} 

§  short  16  {-215 = -32768, …, 32767 = 215-1} 

§  char  16  {'a', …,'z', '%', …} 

§  int   32  {-231, …, 231-1} 

§  float  32  1 sign, 23(+1) mantissa, 8 exponent bits 

§  long  64  {-263, …, 263-1} 

§  double  64  1 sign, 52(+1) mantissa, 11 exponent bits 
 

June 2009 19 



Reference Types 

§  references types = non-primitive types 
§  references types typically implemented by classes and objects 

§  Example 1:   String 

§  Example 2:   arrays (mutable, fixed-length lists) 
 

June 2009 20 



Variable Names 

§  start with a letter (convention: a-z) or underscore “_” 
§  contain letters a-z and A-Z, digits 0-9, and underscore “_” 

§  can be any such name except for 50 reserved names: 
abstract  continue       for   new   switch 
assert  default        goto  package   synchronized 
boolean  do        if   private   this 
break  double        implements  protected  throw 
byte  else        import  public   throws 
case  enum        instanceof  return   transient 
catch  extends        int   short   try 
char  final        interface  static   void 
class  finally        long  strictfp   volatile 
const  float        native  super   while 

June 2009 21 



Multiple Assignment 

§  variables can be assigned to different values of the same type: 
§  Example:    int x = 23; 

     x = 42; 
§  Instructions are executed top-to bottom => x refers to 42 

§  variables cannot be assigned to values of different type: 
§  Example:    int x = 23; 

     x = 42.0;  // !ERROR! 
§  only exception is if types are “compatible”: 

§  Example:    double x = 23.0; 
     x = 42;  // :-) 

June 2009 22 



Operators & Operands 

§  Operators represent computations:  +   *   -   /   ++   -- 
§  Example:       23+19      day+month*30      2*2*2*2*2*2-22 

§  Addition “+”, Multiplication “*”, Subtraction “-” as usual 
§  there is no exponentiation operator to compute xy 
§  need to use Math.pow(x, y) write your own function power 
static int power(a, b) { 
    if (b == 0) return 1; else return a*power(a,b-1); 
} 
§  Division “/” rounds down integers (differently from Python) 

§  Example Java:   3/-2  has value -1 
§  Example Python:  3/-2  has value -2 

June 2009 23 



Boolean Expressions 

§  expressions of type boolean with value either true or false 

§  logic operators for computing with Boolean values: 
§  x && y   true if, and only if, x is true and y is true 
§  x || y   true if (x is true or y is true) 
§  !x   true if, and only if, x is false 

§  Java does NOT treat numbers as Boolean expressions J 

June 2009 24 



Expressions 

§  Expressions can be: 
§  Values:    42  23.0  "Hej med dig!" 
§  Variables:   x  y  name1234 
§  built from operators:  19+23.0  x*x+y*y 

§  grammar rule: 
§  <expr>    =>  <value>    | 

   <var>     | 
   <expr> <operator> <expr>  | 
   ( <expr> ) 

§  every expression has a value: 
§  replace variables by their values 
§  perform operations 

June 2009 25 



Increment and Decrement 

§  abbreviation for incrementing / decrementing (like in Python) 
§  Example:   counter = counter + 1; 

   counter += 1; 
 

§  in special case of “+1”, we can use “++” operator 
§  Example:   counter++; 

§  two variants: post- and pre-increment 
§  Example:  int x = 42; 

  int y = x++;   // x == 43 && y == 42 
  int z = ++y;   // y == 43 && z == 43 

§  same for decrementing with “--” operator 

June 2009 26 



Relational Operators 

§  relational operators are operators, whose value is boolean 

§  important relational operators are: 
   Example True   Example False 

§  x <   y   23 < 42   'W' < 'H' 
§  x <=   y  42 <= 42.0   Math.PI <= 2 
§  x == y   42 == 42.0   2 == 2.00001  
§  x  != y   42  != 42.00001  2  != 2.0 
§  x >= y   42 >= 42   'H' >= 'h' 
§  x >   y   'W' > 'H'   42 > 42 

§  remember to use “==” instead of “=” (assignment)! 
June 2009 27 



Conditional Operator 

§  select one out of two expressions depending on condition 

§  as a grammar rule: 
<cond-op>    =>    <cond> ? <expr1> : <expr2> 
 

§  Example: 
 int answer = (1 > 0) ? 42 : 23; 

 
§  useful as abbreviation for many small if-then-else constructs 

June 2009 28 



Operator Precedence 

§  expressions are evaluated left-to-right 
§  Example:  64 - 24 + 2   ==   42 

§  BUT: like in mathematics, “*” binds more strongly than “+” 
§  Example:  2 + 8 * 5   ==   42 

§  parentheses have highest precedence:  64 - (24 + 2)  == 38 

§  Parentheses “( <expr> )” 
§  Increment “++” and Decrement “--” 
§  Multiplication “*” and Division “/” 
§  Addition “+” and Subtraction “-” 
§  Relational Operators, Boolean Operators, Conditonal, … 

June 2009 29 



String Operations 

§  Addition “+” works on strings; “-”, “*”, and “/” do NOT 
§  other operations implemented as methods of class String: 
String s1 = "Hello ";  String s2 = "hello "; 
boolean b1 = s1.equals(s2);    // b1 == false 
boolean b2 = s1.equalsIgnoreCase(s2);  // b2 == true 
int i1 = s1.length();     // i1 == 5 
char c = s1.charAt(1);    // c == 'e’ 
String s3 = s1.substring(1,3);    // s3.equals("el") 
int i2 = s1.indexOf(s3);    // i2 == 1 
int i3 = s1.compareTo(s2);    // i3 == -1 
String s4 = s1.toLowerCase();   // s4.equals(s2) 
String s5 = s1.trim();     // s5.equals("Hello") 

June 2009 30 


