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Multiple Assignment Revisited 

§  as seen before, variables can be assigned multiple times 
§  assignment is NOT the same as equality 
§  it is not symmetric, and changes with time 

§  Example: 
 a = 42 
 … 
 b = a 
 … 
 a = 23 
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from here, 
a and b are equal 

from here, 
a and b are different 



Updating Variables 

§  most common form of multiple assignment is updating 
§  a variable is assigned to an expression containing that variable 

§  Example: 
 x = 23 
 for i in range(19): 
     x = x + 1 

 

§  adding one is called incrementing 

§  expression evaluated BEFORE assignment takes place 
§  thus, variable needs to have been initialized earlier! 
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Iterating with While Loops 

§  iteration  =   repetition of code blocks 
§  can be implemented using recursion (countdown, polyline) 

§  while statement: 
 <while-loop>  =>  while <cond>: 
        <instr1>;  <instr2>;  <instr3> 

 

§  Example:   def countdown(n): 
       while n > 0: 
           print n, "seconds left!" 
           n = n - 1 
       print "Ka-Boom!" 
   countdown(3) 
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n == 3 n == 3 
True 

n == 3 n == 3 n == 2 n == 2 
True 

n == 2 n == 2 n == 1 n == 1 
True 

n == 1 n == 1 n == 0 n == 0 
False 

n == 0 



Termination 

§  Termination  =  the condition is eventually False 
§  loop in countdown obviously terminates: 

 while n > 0:      n = n - 1 
§  difficult for other loops: 

 def collatz(n): 
     while n != 1: 
         print n, 
         if n % 2 == 0:   # n is even 
             n = n / 2 
         else:    # n is odd 
             n = 3 * n + 1 
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Termination 

§  Termination  =  the condition is eventually False 
§  loop in countdown obviously terminates: 

 while n > 0:      n = n - 1 
§  can also be difficult for recursion: 

 def collatz(n): 
     if n != 1: 
         print n, 
         if n % 2 == 0:   # n is even 
             collatz(n / 2) 
         else:    # n is odd 
             collatz(3 * n + 1) 
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Breaking a Loop 

§  sometimes you want to force termination 

§  Example: 
 while True: 
     num = raw_input('enter a number (or "exit"):\n') 
     if num == "exit": 
         break 
     n = int(num) 
     print "Square of", n, "is:", n**2 
 print "Thanks a lot!" 
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Approximating Square Roots 

§  Newton’s method for finding root of a function f: 
1.  start with some value x0 

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn) 
§  for square root of a:  f(x) = x2 – a  f ’(x) = 2x 
§  simplifying for this special case:  xn+1 = (xn + a / xn) / 2 

§  Example 1:  while True: 
       print xn 
       xnp1 = (xn + a / xn) / 2 
       if xnp1 == xn: 
           break 
       xn = xnp1 
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Approximating Square Roots 

§  Newton’s method for finding root of a function f: 
1.  start with some value x0 

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn) 

§  Example 2:  def f(x):  return x**3 - math.cos(x) 
   def f1(x):  return 3*x**2 + math.sin(x) 
   while True: 
       print xn 
       xnp1 = xn - f(xn) / f1(xn) 
       if xnp1 == xn: 
           break 
       xn = xnp1 
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Approximating Square Roots 

§  Newton’s method for finding root of a function f: 
1.  start with some value x0 

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn) 

§  Example 2:  def f(x):  return x**3 - math.cos(x) 
   def f1(x):  return 3*x**2 + math.sin(x) 
   while True: 
       print xn 
       xnp1 = xn - f(xn) / f1(xn) 
       if math.abs(xnp1 - xn) < epsilon: 
           break 
       xn = xnp1 
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Algorithms 

§  algorithm  =    mechanical problem-solving process 
§  usually given as a step-by-step procedure for computation 

§  Newton’s method is an example of an algorithm 
§  other examples: 

§  addition with carrying 
§  subtraction with borrowing 
§  long multiplication 
§  long division 

§  directly using Pythagora’s formula is not an algorithm 
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Divide et Impera 

§  latin, means “divide and conquer” (courtesy of Julius Caesar) 
§  Idea:   break down a problem and recursively work on parts 

§  Example:  guessing a number by bisection 
 def guess(low, high): 
     if low == high: 
         print "Got you! You thought of: ", low 
     else: 
         mid = (low+high) / 2 
         ans = raw_input("Is "+str(mid)+" correct (>, =, <)?") 
         if ans == ">":  guess(mid,high) 
         elif ans == "<":  guess(low,mid) 
         else:   print "Yeehah! Got you!" 
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Debugging Larger Programs 

§  assume you have large function computing wrong return value 
§  going step-by-step very time consuming 

§  Idea:   use bisection, i.e., half the search space in each step 

1.  insert intermediate output (e.g. using print) at mid-point 
2.  if intermediate output is correct, apply recursively to 2nd part 
3.  if intermediate output is wrong, apply recursively to 1st part 
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STRINGS 
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Strings as Sequences 

§  strings can be viewed as 0-indexed sequences 
 

§  Examples: 
 "Slartibartfast"[0] == "S" 
 "Slartibartfast"[1] == "l" 
 "Slartibartfast"[2] == "Slartibartfast"[7] 
 "Phartiphukborlz"[-1] == "z" 

§  grammar rule for expressions: 
 <expr>   =>   …  |  <expr1>[<expr2>] 

§  <expr1>   = expression with value of type string 
§  index <expr2>  = expression with value of type integer 
§  negative index counting from the back 
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Length of Strings 

§  length of a string computed by built-in function len(object) 

§  Example: 
 name = "Slartibartfast" 
 length = len(name) 
 print name[length-4] 

 
§  Note:   name[length] gives runtime error 

§  identical to write name[len(name)-1] and name[-1] 
§  more general, name[len(name)-a] identical to name[-a] 

June 2009 17 



Traversing with While Loop 

§  many operations go through string one character at a time 
§  this can be accomplished using 

§  a while loop, 
§  an integer variable, and 
§  index access to the string 

§  Example: 
 index = 0 
 while index < len(name): 
     letter = name[index] 
     print letter 
     index = index + 1 
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Traversing with For Loop 

§  many operations go through string one character at a time 
§  this can be accomplished easier using 

§  a for loop and 
§  a string variable 

§  Example: 
 for letter in name: 
     print letter 
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Generating Duck Names 

§  What does the following code do? 
 

 prefix = "R" 
 infixes = "iau" 
 suffix = "p" 
 for infix in infixes: 
     print prefix + infix + suffix 

 
§  … and greetings from Andebyen! 
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String Slices 

§  slice  =  part of a string 
§  Example 1: 

 name = "Phartiphukborlz" 
 print name[6:10] 

§  one can use negative indices: 
 name[6:-5] == name[6:len(name)-5] 

§  view string with indices before letters: 
 

June 2009 21 

P h a r t i p h u k b o r l z 
0	
 1	
 2	
 3	
 4	
 1

5	

1
3	


9	
5	
 6	
 7	
 8	
 1
0	


1
1	


1
2	


1
4	




String Slices 

§  slice  =  part of a string 
§  Example 2: 

 name = "Phartiphukborlz" 
 print name[6:6]  # empty string has length 0 
 print name[:6]  # no left index = 0 
 print name[6:]  # no right index = len(name) 
 print name[:]   # guess ;) 

§  view string with indices before letters: 
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P h a r t i p h u k b o r l z 
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Changing Strings 

§  indices and slices are read-only (immutable) 
§  you cannot assign to an index or a slice: 

 name = "Slartibartfast" 
 name[0] = "s" 

§  change strings by building new ones 
§  Example 1: 

 name = "Slartibartfast" 
 name = "s" + name[1:] 

§  Example 2: 
 name = "Anders And" 
 name2 = name[:6] + "ine" + name[6:] 
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Searching in Strings 

§  indexing goes from index to letter 
§  reverse operation is called find (search) 
§  Implementation: 

 def find(word, letter): 
     index = 0 
     while index < len(word): 
         if word[index] == letter: 
             return index 
         index = index + 1 
     return -1 

§  Why not use a for loop? 
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Looping and Counting 

§  want to count number of a certain letter in a word 
§  for this, we use a counter variable 

§  Implementation: 
 def count(word, letter): 
     count = 0 
     for x in word: 
         if x == letter: 
             count = count + 1 
     return count 

§  Can we use a while loop here? 
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String Methods 

§  methods  =   functions associated to a data structure 
§  calling a method is called method invocation 
§  dir(object): get list of all methods of a data structure 
§  Example: 

 name = "Slartibartfast" 
 print name.lower() 
 print name.upper() 
 print name.find("a") 
 print name.count("a") 
 for method in dir(name): 
     print method 
 help(name.upper) 
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Using the Inclusion Operator 

§  how to find out if string contained in another string? 

§  Idea:   use a while loop and slices 
 def contained_in(word1, word2): 
     index = 0 
     while index+len(word1) <= len(word2): 
         if word2[index:index+len(word1)] == word1: 
  return True 
         index = index+1 
     return False 

§  Python has pre-defined operator in: 
 print "phuk" in "Phartiphukborlz" 
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Comparing Strings 

§  string comparison is from left-to-right (lexicographic) 

§  Example 1: 
 "slartibartfast" > "phartiphukborlz" 

§  Example 2: 
 "Slartibartfast" < "phartiphukborlz" 

§  Note:   string comparison is case-sensitive 
§  to avoid problems with case, use lower() or upper() 

§  Example 3: 
 "Slartibartfast".upper() > "phartiphukborlz".upper() 
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Debugging String Algorithms 

§  beginning and end critical, when iterating through sequences 
§  number of iterations often off by one (obi-wan error) 
§  Example: 

 def is_reverse(word1, word2): 
     if len(word1) != len(word2):  return False 
     i = 0 
     j = len(word2) 
     while j > 0: 
         if word1[i] != word2[j]:  return False 
         i = i + 1;  j = j - 1 
     return True 
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Debugging String Algorithms 

§  beginning and end critical, when iterating through sequences 
§  number of iterations often off by one (obi-wan error) 
§  Example: 

 def is_reverse(word1, word2): 
     if len(word1) != len(word2):  return False 
     i = 0 
     j = len(word2) - 1 
     while j > 0: 
         if word1[i] != word2[j]:  return False 
         i = i + 1;  j = j - 1 
     return True 
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Debugging String Algorithms 

§  beginning and end critical, when iterating through sequences 
§  number of iterations often off by one (obi-wan error) 
§  Example: 

 def is_reverse(word1, word2): 
     if len(word1) != len(word2):  return False 
     i = 0 
     j = len(word2) - 1 
     while j >= 0: 
         if word1[i] != word2[j]:  return False 
         i = i + 1;  j = j - 1 
     return True 
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Debugging String Algorithms 

§  beginning and end critical, when iterating through sequences 
§  number of iterations often off by one (obi-wan error) 
§  Example: 

 def is_reverse(word1, word2): 
     if len(word1) != len(word2):  return False 
     i = 0 
     j = len(word2) 
     while j > 0: 
         if word1[i] != word2[j-1]:   return False 
         i = i + 1;  j = j - 1 
     return True 
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HANDLING TEXT FILES 
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Reading Files 

§  open files for reading using the open(name) built-in function 
§  Example:  f = open("anna_karenina.txt") 

§  return value is file object in reading mode (mode 'r') 

§  we can read all content into string using the read() method 
§  Example:  content = f.read() 

   print content[:60] 
   print content[3000:3137] 

§  contains line endings (here “\r\n”) 
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Reading Lines from a File 

§  instead of reading all content, we can use method readline() 
§  Example:  print f.readline() 

   next = f.readline().strip() 
   print next 

§  the method strip() removes all leading and trailing whitespace 
§  whitespace   =   \n, \r, or \t   (new line, carriage return, tab) 

§  we can also iterate through all lines using a for loop 
§  Example:  for line in f: 

       line = line.strip() 
       print line 
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Reading Words from a File 

§  often a line consists of many words 
§  no direct support to read words 

§  string method split() can be used with for loop 
§  Example: 

  def print_all_words(f): 
      for line in f: 
          for word in line.split(): 
              print word 

§  variant split(sep) using sep instead of whitespace 
§  Example:  for part in "Slartibartfast".split("a"): 

       print part 
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Analyzing Words 

§  Example 1:  words beginning with capital letter ending in “a” 
def cap_end_a(word): 
    return word[0].upper() == word[0] 
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Analyzing Words 

§  Example 1:  words beginning with capital letter ending in “a” 
def cap_end_a(word): 
    return word[0].upper() == word[0] and word[-1] == "a" 
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Analyzing Words 

§  Example 1:  words beginning with capital letter ending in “a” 
def cap_end_a(word): 
    return word[0].isupper() and word[-1] == "a" 

§  Example 2:  words that contain a double letter 
def contains_double_letter(word): 
    last = word[0] 
    for letter in word[1:] 
        if last == letter: 
            return True 
        last = letter 
    return False 

June 2009 39 



Analyzing Words 

§  Example 1:  words beginning with capital letter ending in “a” 
def cap_end_a(word): 
    return word[0].isupper() and word[-1] == "a" 

§  Example 2:  words that contain a double letter 
def contains_double_letter(word): 
    for i in range(len(word)-1): 
        if word[i] == word[i+1]: 
            return True 
    return False 
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Adding Statistics 

§  Example:  let’s count our special words 
def count_words(f): 
    count = count_cap_end_a = contains_double_letter = 0 
    for line in f: 
        for word in line.split(): 
            count = count + 1 
            if cap_end_a(word): 
                count_cap_end_a = count_cap_end_a + 1 
            if contains_double_letter(word): 
                count_double_letter = count_double_letter + 1 
    print count, count_cap_end_a, count_double_letter 
    print count_double_letter * 100 / count, "%" 
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Adding Statistics 

§  Example:  let’s count our special words 
def count_words(f): 
    count = count_cap_end_a = contains_double_letter = 0 
    for line in f: 
        for word in line.split(): 
            count += 1 
            if cap_end_a(word): 
                count_cap_end_a += 1 
            if contains_double_letter(word): 
                count_double_letter += 1 
    print count, count_cap_end_a, count_double_letter 
    print count_double_letter * 100 / count, "%" 
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Debugging by Testing Functions 

§  correct selection of tests important 
§  check obviously different cases for correct return value 
§  check corner cases (here: first letter, last letter etc.) 
§  Example: 
def contains_double_letter(word): 
    for i in range(len(word)-1): 
        if word[i] == word[i+1]: 
            return True 
    return False 
§  test "mallorca" and "ibiza" 
§  test "llamada" and "bell" 
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LIST PROCESSING 
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Lists as Sequences 

§  lists are sequences of values 
§  lists can be constructed using “[” and “]” 
§  Example:   [42, 23] 

   ["Hello", "World", "!"] 
   ["strings and", int, "mix", 2] 
   [] 

§  lists can be nested, i.e., a list can contain other lists 
§  Example:   [[1, 2, 3], [4, 5, 6], [7, 8, 9]] 
§  lists are normal values, i.e., they can be printed, assigned etc. 
§  Example:   x = [1, 2, 3] 

   print x, [x, x], [[x, x], x] 

June 2009 45 



Mutable Lists 

§  lists can be accessed using indices 
§  lists are mutable, i.e., they can be changed destructively 
§  Example: 

  x = [1, 2, 3] 
  print x[1] 
  x[1] = 4 
  print x, x[1] 

§  len(object) and negative values work like for strings 
§  Example: 

  x[2] == x[-1] 
  x[1] == x[len(x)-2] 
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§  lists can be viewed as mappings from indices to elements 
§  Example 1:   x = ["Hello", "World", "!"] 

§  Example 2:   x = [[23, 42, -3.0], "Bye!"] 
 

list 

 

x 0	
 "Hello"	

"World"	

"!"	


1	

2	


Stack Diagrams with Lists 
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list 

 

x 0	

"Bye!"	
1	


list 

 

0	
 23	

42	

-3.0	


1	

2	




Traversing Lists 

§  for loop consecutively assigns variable to elements of list 
§  Example:  print squares of numbers from 1 to 10 

  for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]: 
      print x**2 

§  arithmetic sequences can be generated using range function: 
§  range([start,] stop[, step]) 

§  Example: 
  range(4) == [0, 1, 2, 3] 
  range(1, 11) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
  range(9, 1, -2) == [9, 7, 5, 3] 
  range(1,10, 2) == [1, 3, 5, 7, 9] 
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Traversing Lists 

§  for loop consecutively assigns variable to elements of list 
§  general form 

 for element in my_list: 
     print element 

§  iteration through list with indices: 
 for index in range(len(my_list)): 
     element = my_list[index] 
     print element 

§  Example:  in-situ update of list 
 x = [8388608, 4398046511104, 0.125] 
 for i in range(len(x)): 
     x[i] = math.log(x[i], 2) 
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List Operations 

§  like for strings, “+” concatenates two lists 
§  Example: 

 [1, 2, 3] + [4, 5, 6] == range(1, 7) 
 [[23, 42] + [-3.0]] + ["Bye!"] == [[23, 42, -3.0], "Bye!"] 

 
§  like for strings, “* n” with integer n produces n copies 
§  Example: 

 len(["I", "love", "penguins!"] * 100) == 300 
 (range(1, 3) + range(3, 1, -1)) * 2 == [1, 2, 3, 2, 1, 2, 3, 2] 
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List Slices 

§  slices work just like for strings 
§  Example:  x = ["Hello", 2, "u", 2, "!"] 

  x[2:4] == ["u", 2] 
  x[2:] == x[-3:len(x)] 
  y = x[:]  # make a copy (lists are mutable!) 

§  BUT:   we can also assign to slices! 
§  Example:  x[1:4] = ["to", "you", "too"] 

  x == ["Hello", "to", "you", "too", "!"] 
  x[1:3] = ["to me"] 
  x == ["Hello", "to me", "too", "!"] 
  x[2:3] = [] 
  x == ["Hello", "to me", "!"] 
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