
DM536
Programming A

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM536/!

ITERATION

June 2009 2

Multiple Assignment Revisited

§  as seen before, variables can be assigned multiple times
§  assignment is NOT the same as equality
§  it is not symmetric, and changes with time

§  Example:
 a = 42
 …
 b = a
 …
 a = 23

June 2009 3

from here,
a and b are equal

from here,
a and b are different

Updating Variables

§  most common form of multiple assignment is updating
§  a variable is assigned to an expression containing that variable

§  Example:
 x = 23
 for i in range(19):
 x = x + 1

§  adding one is called incrementing

§  expression evaluated BEFORE assignment takes place
§  thus, variable needs to have been initialized earlier!

June 2009 4

Iterating with While Loops

§  iteration = repetition of code blocks
§  can be implemented using recursion (countdown, polyline)

§  while statement:
 <while-loop> => while <cond>:
 <instr1>; <instr2>; <instr3>

§  Example: def countdown(n):
 while n > 0:
 print n, "seconds left!"
 n = n - 1
 print "Ka-Boom!"
 countdown(3)

 June 2009 5

n == 3 n == 3
True

n == 3 n == 3 n == 2 n == 2
True

n == 2 n == 2 n == 1 n == 1
True

n == 1 n == 1 n == 0 n == 0
False

n == 0

Termination

§  Termination = the condition is eventually False
§  loop in countdown obviously terminates:

 while n > 0: n = n - 1
§  difficult for other loops:

 def collatz(n):
 while n != 1:
 print n,
 if n % 2 == 0: # n is even
 n = n / 2
 else: # n is odd
 n = 3 * n + 1

June 2009 6

Termination

§  Termination = the condition is eventually False
§  loop in countdown obviously terminates:

 while n > 0: n = n - 1
§  can also be difficult for recursion:

 def collatz(n):
 if n != 1:
 print n,
 if n % 2 == 0: # n is even
 collatz(n / 2)
 else: # n is odd
 collatz(3 * n + 1)

June 2009 7

Breaking a Loop

§  sometimes you want to force termination

§  Example:
 while True:
 num = raw_input('enter a number (or "exit"):\n')
 if num == "exit":
 break
 n = int(num)
 print "Square of", n, "is:", n**2
 print "Thanks a lot!"

June 2009 8

Approximating Square Roots

§  Newton’s method for finding root of a function f:
1.  start with some value x0

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn)
§  for square root of a: f(x) = x2 – a f ’(x) = 2x
§  simplifying for this special case: xn+1 = (xn + a / xn) / 2

§  Example 1: while True:
 print xn
 xnp1 = (xn + a / xn) / 2
 if xnp1 == xn:
 break
 xn = xnp1

June 2009 9

Approximating Square Roots

§  Newton’s method for finding root of a function f:
1.  start with some value x0

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn)

§  Example 2: def f(x): return x**3 - math.cos(x)
 def f1(x): return 3*x**2 + math.sin(x)
 while True:
 print xn
 xnp1 = xn - f(xn) / f1(xn)
 if xnp1 == xn:
 break
 xn = xnp1

June 2009 10

Approximating Square Roots

§  Newton’s method for finding root of a function f:
1.  start with some value x0

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn)

§  Example 2: def f(x): return x**3 - math.cos(x)
 def f1(x): return 3*x**2 + math.sin(x)
 while True:
 print xn
 xnp1 = xn - f(xn) / f1(xn)
 if math.abs(xnp1 - xn) < epsilon:
 break
 xn = xnp1

June 2009 11

Algorithms

§  algorithm = mechanical problem-solving process
§  usually given as a step-by-step procedure for computation

§  Newton’s method is an example of an algorithm
§  other examples:

§  addition with carrying
§  subtraction with borrowing
§  long multiplication
§  long division

§  directly using Pythagora’s formula is not an algorithm

June 2009 12

Divide et Impera

§  latin, means “divide and conquer” (courtesy of Julius Caesar)
§  Idea: break down a problem and recursively work on parts

§  Example: guessing a number by bisection
 def guess(low, high):
 if low == high:
 print "Got you! You thought of: ", low
 else:
 mid = (low+high) / 2
 ans = raw_input("Is "+str(mid)+" correct (>, =, <)?")
 if ans == ">": guess(mid,high)
 elif ans == "<": guess(low,mid)
 else: print "Yeehah! Got you!"

June 2009 13

Debugging Larger Programs

§  assume you have large function computing wrong return value
§  going step-by-step very time consuming

§  Idea: use bisection, i.e., half the search space in each step

1.  insert intermediate output (e.g. using print) at mid-point
2.  if intermediate output is correct, apply recursively to 2nd part
3.  if intermediate output is wrong, apply recursively to 1st part

June 2009 14

STRINGS

June 2009 15

Strings as Sequences

§  strings can be viewed as 0-indexed sequences

§  Examples:
 "Slartibartfast"[0] == "S"
 "Slartibartfast"[1] == "l"
 "Slartibartfast"[2] == "Slartibartfast"[7]
 "Phartiphukborlz"[-1] == "z"

§  grammar rule for expressions:
 <expr> => … | <expr1>[<expr2>]

§  <expr1> = expression with value of type string
§  index <expr2> = expression with value of type integer
§  negative index counting from the back

June 2009 16

Length of Strings

§  length of a string computed by built-in function len(object)

§  Example:
 name = "Slartibartfast"
 length = len(name)
 print name[length-4]

§  Note: name[length] gives runtime error

§  identical to write name[len(name)-1] and name[-1]
§  more general, name[len(name)-a] identical to name[-a]

June 2009 17

Traversing with While Loop

§  many operations go through string one character at a time
§  this can be accomplished using

§  a while loop,
§  an integer variable, and
§  index access to the string

§  Example:
 index = 0
 while index < len(name):
 letter = name[index]
 print letter
 index = index + 1

June 2009 18

Traversing with For Loop

§  many operations go through string one character at a time
§  this can be accomplished easier using

§  a for loop and
§  a string variable

§  Example:
 for letter in name:
 print letter

June 2009 19

Generating Duck Names

§  What does the following code do?

 prefix = "R"
 infixes = "iau"
 suffix = "p"
 for infix in infixes:
 print prefix + infix + suffix

§  … and greetings from Andebyen!

June 2009 20

String Slices

§  slice = part of a string
§  Example 1:

 name = "Phartiphukborlz"
 print name[6:10]

§  one can use negative indices:
 name[6:-5] == name[6:len(name)-5]

§  view string with indices before letters:

June 2009 21

P h a r t i p h u k b o r l z
0	
 1	
 2	
 3	
 4	
 1

5	

1
3	

9	
5	
 6	
 7	
 8	
 1
0	

1
1	

1
2	

1
4	

String Slices

§  slice = part of a string
§  Example 2:

 name = "Phartiphukborlz"
 print name[6:6] # empty string has length 0
 print name[:6] # no left index = 0
 print name[6:] # no right index = len(name)
 print name[:] # guess ;)

§  view string with indices before letters:

June 2009 22

P h a r t i p h u k b o r l z
0	
 1	
 2	
 3	
 4	
 1

5	

1
3	

9	
5	
 6	
 7	
 8	
 1
0	

1
1	

1
2	

1
4	

Changing Strings

§  indices and slices are read-only (immutable)
§  you cannot assign to an index or a slice:

 name = "Slartibartfast"
 name[0] = "s"

§  change strings by building new ones
§  Example 1:

 name = "Slartibartfast"
 name = "s" + name[1:]

§  Example 2:
 name = "Anders And"
 name2 = name[:6] + "ine" + name[6:]

June 2009 23

Searching in Strings

§  indexing goes from index to letter
§  reverse operation is called find (search)
§  Implementation:

 def find(word, letter):
 index = 0
 while index < len(word):
 if word[index] == letter:
 return index
 index = index + 1
 return -1

§  Why not use a for loop?

June 2009 24

Looping and Counting

§  want to count number of a certain letter in a word
§  for this, we use a counter variable

§  Implementation:
 def count(word, letter):
 count = 0
 for x in word:
 if x == letter:
 count = count + 1
 return count

§  Can we use a while loop here?

June 2009 25

String Methods

§  methods = functions associated to a data structure
§  calling a method is called method invocation
§  dir(object): get list of all methods of a data structure
§  Example:

 name = "Slartibartfast"
 print name.lower()
 print name.upper()
 print name.find("a")
 print name.count("a")
 for method in dir(name):
 print method
 help(name.upper)

 June 2009 26

Using the Inclusion Operator

§  how to find out if string contained in another string?

§  Idea: use a while loop and slices
 def contained_in(word1, word2):
 index = 0
 while index+len(word1) <= len(word2):
 if word2[index:index+len(word1)] == word1:
 return True
 index = index+1
 return False

§  Python has pre-defined operator in:
 print "phuk" in "Phartiphukborlz"

June 2009 27

Comparing Strings

§  string comparison is from left-to-right (lexicographic)

§  Example 1:
 "slartibartfast" > "phartiphukborlz"

§  Example 2:
 "Slartibartfast" < "phartiphukborlz"

§  Note: string comparison is case-sensitive
§  to avoid problems with case, use lower() or upper()

§  Example 3:
 "Slartibartfast".upper() > "phartiphukborlz".upper()

June 2009 28

Debugging String Algorithms

§  beginning and end critical, when iterating through sequences
§  number of iterations often off by one (obi-wan error)
§  Example:

 def is_reverse(word1, word2):
 if len(word1) != len(word2): return False
 i = 0
 j = len(word2)
 while j > 0:
 if word1[i] != word2[j]: return False
 i = i + 1; j = j - 1
 return True

June 2009 29

Debugging String Algorithms

§  beginning and end critical, when iterating through sequences
§  number of iterations often off by one (obi-wan error)
§  Example:

 def is_reverse(word1, word2):
 if len(word1) != len(word2): return False
 i = 0
 j = len(word2) - 1
 while j > 0:
 if word1[i] != word2[j]: return False
 i = i + 1; j = j - 1
 return True

June 2009 30

Debugging String Algorithms

§  beginning and end critical, when iterating through sequences
§  number of iterations often off by one (obi-wan error)
§  Example:

 def is_reverse(word1, word2):
 if len(word1) != len(word2): return False
 i = 0
 j = len(word2) - 1
 while j >= 0:
 if word1[i] != word2[j]: return False
 i = i + 1; j = j - 1
 return True

June 2009 31

Debugging String Algorithms

§  beginning and end critical, when iterating through sequences
§  number of iterations often off by one (obi-wan error)
§  Example:

 def is_reverse(word1, word2):
 if len(word1) != len(word2): return False
 i = 0
 j = len(word2)
 while j > 0:
 if word1[i] != word2[j-1]: return False
 i = i + 1; j = j - 1
 return True

June 2009 32

HANDLING TEXT FILES

June 2009 33

Reading Files

§  open files for reading using the open(name) built-in function
§  Example: f = open("anna_karenina.txt")

§  return value is file object in reading mode (mode 'r')

§  we can read all content into string using the read() method
§  Example: content = f.read()

 print content[:60]
 print content[3000:3137]

§  contains line endings (here “\r\n”)

June 2009 34

Reading Lines from a File

§  instead of reading all content, we can use method readline()
§  Example: print f.readline()

 next = f.readline().strip()
 print next

§  the method strip() removes all leading and trailing whitespace
§  whitespace = \n, \r, or \t (new line, carriage return, tab)

§  we can also iterate through all lines using a for loop
§  Example: for line in f:

 line = line.strip()
 print line

June 2009 35

Reading Words from a File

§  often a line consists of many words
§  no direct support to read words

§  string method split() can be used with for loop
§  Example:

 def print_all_words(f):
 for line in f:
 for word in line.split():
 print word

§  variant split(sep) using sep instead of whitespace
§  Example: for part in "Slartibartfast".split("a"):

 print part

June 2009 36

Analyzing Words

§  Example 1: words beginning with capital letter ending in “a”
def cap_end_a(word):
 return word[0].upper() == word[0]

June 2009 37

Analyzing Words

§  Example 1: words beginning with capital letter ending in “a”
def cap_end_a(word):
 return word[0].upper() == word[0] and word[-1] == "a"

June 2009 38

Analyzing Words

§  Example 1: words beginning with capital letter ending in “a”
def cap_end_a(word):
 return word[0].isupper() and word[-1] == "a"

§  Example 2: words that contain a double letter
def contains_double_letter(word):
 last = word[0]
 for letter in word[1:]
 if last == letter:
 return True
 last = letter
 return False

June 2009 39

Analyzing Words

§  Example 1: words beginning with capital letter ending in “a”
def cap_end_a(word):
 return word[0].isupper() and word[-1] == "a"

§  Example 2: words that contain a double letter
def contains_double_letter(word):
 for i in range(len(word)-1):
 if word[i] == word[i+1]:
 return True
 return False

June 2009 40

Adding Statistics

§  Example: let’s count our special words
def count_words(f):
 count = count_cap_end_a = contains_double_letter = 0
 for line in f:
 for word in line.split():
 count = count + 1
 if cap_end_a(word):
 count_cap_end_a = count_cap_end_a + 1
 if contains_double_letter(word):
 count_double_letter = count_double_letter + 1
 print count, count_cap_end_a, count_double_letter
 print count_double_letter * 100 / count, "%"

June 2009 41

Adding Statistics

§  Example: let’s count our special words
def count_words(f):
 count = count_cap_end_a = contains_double_letter = 0
 for line in f:
 for word in line.split():
 count += 1
 if cap_end_a(word):
 count_cap_end_a += 1
 if contains_double_letter(word):
 count_double_letter += 1
 print count, count_cap_end_a, count_double_letter
 print count_double_letter * 100 / count, "%"

June 2009 42

Debugging by Testing Functions

§  correct selection of tests important
§  check obviously different cases for correct return value
§  check corner cases (here: first letter, last letter etc.)
§  Example:
def contains_double_letter(word):
 for i in range(len(word)-1):
 if word[i] == word[i+1]:
 return True
 return False
§  test "mallorca" and "ibiza"
§  test "llamada" and "bell"

June 2009 43

LIST PROCESSING

June 2009 44

Lists as Sequences

§  lists are sequences of values
§  lists can be constructed using “[” and “]”
§  Example: [42, 23]

 ["Hello", "World", "!"]
 ["strings and", int, "mix", 2]
 []

§  lists can be nested, i.e., a list can contain other lists
§  Example: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
§  lists are normal values, i.e., they can be printed, assigned etc.
§  Example: x = [1, 2, 3]

 print x, [x, x], [[x, x], x]

June 2009 45

Mutable Lists

§  lists can be accessed using indices
§  lists are mutable, i.e., they can be changed destructively
§  Example:

 x = [1, 2, 3]
 print x[1]
 x[1] = 4
 print x, x[1]

§  len(object) and negative values work like for strings
§  Example:

 x[2] == x[-1]
 x[1] == x[len(x)-2]

June 2009 46

§  lists can be viewed as mappings from indices to elements
§  Example 1: x = ["Hello", "World", "!"]

§  Example 2: x = [[23, 42, -3.0], "Bye!"]

list

x 0	
 "Hello"	

"World"	

"!"	

1	

2	

Stack Diagrams with Lists

June 2009 47

list

x 0	

"Bye!"	
1	

list

0	
 23	

42	

-3.0	

1	

2	

Traversing Lists

§  for loop consecutively assigns variable to elements of list
§  Example: print squares of numbers from 1 to 10

 for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
 print x**2

§  arithmetic sequences can be generated using range function:
§  range([start,] stop[, step])

§  Example:
 range(4) == [0, 1, 2, 3]
 range(1, 11) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 range(9, 1, -2) == [9, 7, 5, 3]
 range(1,10, 2) == [1, 3, 5, 7, 9]

June 2009 48

Traversing Lists

§  for loop consecutively assigns variable to elements of list
§  general form

 for element in my_list:
 print element

§  iteration through list with indices:
 for index in range(len(my_list)):
 element = my_list[index]
 print element

§  Example: in-situ update of list
 x = [8388608, 4398046511104, 0.125]
 for i in range(len(x)):
 x[i] = math.log(x[i], 2)

June 2009 49

List Operations

§  like for strings, “+” concatenates two lists
§  Example:

 [1, 2, 3] + [4, 5, 6] == range(1, 7)
 [[23, 42] + [-3.0]] + ["Bye!"] == [[23, 42, -3.0], "Bye!"]

§  like for strings, “* n” with integer n produces n copies
§  Example:

 len(["I", "love", "penguins!"] * 100) == 300
 (range(1, 3) + range(3, 1, -1)) * 2 == [1, 2, 3, 2, 1, 2, 3, 2]

June 2009 50

List Slices

§  slices work just like for strings
§  Example: x = ["Hello", 2, "u", 2, "!"]

 x[2:4] == ["u", 2]
 x[2:] == x[-3:len(x)]
 y = x[:] # make a copy (lists are mutable!)

§  BUT: we can also assign to slices!
§  Example: x[1:4] = ["to", "you", "too"]

 x == ["Hello", "to", "you", "too", "!"]
 x[1:3] = ["to me"]
 x == ["Hello", "to me", "too", "!"]
 x[2:3] = []
 x == ["Hello", "to me", "!"]

June 2009 51

