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1. INTRODUCTION

In the area of term rewriting, techniques for automated termination analysis have
been studied for decades. While early work focused on the development of suitable well-
founded orders (see, e.g., Dershowitz [1987] for an overview), in the last 10 years much
more powerful methods were introduced which can handle large and realistic term
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rewrite systems (TRSs); see, for example, Endrullis et al. [2008], Geser et al. [2004], Hi-
rokawa and Middeldorp [2005], Giesl et al. [2006c], and Zantema [2003]. Moreover, nu-
merous powerful automatic tools for termination analysis of TRSs have been developed
whose power is demonstrated at the annual International Termination Competition.1

However, in order to make methods for termination analysis of term rewriting ap-
plicable in practice, one has to adapt them to real existing programming languages. In
this article, we show for the first time that termination techniques from term rewriting
are indeed very useful for termination analysis of functional programming languages.
Specifically, we consider the language Haskell [Peyton Jones 2003], which is one of the
most popular functional programming languages.

Since term rewriting itself is a Turing-complete programming language, in principle
it is of course possible to translate any program from any programming language
into an equivalent TRS and then prove termination of the resulting TRS. However, in
general, it is not clear how to obtain an automatic translation that creates TRSs which
are suitable for existing automated termination techniques. In other words, a naive
translation of programs into TRSs is likely to produce very complicated TRSs whose
termination can hardly be shown by existing automated techniques and tools.

Although functional programming languages are in some sense “close” to term rewrit-
ing, the application and adaption of TRS techniques for termination analysis of Haskell
is still challenging for several reasons:

—Haskell has a lazy evaluation strategy. However, most TRS techniques ignore such
evaluation strategies and try to prove that all (or all innermost) reductions termi-
nate.2

—Defining equations in Haskell are handled from top to bottom. In contrast, for TRSs,
any rule may be used for rewriting.

—Haskell has polymorphic types, whereas TRSs are untyped.
—In Haskell programs with infinite data objects, only certain functions are terminating.

But most TRS methods try to prove termination of all terms.
—Haskell is a higher-order language, whereas most automatic termination techniques

for TRSs only handle first-order rewriting.

There are many papers on verification of functional programs (see, e.g., Kobayashi
[2009], Ong [2006], Rondon et al. [2008] for some of the most recent approaches). How-
ever, up to now there exist only few techniques for automated termination analysis of
functional languages. Methods for first-order languages with strict evaluation strat-
egy were for example developed in Giesl [1995], Lee et al. [2001], Manolios and Vroon
[2006], and Walther [1994], where the size-change method of Lee et al. [2001] was also
extended to the higher-order setting [Sereni and Jones 2005; Sereni 2007]. The static
call graph constructed by the methods of Sereni and Jones [2005] and Sereni [2007]
is related to the graphs constructed in our approach in order to analyze termination.
However, the size-change method fixes one particular order to compare values for each
data type. (This also holds for higher-order types whose values are closures. These
closures are typically compared by the subtree order.) Here our approach is more flex-
ible, because the orders to compare values are not fixed. Instead, we translate all data
objects (including objects of higher-order type) into first-order terms and afterwards,

1For more information on the competition, we refer to http://termination-portal.org/wiki/Termination_
Competition.
2Very recently, there has been work on termination analysis of rewriting under an outermost evalua-
tion strategy [Endrullis and Hendriks 2009; Gnaedig and Kirchner 2008; Raffelsieper and Zantema 2009;
Thiemann 2009], which, however, does not correspond to the lazy evaluation strategy of Haskell (as illustrated
later in Section 2.2).
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one can use existing techniques from term rewriting to automatically generate suit-
able well-founded orders comparing these terms. For a thorough comparison of the
size-change method with techniques from term rewriting, we refer to Thiemann and
Giesl [2005].

For higher-order languages, several papers study how to ensure termination by typ-
ing (e.g., Abel [2004], Barthe et al. [2000], Blanqui [2004], and Xi [2002]) and Telford
and Turner [2000] define a restricted language where all evaluations terminate. A suc-
cessful approach for automated termination proofs for a small Haskell-like language
was developed in Panitz and Schmidt-Schauß [1997] and extended and implemented
in Panitz [1997].3 This approach is related to the technique of Gnaedig and Kirchner
[2008], which handles outermost evaluation of untyped first-order rewriting. However,
these are all “stand-alone” methods which do not allow the use of modern termination
techniques from term rewriting. Indeed, the general opinion of the Haskell community
was that “current advances in automatic termination proofs are still limited, especially
for lazy programs” [Xu et al. 2009].

In our approach we build upon the method of Panitz and Schmidt-Schauß [1997],
but we adapt it in order to make TRS techniques applicable.4 As shown by our ex-
perimental evaluation, the coupling with modern powerful TRS techniques solves the
previous limitations of termination methods for lazy functional programs. Now au-
tomated termination proofs for functions from real Haskell libraries indeed become
feasible.

We recapitulate Haskell in Section 2 and introduce our notion of “termination.” As
described in Section 3, to analyze termination, our method first generates a correspond-
ing termination graph (similar to the “termination tableaux” in Panitz and Schmidt-
Schauß [1997]). But in contrast to Panitz and Schmidt-Schauß [1997], then our method
transforms the termination graph into dependency pair problems which can be handled
by existing techniques from term rewriting (Section 4). Our approach can deal with
any termination graph, whereas Panitz and Schmidt-Schauß [1997] can only handle
termination graphs of a special form (“without crossings”).5 While the dependency pair
problems in Section 4 still contain higher-order functions, in Section 5 we improve the
construction in order to obtain first-order dependency pair problems. Section 6 extends
our approach to handle more types of Haskell, in particular type classes. We imple-
mented all our contributions in the termination prover AProVE [Giesl et al. 2006b].
Section 7 presents extensive experiments which show that our approach gives rise to
a very powerful fully automated termination tool. More precisely, when testing it on
existing standard Haskell libraries, it turned out that AProVE can fully automatically
prove termination of the vast majority of the functions in the libraries. This shows for
the first time that:

—it is possible to build a powerful automated termination analyzer for a functional
language like Haskell and that

—termination techniques from term rewriting can be successfully applied to real pro-
gramming languages in practice.

3In addition to methods which analyze the termination behavior of programs, there are also several results on
ensuring the termination of program optimization techniques like partial evaluation, for example, Glenstrup
and Jones [2005]. Here, in particular the approach of Sørensen and Glück [1995] uses graphs that are similar
to the termination graphs in Panitz and Schmidt-Schauß [1997] and in our approach.
4Alternatively as discussed in Giesl and Middeldorp [2004], one could try to simulate Haskell’s evaluation
strategy by context-sensitive rewriting [Lucas 1998]. But in spite of recent progress in that area (e.g., Giesl
and Middeldorp [2004], and Alarcón et al. [2006, 2008]), termination of context-sensitive rewriting is still
hard to analyze automatically.
5We will illustrate the difference in more detail in Example 5.2.
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2. HASKELL

A real programming language like Haskell offers many syntactical constructs which
ease the formulation of programs, but which are not necessary for the expressiveness
of the language. To analyze termination of a Haskell program, it is first checked for
syntactical correctness and for being well typed. To simplify the subsequent termina-
tion analysis, our termination tool then transforms the given Haskell program into an
equivalent Haskell program which only uses a subset of the constructs available in
Haskell. We now give the syntax and semantics for this subset of Haskell. In this subset,
we only use certain easy patterns and terms (without “λ”), and we only allow function
definitions without “case” expressions or conditionals. So we only permit case analysis
by pattern-matching left-hand sides of defining equations.6

Indeed, any Haskell program can automatically be transformed into a program from
this subset; see, Swiderski [2005]. For example, in our implementation, lambda ab-
stractions are removed by a form of lambda lifting. More precisely, we replace every
Haskell term “\ t1 . . . tn → t” with the free variables x1, . . . , xm by “f x1 . . . xm”. Here, f is a
new function symbol with the defining equation f x1 . . . xm t1 . . . tn = t.

2.1. Syntax of Haskell

In our subset of Haskell, we permit user-defined data types such as

data Nats = Z | S Nats data List a = Nil | Cons a (List a)

These data declarations introduce two type constructors Nats and List of arity 0 and 1,
respectively. So Nats is a type and for every type τ , “List τ ” is also a type representing
lists with elements of type τ . Apart from user-defined data declarations, there are also
predefined data declarations like

data Bool = False | True.

Moreover, there is a predefined binary type constructor → for function types. So if τ1
and τ2 are types, then τ1 → τ2 is also a type (the type of functions from τ1 to τ2). Since
Haskell’s type system is polymorphic, it also has type variables like a which stand for
any type, and “List a” is the type of lists where the elements can have any type a. So the
set of types is the smallest set which contains all type variables and where “dτ1 . . . τn” is
a type whenever d is a type constructor of arity m and τ1, . . . , τn are types with n ≤ m.7

For each type constructor like Nats, a data declaration also introduces its data con-
structors (e.g., Z and S) and the types of their arguments. Thus, Z has arity 0 and is of
type Nats and S has arity 1 and is of type Nats → Nats.

Apart from data declarations, a program has function declarations.

Example 2.1 (take and from). In the following example, “from x” generates the infi-
nite list of numbers starting with x and “take nxs” returns the first n elements of the
list xs. The type of from is “Nats → (List Nats)” and take has the type “Nats → (List a) →
(List a)” where τ1 → τ2 → τ3 stands for τ1 → (τ2 → τ3). Such type declarations can also
be included in the Haskell program.

6Of course, it would be possible to restrict ourselves to programs from an even smaller “core” Haskell subset.
However, this would not simplify the subsequent termination analysis any further. In contrast, the resulting
programs would usually be less readable, which would also make it harder for the user to understand their
(automatically generated) termination proofs.
7Moreover, Haskell also has several built-in primitive data types (e.g., Int, Char, Float, . . . ) and its type system
also features type classes in order to permit overloading of functions. To ease the presentation, we ignore
these concepts at the moment and refer to Section 6 for an extension of our approach to built-in data types
and type classes.
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from :: Nats → (List Nats) take :: Nats → (List a) → (List a)
from x = Cons x (from (S x)) take Z xs = Nil

take nNil = Nil
take (S n) (Cons x xs) = Cons x (take nxs)

In general, the equations in function declarations have the form “ f �1 . . . �n = r” for
n ≥ 0. The function symbols f at the “outermost” position of left-hand sides are called
defined. So the set of function symbols is the disjoint union of the (data) constructors
and the defined function symbols. All defining equations for f must have the same
number of arguments n (called f ’s arity). The right-hand side r is an arbitrary term,
whereas �1, . . . , �n are special terms, so-called patterns. Moreover, the left-hand side
must be linear, that is, no variable may occur more than once in “ f �1 . . . �n”.

The set of terms is the smallest set containing all variables, function symbols, and
well-typed applications (t1 t2) for terms t1 and t2. As usual, “t1 t2 t3” stands for “((t1 t2) t3)”,
etc. The set of patterns is the smallest set with all variables and all linear terms
“c t1 . . . tn” where c is a constructor of arity n and t1, . . . , tn are patterns.

The positions of t are Pos(t) = {ε} if t is a variable or function symbol. Otherwise,
Pos(t1 t2) = {ε} ∪ {1 π | π ∈ Pos(t1)} ∪ {2 π | π ∈ Pos(t2)}. As usual, we define t|ε = t and
(t1 t2)|i π = ti|π for i ∈ {1, 2}. The term q is a subterm of t, that is, q � t, if a position π of t
exists such that t|π = q. The head of t is t|1n where n is the maximal number such that
1n∈ Pos(t). So the head of t= take nxs (i.e., “(take n) xs”) is t|11 = take. Let V(t) denote the
set of variables of a term.

2.2. Operational Semantics of Haskell

Given an underlying program, for any term t we define the position e(t) where the
next evaluation step has to take place due to Haskell’s lazy evaluation strategy. In
general, e(t) is the top position ε. There are two exceptions. First, consider terms
“ f t1... tn tn+1... tm” where arity( f ) = n and m > n. Here, f is applied to too many argu-
ments. Thus, one considers the subterm “ f t1 . . . tn” at position 1m−n to find the evalua-
tion position. The other exception is when one has to evaluate a subterm of “ f t1 . . . tn”
in order to check whether a defining f -equation “ f �1 . . . �n = r” will afterwards become
applicable at top position. We say that an equation � = r from the program is feasible
for a term t and define the corresponding evaluation position e�(t) with respect to � if
head(�) = head(t) = f for some f and either8:

(a) � matches t (then we define e�(t) = ε), or
(b) for the leftmost outermost position9 π where head(�|π ) is a constructor and where

head(�|π ) �=head(t|π ), the symbol head(t|π ) is defined or a variable. Then e�(t)=π .

So in Example 2.1, if t is the term “take u (from m)” where u and m are variables,
then the defining equation “take Z xs = Nil” is feasible for t. For � = take Z xs, the
corresponding evaluation position is e�(t) = 1 2. The reason is that π = 1 2 is the
leftmost outermost position where head(�|π ) = Z is a constructor that is different from

8To simplify the presentation, in the article we do not regard data constructors with strictness annotations
“!”. However, by adapting the definition of e�(t), our approach can easily handle strictness annotations as
well. Indeed, in our implementation we permit constructors with strictness annotations. By using such
constructors, one can also express operators like “seq” which enforce a special evaluation strategy. More
precisely, one can define a new data type “data Strict a = BeStrict !a”, a function “seq2 (BeStrict x) y = y”, and
then replace every call “seq t1 t2” by “seq2 (BeStrict t1) t2”.
9The leftmost outermost position can be formally defined as the smallest position with respect to <lex . Here,
<lex is the lexicographic order on positions where a position π1 = m1 . . . mk is smaller than a position
π2 = n1 . . . n� if there is an i ∈ {1, . . . , min(k+ 1, �)} such that mj = nj for all j < i, and mi < ni if i ≤ k. So for
example, ε <lex 1 <lex 1 1 <lex 1 2 <lex 2.
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head(t|π ) = u, which is a variable. Thus, to decide whether the defining equation is
applicable to t, one would first have to evaluate t at the position e�(t) = 1 2.

On the other hand, the defining equation “take Z xs = Nil” is not feasible for the term
s = take (S u) (from m), since head(s|1 2) = S is neither defined nor a variable. In other
words, this defining equation will never become applicable to s. But the second defining
equation “take nNil = Nil” is feasible for s. For �′ = take nNil, we obtain e�′(s) = 2, as
head(�′|2) = Nil is a constructor and head(s|2) = from is defined. So to find out whether
“take nNil = Nil” is applicable to s, one would have to evaluate its subterm “from m”.

Since Haskell considers the order of the program’s equations, a term t is evaluated
below the top (at position e�(t)), whenever (b) holds for the first feasible equation � = r
(even if an evaluation with a subsequent defining equation would be possible at top
position). Thus, this is no ordinary leftmost outermost evaluation strategy. By taking
the order of the defining equations into account, we can now define the position e(t)
where the next evaluation step has to take place.

Definition 2.2 (Evaluation Position e(t)). For any term t, we define

e(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1m−n π, if t = ( f t1 . . . tn tn+1 . . . tm), f is defined, m > n = arity( f ),
and π = e( f t1 . . . tn )

e�(t) π, if t = ( f t1 . . . tn), f is defined, n = arity( f ), there are
feasible equations for t (the first one is “� = r”), e�(t) �= ε,
and π =e(t|e�(t))

ε, otherwise

So if t = take u (from m) and s = take (S u) (from m), then t|e(t) = u and s|e(s) = from m.

We now present Haskell’s operational semantics by defining the evaluation relation
→H. For any term t, it performs a rewrite step at position e(t) using the first applicable
defining equation of the program. So terms like “x Z” or “take Z” are normal forms: If
the head of t is a variable or if a symbol is applied to too few arguments, then e(t) = ε
and no rule rewrites t at top position. Moreover, a term s = ( f s1 . . . sm) with a defined
symbol f and m ≥ arity( f ) is a normal form if no equation in the program is feasible
for s. If additionally head(s|e(s)) is a defined symbol g, then we call s an error term (i.e.,
then g is not defined for some argument patterns). We consider such error terms as
terminating, since they do not start an infinite evaluation (indeed, Haskell aborts the
program when trying to evaluate an error term).

For terms t = (c t1 . . . tn) with a constructor c of arity n, we also have e(t) = ε and no
rule rewrites t at top position. However, here we permit rewrite steps below the top,
that is, t1, . . . , tn may be evaluated with →H. This corresponds to the behavior of Haskell
interpreters like Hugs [Jones and Peterson 1999] which evaluate terms until they can
be displayed as a string. To transform data objects into strings, Hugs uses a function
“show”. This function can be generated automatically for user-defined types by adding
“deriving Show” behind the data declarations. This default implementation of the show
function would transform every data object “c t1 . . . tn” into the string consisting of “c”
and of show t1, . . . , show tn. Thus, show would require that all arguments of a term
with a constructor head have to be evaluated.

Definition 2.3 (Evaluation Relation →H). We have t →H s iff either:

(1) t rewrites to s at the position e(t) using the first equation of the program whose left-
hand side matches t|e(t), or

(2) t = (c t1 . . . tn) for a constructor c of arity n, ti →H si for some 1 ≤ i ≤ n,
and s = (c t1 . . . ti−1 si ti+1 . . . tn).
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For example, we have the infinite evaluation from m →H Cons m(from (S m))
→H Cons m(Cons (S m) (from (S (S m)))) →H . . . On the other hand, the following
evaluation is finite due to Haskell’s lazy evaluation strategy: take (S Z) (from m) →H
take (S Z) (Cons m(from (S m))) →H Cons m(take Z (from (S m))) →H Cons mNil. Note
that while evaluation in Haskell uses sharing to increase efficiency, we ignored this
in Definition 2.3, since sharing in Haskell does not influence the termination behavior.

The reason for permitting nonground terms in Definition 2.2 and Definition 2.3
is that our termination method in Section 3 evaluates Haskell symbolically. Here,
variables stand for arbitrary terminating terms. Definition 2.4 introduces our notion of
termination (which also corresponds to the notion of “termination” examined in Panitz
and Schmidt-Schauß [1997]).10

Definition 2.4 (H-Termination). The set of H-terminating ground terms is the small-
est set of ground terms t such that:

(a) t does not start an infinite evaluation t →H . . . ,
(b) if t →∗

H ( f t1 . . . tn) for a defined function symbol f , n < arity( f ), and the
term t′ is H-terminating, then ( f t1 . . . tn t′) is also H-terminating, and

(c) if t→∗
H (c t1 . . . tn) for a constructor c, then t1, . . . , tn are also H-terminating.

A term t is H-terminating iff tσ is H-terminating for all substitutions σ with H-
terminating ground terms. Throughout the article, we always restrict ourselves to
substitutions of the correct types. These substitutions σ may also introduce new de-
fined function symbols with arbitrary defining equations.

So a term is only H-terminating if all its applications to H-terminating terms H-
terminate, too. Thus, “from” is not H-terminating, as “from Z” has an infinite evaluation.
But “take u (from m)” is H-terminating: when instantiating u and m by H-terminating
ground terms, the resulting term has no infinite evaluation.

Example 2.5 (nonterm). To illustrate that one may have to introduce new defining
equations to examine H-termination, consider the function nonterm of type Bool →
(Bool → Bool) → Bool:

nonterm True x = True nonterm False x = nonterm (x True) x

The term “nonterm False x” is not H-terminating: one obtains an infinite evaluation
if one instantiates x by the function mapping all arguments to False. But for this
instantiation, one has to extend the program by an additional function with the defining
equation g y = False. In full Haskell, such functions can of course be represented by
lambda terms and indeed, “nonterm False (\y → False)” starts an infinite evaluation.

3. FROM HASKELL TO TERMINATION GRAPHS

Our goal is to prove H-termination of a start term t. By Definition 2.4, H-termination
of t means that tσ is H-terminating for all substitutions σ with H-terminating ground
terms. Thus, t represents a (usually infinite) set of terms and we want to prove that they
are all H-terminating. Without loss of generality, we can restrict ourselves to normal
ground substitutions σ , that is, substitutions where σ (x) is a ground term in normal
form with respect to →H for all variables x in t.

We consider the program of Example 2.1 and the start term t = take u (from m).
As mentioned before, here the variables u and m stand for arbitrary H-terminating

10As discussed in Panitz and Schmidt-Schauß [1997], there are also other possible notions of termination
like “lazy termination,” which, however, can be encoded via H-termination; see Panitz and Schmidt-Schauß
[1997] and Raffelsieper [2007].
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Fig. 1. Termination graph for “take u (from m)”.

terms. A naive approach would be to consider the defining equations of all needed
functions (i.e., take and from) as rewrite rules and to prove termination of the resulting
rewrite system. However, this disregards Haskell’s lazy evaluation strategy. So due to
the nonterminating rule for “from”, we would fail to prove H-termination of t.

Therefore, our approach begins by evaluating the start term a few steps. This gives
rise to a so-called termination graph. Instead of transforming defining Haskell equa-
tions directly into rewrite rules, we transform the termination graph into rewrite rules.
(Actually, we transform it into so-called “dependency pair problems,” as described in
Section 4.) The advantage is that the initial evaluation steps in this graph take the
evaluation strategy and the types of Haskell into account and therefore, this is also
reflected in the resulting rewrite rules.

To construct a termination graph for the start term t, we begin with the graph
containing only one single node, marked with t. Similar to Panitz and Schmidt-Schauß
[1997], we then apply expansion rules repeatedly to the leaves of the graph in order to
extend it by new nodes and edges. As usual, a leaf is a node with no outgoing edges.
We have obtained a termination graph for t if no expansion rule is applicable to its
leaves anymore. Afterwards, we try to prove H-termination of all terms occurring in
the termination graph, as described in Section 4. A termination graph for the start
term “take u (from m)” is depicted in Figure 1. We now describe our five expansion rules
intuitively. Their formal definition is given in Definition 3.1.

When constructing termination graphs, the goal is to evaluate terms. However,
t = take u (from m) cannot be evaluated with →H, since it has a variable u at its evalu-
ation position e(t). The evaluation can only continue if we know how u is going to be
instantiated. Therefore, the first expansion rule is called Case Analysis (or “Case”, for
short). It adds new child nodes where u is replaced by all terms of the form (c x1 . . . xn).
Here, c is a constructor of the appropriate type and x1, . . . , xn are fresh variables. The
edges to these children are labeled with the respective substitutions [u/(c x1 . . . xn)]. In
our example, u is a variable of type Nats. Therefore, the Case rule adds two child nodes
B and C to our initial node A, where u is instantiated by Z and by (S n), respectively.
Since the children of A were generated by the Case rule, we call A a “Case node”.
Every node in the graph has the following property: If all its children are marked with
H-terminating terms, then the node itself is also marked with an H-terminating term.
Indeed, if the terms in nodes B and C are H-terminating, then the term in node A is
H-terminating as well.
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Now the terms in nodes B and C can indeed be evaluated. Therefore, the Evaluation
rule (“Eval”) adds the nodes D and E resulting from one evaluation step with →H.
Moreover, E is also an Eval node, since its term can be evaluated further to the term
in node F. So the Case and Eval rules perform a form of narrowing that respects the
evaluation strategy and the types of Haskell. This is similar to evaluation in functional-
logic programming languages (e.g., Hanus [2007]).

The term Nil in node D cannot be evaluated and therefore, D is a leaf of the termination
graph. But the term “Cons m(take n (from (S m)))” in node F may be evaluated further.
Whenever the head of a term is a constructor like Cons or a variable,11 then one only
has to consider the evaluations of its arguments. We use a Parameter Split rule
(“ParSplit”) which adds new child nodes with the arguments of such terms. Thus,
we obtain the nodes G and H. Again, H-termination of the terms in G and H obviously
implies H-termination of the term in node F.

The node G remains a leaf since its term m cannot be evaluated further for any
normal ground instantiation. For node H, we could continue by applying the rules
Case, Eval, and ParSplit as before. However, in order to obtain finite graphs (instead
of infinite trees), we also have an Instantiation rule (“Ins”). Since the term in node
H is an instance of the term in node A, one can draw an instantiation edge from the
instantiated term to the more general term (i.e., from H to A). We depict instantiation
edges by dashed lines. These are the only edges which may point to already existing
nodes (i.e., one obtains a tree if one removes the instantiation edges from a termination
graph).

To guarantee that the term in node H is H-terminating whenever the terms in its
child nodes are H-terminating, the Ins rule has to ensure that one only uses instan-
tiations with H-terminating terms. In our example, the variables u and m of node A

are instantiated with the terms n and (S m), respectively. Therefore, in addition to the
child A, the node H gets two more children I and J marked with n and (S m). Finally, the
ParSplit rule adds J’s child K, marked with m.

To illustrate the last of our five expansion rules, we consider a different start term,
namely “take”. If a defined function has “too few” arguments, then by Definition 2.4
we have to apply it to additional H-terminating arguments in order to examine H-
termination. Therefore, we have a Variable Expansion rule (“VarExp”) which adds a
child marked with “take x” for a fresh variable x. Another application of VarExp gives
“take x xs”. The remaining termination graph is constructed by the rules discussed
before. We can now give a formal definition of our expansion rules.

Definition 3.1 (Termination Graph). Let G be a graph with a leaf marked with the
term t. We say that G can be expanded to G′ (denoted “ G � G′”) if G′ results from G by
adding new child nodes marked with the elements of ch(t) and by adding edges from t
to each element of ch(t). Only in the Ins rule, we also permit the addition of an edge to
an already existing node, which may then lead to cycles. All edges are marked by the
identity substitution unless stated otherwise.

Eval: ch(t) = {t̃}, if t = ( f t1 . . . tn), f is a defined symbol, n ≥ arity( f ), t →H t̃.
Case: ch(t) = {tσ1, . . . , tσk}, if t = ( f t1 . . . tn), f is a defined function symbol, n ≥

arity( f ), t|e(t) is a variable x of type “dτ1...τm” for a type constructor d, the type
constructor d has the data constructors ci of arity ni (where 1 ≤ i ≤ k), and
σi = [x/(ci x1 . . . xni )] for pairwise different fresh variables x1, . . . , xni . The edge
from t to tσi is marked with the substitution σi.

VarExp: ch(t) = {t x}, if t = ( f t1 . . . tn), f is a defined function symbol, n < arity( f ),
x is a fresh variable.

11The reason is that “x t1 . . . tn” H-terminates iff the terms t1, . . . , tn H-terminate.
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ParSplit: ch(t) = {t1, . . . , tn}, if t = (c t1 . . . tn), c is a constructor or variable, n > 0.
Ins: ch(t) = {s1, . . . , sm, t̃}, if t = ( f t1 . . . tn), t is not an error term, f is a defined

symbol, n ≥ arity( f ), t = t̃σ for some term t̃, σ = [x1/s1, . . . , xm/sm], where V(t̃) =
{x1, . . . , xm}. Here, either t̃ = (x y) for fresh variables12 x and y or t̃ is an Eval or
Case node. If t̃ is a Case node, then it must be guaranteed that all paths starting
in t̃ reach an Eval node or a leaf with an error term after traversing only Case
nodes. This ensures that every cycle of the graph contains at least one Eval node.
The edge from t to t̃ is called an instantiation edge.

If the graph already has a node marked with t̃, then instead of adding a new
child marked with t̃, one may add an edge from t to the already existing node t̃.

Let Gt be the graph with a single node marked with t and no edges. G is a termination
graph for t iff Gt �∗ G and G is in normal form with respect to �.

If one disregards Ins, then for each leaf there is at most one rule applicable (and
no rule is applicable to leaves consisting of just a variable, a constructor, or an error
term). However, the Ins rule introduces indeterminism. Instead of applying the Case
rule on node A in Figure 1, we could also apply Ins and generate an instantiation edge
to a new node with t̃ = (take uys). Since the instantiation is [ys/(from m)], the node A

would get an additional child node marked with the non-H-terminating term (from m).
Then our approach in Section 4 which tries to prove H-termination of all terms in the
termination graph would fail, whereas it succeeds for the graph in Figure 1. Therefore,
in our implementation we developed a heuristic for constructing termination graphs.
It tries to avoid unnecessary applications of Ins (since applying Ins means that one
has to prove H-termination of more terms), but at the same time it ensures that the
expansion terminates, that is, that one really obtains a termination graph. For details
of this heuristic we refer to Swiderski [2005].

Of course, in practice termination graphs can become quite large (e.g., a termination
graph for “take u [(m::Int) .. ]” using the built-in functions of the Hugs Prelude [Jones
and Peterson 1999] already contains 94 nodes).13 Nevertheless, our experiments in
Section 7 will show that constructing termination graphs within automated termina-
tion proofs is indeed feasible in practice.

Example 3.2 (tma). An instantiation edge to t̃ = (x y) is needed to obtain termi-
nation graphs for functions like tma which are applied to “too many” arguments in
recursive calls.14

tma :: Nats → a
tma (S m) = tma mm

We get the termination graph in Figure 2. After applying Case and Eval, we obtain
“tma mm” in node D which is not an instance of the start term “tma n” in node A. Of course,
we could continue with Case and Eval infinitely often, but to obtain a termination
graph, at some point we need to apply the Ins rule. Here, the only possibility is
to regard t = (tma mm) as an instance of the term t̃ = (x y). Thus, we obtain an
instantiation edge to the new node E. As the instantiation is [x/(tma m), y/m], we get
additional child nodes F and G marked with “tma m” and m, respectively. Now we can
“close” the graph, since “tma m” is an instance of the start term “tma n” in node A. So the
instantiation edge to the special term (x y) is used to remove “superfluous” arguments

12See Example 3.2 for an explanation why instantiation edges to terms (x y) can be necessary.
13See http://aprove.informatik.rwth-aachen.de/eval/Haskell/take_from.html.
14Note that tma is not Hindley-Milner typeable (but has a principal type). Hence, Haskell can verify the given
type of tma, but it cannot infer the type of tma itself.
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Fig. 2. Termination graph for “tma n”.

(i.e., it effectively reduces the analysis of “tma mm” in node D to the analysis of “tma m”
in node F). Of course, in any termination graph it suffices to have at most one node
of the form “(x y)”. To expand the node “(x y)” further, one uses the ParSplit rule to
create its child node with the term y.

Theorem 3.3 shows that by the expansion rules of Definition 3.1 one can always
obtain normal forms.15

THEOREM 3.3 (EXISTENCE OF TERMINATION GRAPHS). The relation � is normalizing,
that is, for any term t there exists a termination graph.

4. FROM TERMINATION GRAPHS TO DP PROBLEMS

Now we present a method to prove H-termination of all terms in a termination graph.
To this end, we want to use existing techniques for termination analysis of term rewrit-
ing. One of the most popular termination techniques for TRSs is the dependency pair
(DP) method [Arts and Giesl 2000]. In particular, the DP method can be formulated
as a general framework which permits the integration and combination of any ter-
mination technique for TRSs [Giesl et al. 2005a, 2006c; Hirokawa and Middeldorp
2005, 2007]. This DP framework operates on so-called DP problems (P,R). Here, P
and R are TRSs where P may also have rules � → r where r contains extra vari-
ables not occurring in �. P ’s rules are called dependency pairs. The goal of the DP
framework is to show that there is no infinite chain, that is, no infinite reduction
s1σ1 →P t1σ1 →∗

R s2σ2 →P t2σ2 →∗
R . . . where si → ti ∈ P and σi are substitutions. In

this case, the DP problem (P,R) is called finite. See, for example, Giesl et al. [2005a,
2006c] and Hirokawa and Middeldorp [2005, 2007] for an overview of techniques to
prove finiteness of DP problems.16

Instead of transforming termination graphs into TRSs, the information available in
the termination graph can be better exploited if one transforms these graphs into DP
problems.17 Then finiteness of the resulting DP problems implies H-termination of all
terms in the termination graph.

Note that termination graphs still contain higher-order terms (e.g., applications of
variables to other terms like “x y” and partial applications like “take u”). However, most
methods and tools for automated termination analysis only operate on first-order TRSs.

15All proofs can be found in the online appendix accessible in the ACM Digital Library.
16In the DP literature, one usually does not consider rules with extra variables on right-hand sides, but
almost all existing termination techniques for DPs can also be used for such rules. (For example, finiteness
of such DP problems can often be proved by eliminating the extra variables by suitable argument filterings
[Arts and Giesl 2000; Giesl et al. 2005a].)
17We will discuss the disadvantages of a transformation into TRSs at the end of this section.
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Therefore, one option would be to translate higher-order terms into applicative first-
order terms containing just variables, constants, and a binary symbol ap for function
application; see Kennaway et al. [1996], Giesl et al. [2005b, 2006a], and Hirokawa et al.
[2008]. Then terms like “x y”, “take u”, and “take uxs” would be transformed into the
first-order terms ap(x, y), ap(take, u), and ap(ap(take, u), xs), respectively. In Section 5,
we will present a more sophisticated way to translate the higher-order terms from
the termination graph into first-order terms. But at the moment, we disregard this
problem and transform termination graphs into DP problems that may indeed contain
higher-order terms.

Recall that if a node in the termination graph is marked with a non-H-terminating
term, then one of its children is also marked with a non-H-terminating term. Hence,
every non-H-terminating term corresponds to an infinite path in the termination graph.
Since a termination graph only has finitely many nodes, infinite paths have to end in
a cycle. Thus, it suffices to prove H-termination for all terms occurring in strongly
connected components (SCCs) of the termination graph. Moreover, one can analyze H-
termination separately for each SCC. Here, an SCC is a maximal subgraph G′ of the
termination graph such that for all nodes n1 and n2 in G′ there is a nonempty path from
n1 to n2 traversing only nodes of G′. (In particular, there must also be a nonempty path
from every node to itself in G′.) The termination graph for “take u (from m)” in Figure
1 has just one SCC with the nodes A, C, E, F, H. The following definition is needed to
generate dependency pairs from SCCs of the termination graph.

Definition 4.1 (DP Path). Let G′ be an SCC of a termination graph containing a path
from a node marked with s to a node marked with t. We say that this path is a DP path
if it does not traverse instantiation edges, if s has an incoming instantiation edge in
G′, and if t has an outgoing instantiation edge in G′.

So in Figure 1, the only DP path is A, C, E, F, H. Since every infinite path has to
traverse instantiation edges infinitely often, it also has to traverse DP paths infinitely
often. Therefore, we generate a dependency pair for each DP path. If there is no infinite
chain with these dependency pairs, then no term corresponds to an infinite path, so all
terms in the graph are H-terminating.

More precisely, whenever there is a DP path from a node marked with s to a node
marked with t and the edges of the path are marked with σ1, . . . , σk, then we generate
the dependency pair sσ1 . . . σk → t. In Figure 1, the first edge of the DP path is labeled
with the substitution [u/(S n)] and all remaining edges are labeled with the identity.
Thus, we generate the dependency pair

take (S n) (from m) → take n (from (S m)). (1)

The resulting DP problem is (P,R) where P = {(1)} and R = ∅.18 When using an
appropriate translation into first-order terms as sketched before, automated termina-
tion tools (such as AProVE [Giesl et al. 2006b], TTT2 [Korp et al. 2009], and others) can
easily show that this DP problem is finite. Hence, the start term “take u (from m)” is
H-terminating in the original Haskell program.

Similarly, finiteness of the DP problem ({tma (S m) → tma m}, ∅) for the start term
“tma n” from Figure 2 is also easy to prove automatically.

The construction of DP problems from the termination graph must be done in such a
way that there is an infinite chain whenever the termination graph contains a non-H-
terminating term. Indeed, in this case there also exists a DP path in the termination
graph whose first node s is not H-terminating. We should construct the DP problems
in such a way that s also starts an infinite chain. Clearly if s is not H-terminating,

18Definition 4.9 will explain how to generate R in general.
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Fig. 3. Termination graph for new “take u (from m)”.

then there is a normal ground substitution σ where sσ is not H-terminating either.
There must be a DP path from s to a term t labeled with the substitutions σ1, . . . , σk
such that tσ is also not H-terminating and such that σ is an instance of σ1 . . . σk (as σ
is a normal ground substitution and the substitutions σ1, . . . , σk originate from Case
analyses that consider all possible constructors of a data type). So the first step of the
desired corresponding infinite chain is sσ →P tσ . The node t has an outgoing instan-
tiation edge to a node t̃ which starts another DP path. So to continue the construction
of the infinite chain in the same way, we now need a non-H-terminating instantiation
of t̃ with a normal ground substitution. Obviously, t̃ matches t by some matcher μ.
But while t̃μσ is not H-terminating, the substitution μσ is not necessarily a normal
ground substitution. The reason is that t and hence μ may contain defined symbols.
The following example demonstrates this problem.

Example 4.2 (take with p). A slightly more challenging example is obtained by re-
placing the last take rule in Example 2.1 by the following two rules, where p computes
the predecessor function.

take (S n) (Cons x xs) = Cons x (take (p (S n)) xs) p (S x) = x

We consider the start term “take u (from m)” again. The resulting termination graph is
shown in Figure 3. The only DP path is A, C, E, F, H, which would result in the dependency
pair take (S n) (from m) → t with t = take (p (S n)) (from (S m)). Now t has an instantiation
edge to node A with t̃ = take u (from m). The matcher is μ = [u/(p (S n)), m/(S m)]. So μ(u)
is not normal.

In Example 4.2, the problem of defined symbols in right-hand sides of dependency
pairs can be avoided by already evaluating the right-hand sides of dependency pairs as
much as possible. To this end, we define an appropriate function ev. Before presenting
the formal definition of ev in Definition 4.4, we will motivate it step by step. More
precisely, we will discuss how ev(t) should be defined for different kinds of nodes t.

So instead of a dependency pair sσ1 . . . σk → t we now generate the dependency pair
sσ1 . . . σk → ev(t). For a node marked with t, essentially ev(t) is the term reachable
from t by traversing only Eval nodes. So in our example we have ev(p (S n)) = n, since
node I is an Eval node with an edge to node K. Moreover, we will define ev in such a
way that ev(t) can also evaluate subterms of t if t is an Ins node or a ParSplit node
with a constructor as head. We obtain ev(S m) = S m for node J and ev(take (p (S n))
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Fig. 4. Termination graph for “nonterm b x”.

(from (S m))) = take n (from (S m)) for node H. Thus, the resulting DP problem is again
(P,R) with P = {(1)} and R = ∅.

To show how ev(t) should be defined for ParSplit nodes where head(t) is a variable,
we consider the function nonterm from Example 2.5 again. The termination graph for
the start term “nonterm b x” is given in Figure 4. We obtain a DP path from node A with
the start term to node E with “nonterm (x True) x” labeled with the substitution [b/False].
So the resulting DP problem only contains the dependency pair “nonterm False x →
ev(nonterm (x True) x)”. If we defined ev(x True) = x True, then ev would not modify
the term “nonterm (x True) x”. But then the resulting DP problem would be finite and
one could falsely prove H-termination. (The reason is that the DP problem contains no
rule to transform any instance of “x True” to False.) But as discussed in Section 3, x can
be instantiated by arbitrary H-terminating functions and then, “x True” can evaluate
to any term of type Bool. Therefore, we should define ev in such a way that it replaces
subterms like “x True” by fresh variables.

Let UG be the set of all ParSplit nodes19 with variable heads in a termination graph
G. In other words, this set contains nodes whose evaluations can lead to any term of a
given type.

UG = {t | t is a ParSplit node in G with t = (x t1 . . . tn)}
Recall that if t is an Ins node or a ParSplit node with a constructor head, then

ev proceeds by evaluating subterms of t. More precisely, let t = t̃[x1/s1, ..., xm/sm],
where either t̃ = (c x1 . . . xm) for a constructor c (then t is a ParSplit node) or t is an
Ins node and there is an instantiation edge to t̃. In both cases, t also has the children
s1, . . . , sm. As mentioned before, we essentially define ev(t) = t̃[x1/ev(s1), . . . , xm/ev(sm)].
However, whenever there is a path from si to a term from UG (i.e., to a term (x . . .) that ev
approximates by a fresh variable), then instead of ev(si) one should use a fresh variable
in the definition of ev(t). A fresh variable is needed because then an instantiation of si
could in principle evaluate to any value.

Example 4.3 (ev for Ins Nodes). Consider the following program:

f Z z = f (id z Z) z id x = x

The termination graph for the start term “f x z” is depicted in Figure 5. From the DP
path A, C, D, we obtain the dependency pair “f Z z → ev(f (id z Z) z)”. Note that node D is
an Ins node where (f (id z Z) z) = (f x z) [x/(id z Z), z/z], that is, here we have t̃ = (f x z).

If one defined ev on Ins nodes by simply applying it to the child subterms, then we
would get ev(f (id z Z) z) = f ev(id z Z) ev(z). Clearly, ev(z) = z. Moreover, (id z Z) (i.e.,

19To simplify the presentation, we identify nodes with the terms they are labeled with.
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Fig. 5. Termination graph for “f x z”.

node F) is again an Ins node where (id z Z) = (x y) [x/(id z), y/Z]. Thus, ev(id z Z) =
ev(id z) ev(Z) = z Z. Hence, the resulting dependency pair “f Z z → ev(f (id z Z) z)”
would be “f Z z → f (z Z) z”. The resulting DP problem would contain no rules R. As
this DP problem is finite, then we could falsely prove H-termination of f.

However, there is a path from node F with the child subterm (id z Z) to node G with
the term (x y) which is in UG. As discussed, when computing ev(f (id z Z) z), ev should
not be applied to child subterms like F, but instead, one should replace such child
subterms by fresh variables. So we obtain ev(f (id z Z) z) = f u z for a fresh variable u.
The resulting dependency pair f Z z → f u z indeed gives rise to an infinite chain.

Let the set PUG contain all nodes from which there is a path to a node in UG. So in
particular, we also have UG ⊆ PUG. For instance, in Example 4.3 we have UG = {G}
and PUG = {A, C, D, F, G}. Now we can define ev formally.

Definition 4.4 (ev). Let G be a termination graph with a node t. Then

ev(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, for a fresh variable x, if t ∈ UG
t, if t is a leaf, a Case node, or a VarExp node
ev(t̃), if t is an Eval node with child t̃
t̃[x1/t1, . . . , xm/tm],

if t = t̃[x1/s1, . . . , xm/sm] and
— t is an Ins node with the children s1, . . . , sm, t̃ or

t is a ParSplit node, t̃ = (c x1 . . . xm) for a constructor c

— ti =
{

yi, for a fresh variable yi, if si ∈ PUG
ev(si), otherwise

Our goal was to construct the DP problems in such a way that there is an infinite
chain whenever s is the first node in a DP path and sσ is not H-terminating for a
normal ground substitution σ . As discussed before, then there is a DP path from
s to t such that the chain starts with sσ →P ev(t)σ and such that tσ and hence
ev(t)σ is also not H-terminating. The node t has an instantiation edge to some node t̃.
Thus, t = t̃[x1/s1, . . . , xm/sm] and ev(t) = t̃[x1/ev(s1), . . . , xm/ev(sm)], if we assume for
simplicity that the si are not from PUG.

In order to continue the construction of the infinite chain, we need a non-H-
terminating instantiation of t̃ with a normal ground substitution. Clearly, if t̃ is instanti-
ated by the substitution [x1/ev(s1)σ, . . . , xm/ev(sm)σ ], then it is again not H-terminating.
However, the substitution [x1/ev(s1)σ, . . . , xm/ev(sm)σ ] is not necessarily normal. The
problem is that ev stops performing evaluations as soon as one reaches a Case node
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Fig. 6. Termination graph for “take u (from m)” with modified p-equations.

(i.e., ev is not propagated over edges originating in Case nodes). A similar problem is
due to the fact that ev is also not propagated over instantiation edges.

Therefore, we now generate DP problems which do not just contain dependency pairs
P, but they also contain all rules R which might be needed to evaluate ev(si)σ further.
Then we obtain sσ →P ev(t)σ →∗

R t̃σ ′ for a normal ground substitution σ ′ where t̃σ ′ is
not H-terminating. Since t̃ is again the first node in a DP path, now this construction
of the chain can be continued in the same way infinitely often. Hence, we obtain an
infinite chain.

Example 4.5 (take with Recursive p). To illustrate this, we replace the equation for
p in Example 4.2 by the following two defining equations:

p (S Z) = Z p (S x) = S (p x)

For the start term “take u (from m)”, we obtain the termination graph depicted in Fig-
ure 6. So I is now a Case node. Thus, instead of (1) we have the dependency pair

take (S n) (from m) → take (p (S n)) (from (S m)), (2)

since now ev(p (S n)) = p (S n). Hence, the resulting DP problem must contain all rules
R that might be used to evaluate p (S n) when instantiated by a normal ground substi-
tution σ .

So for any term t, we want to detect the rules that might be needed to evaluate ev(t)σ
further for normal ground substitutions σ . To this end, we first compute the set con(t)
of those terms that are reachable from t, but where the computation of ev stopped.
In other words, con(t) contains all terms which might give rise to further continuing
evaluations that are not captured by ev. To compute con(t), we traverse all paths
starting in t. If we reach a Case node s, we stop traversing this path and insert s into
con(t). Moreover, if we traverse an instantiation edge to some node t̃, we also stop and
insert t̃ into con(t). So in the example of Figure 6, we obtain con(p (S n)) = {p (S n)},
since I is now a Case node. If we had started with the term t = take (S n) (from m) in
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node C, then we would reach the Case node I and the node A which is reachable via
an instantiation edge. So con(t) = {p (S n), take u (from m)}. Moreover, con also stops at
leaves and at VarExp nodes t, since they are in normal form with respect to →H. Thus,
here con(t) = ∅. Finally, note that con is initially applied to Ins nodes (i.e., to terms
on right-hand sides of dependency pairs). Hence, if a (sub)term t is in PUG, then ev
already approximates the result of t’s evaluation by a fresh variable. Thus, one also
defines con(t) = ∅ for all t ∈ PUG.

Definition 4.6 (con). Let G be a termination graph with a node t. Then

con(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∅, if t is a leaf or a VarExp node or t ∈ PUG
{t}, if t is a Case node
{t̃} ∪ con(s1) ∪ . . . ∪ con(sm), if t is an Ins node with

the children s1, . . . , sm, t̃ and an instantiation edge from t to t̃⋃
t′child of t con(t′), otherwise

Now we can define how to extract a DP problem dpG′ from every SCC G′ of the
termination graph. As mentioned, we generate a dependency pair sσ1 . . . σk → ev(t)
for every DP path from s to t labeled with σ1, . . . , σk in G′. If t = t̃[x1/s1, . . . ,
xm/sm] has an instantiation edge to t̃, then the resulting DP problem must contain
all rules that can be used to reduce the terms in con(s1) ∪ . . . ∪ con(sm). For any term
q, let rl(q) be the rules that can be used to reduce qσ for normal ground substitutions
σ . We will give the definition of rl afterwards.

Definition 4.7 (dp). For a termination graph containing an SCC G′, we define
dpG′ = (P,R). Here, P and R are the smallest sets such that:

—“sσ1 . . . σk → ev(t)” ∈ P and
—rl(q) ⊆ R,

whenever G′ contains a DP path from s to t labeled with σ1, . . . , σk, t = t̃[x1/
s1, . . . , xm/sm] has an instantiation edge to t̃, and q ∈ con(s1) ∪ . . . ∪ con(sm).

In Example 4.5, the termination graph in Figure 6 has two SCCs G1 (consisting of
the nodes A, C, E, F, H) and G2 (consisting of I, N, P, Q). Finiteness of the two DP problems
dpG1

and dpG2
can be proved independently. The SCC G1 only has the DP path from

A to H leading to the dependency pair (2). So we obtain dpG1
= ({(2)},R1) where R1

contains rl(q) for all q ∈ con(p (S n)) ∪ con(S m) = {p (S n)}. Thus, R1 = rl(p (S n)), that
is, R1 will contain rules to evaluate p, but no rules to evaluate take.20 Such rules are
not needed in R1 since the evaluation of take is already captured by the dependency
pair (2). The SCC G2 only has the DP path from I to Q. Hence, dpG2

= (P2,R2) where
P2 consists of the dependency pair “p (S (S x)) → p (S x)” (since ev(p (S x)) = p (S x)) and
R2 contains rl(q) for all q ∈ con(x) = ∅, that is, R2 = ∅. Thus, finiteness of dpG2

can
easily be proved automatically.

For every term s, we now show how to extract a set of rules rl(s) such that every
evaluation of sσ for a normal ground substitution σ corresponds to a reduction with
rl(s).21 The only expansion rules which transform terms into “equal” ones are Eval and
Case. This leads to the following definition.

20Formally, this is because Definition 4.7 only includes con(si) but not con(t̃) in R.
21More precisely, sσ →∗

H q implies sσ →∗
rl(s) q′ for a term q′ which is “at least as evaluated” as q (i.e., one

can evaluate q further to q′ if one also permits evaluation steps below or beside the evaluation position of
Definition 2.2. For more details, see the proofs in the online appendix in the ACM Digital Library).
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Fig. 7. Termination graph for “g x”.

Definition 4.8 (Rule Path). A path from a node marked with s to a node marked
with t is a rule path if s and all other nodes on the path except t are Eval or Case
nodes and t is not an Eval or Case node. So t may also be a leaf.

In Figure 6, there are two rule paths starting in node I. The first one is I, M, O (since
O is a leaf) and the other one is I, N, P (since P is a ParSplit node).

While DP paths give rise to dependency pairs, rule paths give rise to rules. Therefore,
if there is a rule path from s to t labeled with σ1, . . . , σk, then rl(s) contains the rule
sσ1 . . . σk → ev(t). In addition, rl(s) must also contain all rules required to evaluate
ev(t) further, that is, all rules in rl(q) for q ∈ con(t).22

Definition 4.9 (rl). For a node labeled with s, rl(s) is the smallest set with:

—“sσ1 . . . σk → ev(t)” ∈ rl(s) and
—rl(q) ⊆ rl(s),

whenever there is a rule path from s to t labeled with σ1, . . . , σk, and q ∈ con(t).

In Example 4.5, we obtained the DP problem dpG1
= ({(2)}, rl(p (S n))). Here,

rl(p (S n)) consists of

p (S Z) → Z (due to the rule path from I to O) (3)
p (S (S x)) → S (p (S x)) (due to the rule path from I to P), (4)

as ev does not modify the right-hand sides of (3) and (4). Moreover, the requirement
“rl(q) ⊆ rl(p (S n)) for all q ∈ con(Z) and all q ∈ con(S (p (S x)))” does not add further
rules. The reason is that con(Z) = ∅ and con(S (p (S x))) = {p (S n)}. Now finiteness of
dpG1

= ({2}, {(3), (4)}) is also easy to show automatically.

Example 4.10 (applyToZero). Next consider the following program and the corre-
sponding termination graph in Figure 7.

g x = applyToZero g applyToZero x = x Z

This example shows that one also has to traverse edges resulting from VarExp when
constructing dependency pairs. Otherwise one would falsely prove H-termination. Since
the only DP path goes from node A to F, we obtain the DP problem ({g x → g y},R) with

22So if t = t̃[x1/s1, . . . , xm/sm] has an instantiation edge to t̃, then rl(t) also includes all rules of rl(t̃), since
con(t) = {t̃} ∪ con(s1) ∪ . . . ∪ con(sm). In contrast, in the definition of dp (Definition 4.7) we only consider
the rules rl(q) for q ∈ con(s1) ∪ . . . ∪ con(sm), but not rl(t̃). The reason is that if t is a right-hand side of a
dependency pair, then the evaluations of t̃ are already captured by the dependency pairs, as remarked in
Footnote 20.
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R = rl(y) = ∅. This problem is not finite and indeed, “g x” is not H-terminating, since
g Z →H applyToZero g →H g Z →H . . . In contrast, the definition of rl stops at VarExp
nodes.

The following theorem states the soundness of our approach.

THEOREM 4.11 (SOUNDNESS). Let G be a termination graph. If the DP problems dpG′

are finite for all SCCs G′ of G, then all nodes in G are H-terminating.23

Example 4.12 (Incompleteness of Our Approach). The converse of Theorem 4.11
does not hold. Consider the following program.

stuck :: Bool → Bool → (Bool → Bool) → a
stuck True False b = stuck (bTrue) (bTrue) b

Clearly, the term (stuck x y b) is H-terminating, because there is no Boolean function
b which returns both True and False when applying it to True. Nevertheless, there
exists no termination graph for the start term (stuck x y b) where the resulting DP
problem would be finite. The only dependency pair obtained from the termination graph
is (stuck True False b) → ev(stuck (bTrue) (bTrue) b), that is, (stuck True False b) →
(stuck x y b). Hence, the resulting DP problem is obviously not finite.

Although we have chosen to transform termination graphs into DP problems, it would
also be possible to transform termination graphs into TRSs instead and then prove
termination of the resulting TRSs. However, this approach has several disadvantages.
For example, if the termination graph contains a VarExp node or a ParSplit node
with a variable as head, then we would obtain rules with extra variables on right-
hand sides and thus, the resulting TRSs would never be terminating. In contrast, a
DP problem (P,R) with extra variables in P can still be finite, since dependency pairs
from P are only applied at top positions in chains. Note that, due to the definition of
ev, there are never any extra variables in the rules R of the resulting DP problems
(P,R).

5. FROM HIGHER-ORDER TERMS TO FIRST-ORDER DP PROBLEMS

Up to now, the termination graphs still contain higher-order terms and thus, higher-
order terms also occur in the DP problems resulting from these graphs. As discussed
in the beginning of Section 4, this is problematic since most approaches for auto-
mated termination analysis of term rewriting focus on first-order rewriting only. In
Section 4, we already mentioned a possible solution to this problem: higher-order terms
could be represented as applicative first-order terms using a special binary function
symbol ap (i.e., “map x xs” would be transformed into ap(ap(map, x), xs)). But in spite
of some recent approaches for termination analysis of applicative TRSs [Giesl et al.
2005b; Hirokawa et al. 2008], termination techniques are usually considerably more
powerful on “ordinary” nonapplicative rewrite systems. Therefore, in this section we
present an improvement which first renames the terms in the termination graph into
first-order terms.24 Here, we benefit from the structure of the termination graph and
thus, we do not construct “applicative terms” as before. Afterwards, the DP problems

23Instead of dpG′ = (P,R), for H-termination it suffices to prove finiteness of (P�,R), as shown in the online
appendix. Here, P� results from P by replacing each rule ( f t1 . . . tn) → (g s1 . . . sm) in P by ( f � t1 . . . tn) →
(g� s1 . . . sm), where f � and g� are fresh “tuple” function symbols; see Arts and Giesl [2000].
24The only exception are terms from UG. These are not renamed into first-order terms, since ev replaces
them by fresh variables anyway when constructing DP problems from the termination graph.
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are constructed from this renamed termination graph. This results in DP problems
that only contain first-order terms. In this way, we avoid the disadvantages of the
“brute-force method” that simply converts all terms into applicative form. Another ad-
vantage of these renamed termination graphs is that they allow us to treat types more
accurately, as will be explained in Section 6.2.3.

The basic idea for this renaming is to introduce a new function symbol for (almost)
every node of the termination graph. Consider again the program from Example 4.5
and the associated termination graph from Figure 6. For node A, we introduce a new
function symbol f and replace “take u (from m)” by a term built with f. As arguments
of f we take the variables occurring in “take u (from m)”. So “take u (from m)” is replaced
by the term “f um”. This means that any term of the form “take t1 (from t2)” can now be
represented as “f t1 t2”.

Formally, to perform this renaming of the term “take u (from m)” into “f um”, we use
a renaming function r which is applied to each node of the termination graph. The
function r gives new names to the nodes in the graph, but it does not modify variables
and it also does not modify constructors if they occur as head symbols.

More precisely, each Eval, Case, or VarExp node t is renamed to the term
r(t) = ( ft x1 . . . xn), where ft is a new renaming function symbol for the term t and
V(t) = {x1, . . . , xn}. Here we always assume that there is a total order on the variables
to determine the order of the sequence x1, . . . , xn. Thus, instead of using t in the con-
struction of the left-hand sides of dependency pairs and rules, we now use r(t). Note that
all variables occurring in t are still contained in r(t). So if t is the start node of a DP path
or rule path, then when constructing the left-hand sides of dependency pairs or rules,
the substitutions on the DP path or rule path are now applied to r(t). In Example 4.5,
this means that the substitution [u/(S n)] on the DP path from node A to H must be
applied to the renamed term “f um” in node A. So the left-hand side of the dependency
pair corresponding to the DP path from A to H is “f (S n) m”.

Next we explain how r operates on Ins nodes. For an Ins node t with ch(t) =
{s1, . . . , sm, t̃}, where t is connected to node t̃ via an instantiation edge and where t =
t̃[x1/s1, . . . , xm/sm], we do not introduce a fresh renaming function symbol ft. Instead,
we reuse the function symbol ft̃ already introduced for t̃. The reason is that t is an
instance of t̃. So while25 r(t̃) = ( ft̃ x1 . . . xm), we now define r(t) = ( ft̃ r(s1) . . . r(sm)).
Hence, now r(t) is also an instance of r(t̃). So for node H in the termination graph of
Example 4.5, we obtain

r( take (p (S n)) (from (S m)) ) = f r(p (S n)) r(S m).

Finally, we also define r on ParSplit nodes. Here, the head symbol is not changed
and r is only applied to the arguments. So for a ParSplit node t = (c t1 . . . tn) where
ch(t) = {t1, . . . , tn}, we have r(t) = (c r(t1) . . . r(tn)). This holds both for constructors and
variables c. So for node J we have r(S m) = S r(m) = S m, since r does not modify leaves
of the termination graph like “m”.

For the Case node I, we introduce a new function symbol g and obtain r(p (S n)) =
g n. So “g t3” stands for any term of the form “p (S t3)”. So instead of the DP

take (S n) (from m) → take (p (S n)) (from (S m)), (2)

in Example 4.5 we now obtain the DP

f (S n) m → f (g n) (S m). (5)

25However, r(t̃) = ( ft̃ x1 . . . xm) only holds if t̃ is not the special term (x y); see Definition 3.1. In this special
case where t̃ ∈ UG, we use a fresh renaming function symbol ft for the Ins node t.
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Fig. 8. Renamed termination graph for “take u (from m)”.

This DP makes clear that the structure of the term (represented by f) does not change
when going from the left- to the right-hand side and that only the two “arguments”
of the term are modified. In the corresponding DP problem, up to now we had the
following rules.

p (S Z) → Z (due to the rule path from I to O) (3)
p (S (S x)) → S (p (S x)) (due to the rule path from I to P) (4)

Since the start node I of the rule paths has been renamed from “p (S n)” to “g n”, we now
have the following rules.

g Z → Z (due to the rule path from I to O) (6)
g (S x) → S (g x) (due to the rule path from I to P) (7)

instead. Indeed, the right-hand side of (7) is ev(r(S (p (S x)))) = ev(S r(p (S x))) =
ev(S (g r(x))) = ev(S (g x)) = S (g x). So instead of the problem ({(2)}, {(3), (4)}) we now
obtain the DP problem ({(5)}, {(6), (7)}) from the renamed termination graph. The
whole termination graph which results from Figure 6 by the renaming r is depicted in
Figure 8. To summarize, we obtain the following definition of r.
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Definition 5.1 (r). Let G be a termination graph and let t be a node in G. Then

r(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t, if t is a leaf
( ft x1 . . . xn), if t is an Eval, Case, VarExp,

or Ins node with instantiation edge to t̃ ∈ UG,
where V(t) = {x1, . . . , xn}

(c r(t1) . . . r(tn)), if t is a ParSplit node with
head(t) = c and ch(t) = {t1, . . . , tn}

( f r(s1) . . . r(sm)), if t is an Ins node with
t = t̃[x1/s1, . . . , xm/sm],
ch(t) = {s1, . . . , sm, t̃}, t̃ /∈ UG,
and r(t̃) = ( f x1 . . . xm)

Now the main soundness theorem (Theorem 4.11) still holds: if all DP problems for
the SCCs of the renamed termination graph are finite, then all terms in the original
termination graph are H-terminating.

Note that when using this renaming, all terms in DP problems resulting from a
termination graph correspond to first-order terms. The left-hand sides of DPs and
rules are constructed by renaming the start node (which results in a term of the form
( f x1 . . . xn) for a fresh function symbol f ) and by applying all substitutions on a path to
this term. The ranges of these substitutions contain only terms of the form (c y1 . . . ym)
where c is a constructor with arity(c) = m. The right-hand sides of DPs and rules
are of the form ev(t), where ev replaces all subterms of the form (x t1 . . . tk) by fresh
variables. So the renaming solves the problems with higher-order terms containing
“partial applications” of functions.

Example 5.2 (mapTree). To demonstrate this, we consider one of the most classical
examples of higher-order functions, that is, the map function on lists which is then used
to define a map function mapTree on variadic trees.

map :: (a → b) → (List a) → (List b)
map x Nil = Nil
map x (Cons y ys) = Cons (x y) (map x ys)

data Tree a = Node a (List (Tree a))

mapTree :: (a → b) → (Tree a) → (Tree b)
mapTree g (Node e ts) = Node (g e) (map (mapTree g) ts)

For the term “mapTree g t”, we obtain the termination graph in Figure 9, where the
terms of the original termination graph are crossed out and are replaced by the terms
of the renamed termination graph. The termination graph has one SCC G consisting
of the nodes A, B, C, E, H, J, K, and L. If one considers the original termination graph,
then dpG contains the following dependency pairs.

mapTree g (Node e (Cons y ys)) → mapTree g y
mapTree g (Node e (Cons y ys)) → map (mapTree g) ys

map (mapTree g) (Cons y ys) → mapTree g y
map (mapTree g) (Cons y ys) → map (mapTree g) ys)

Here, sometimes mapTree is applied to two arguments, but the left- and right-hand
sides of dependency pairs also contain the higher-order subterm “mapTree g” where
the second argument of mapTree is missing. Thus, these dependency pairs do not
correspond to ordinary first-order term rewriting, but they represent a challenging form
of recursion: mapTree calls itself recursively via a partial application in an argument

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 2, Article 7, Publication date: January 2011.



Automated Termination Proofs for Haskell by Term Rewriting 7:23

Fig. 9. Renamed termination graph for “mapTree g t”.

to the higher-order function map. However, this recursion structure is substantially
simplified when considering the renamed termination graph. Now one obtains the
following dependency pairs without any partial applications.

f1 g (Node e (Cons y ys) → f1 g y
f1 g (Node e (Cons y ys) → f3 g ys

f3 g (Cons y ys) → f1 g y
f3 g (Cons y ys) → f3 g ys

Note that this example cannot be handled by the approach of Panitz and Schmidt-
Schauß [1997] since one obtains a termination graph with “crossings.” The main reason
why our approach can deal with arbitrary termination graphs is the difference in
the identification of recursive calls. Panitz and Schmidt-Schauß [1997] build so-called
recursive pairs and directly construct ordering constraints. A recursive pair is only
built from the target and the source node of each instantiation edge, but not from the
target of one instantiation edge and the source of another different instantiation edge.
So for this example, Panitz and Schmidt-Schauß [1997] would only build the recursive
pairs (A, K) and (E, L). In contrast, we also construct dependency pairs for the the DP
paths from A to L and from E to K which are necessary to achieve a sound approach for
termination graphs with crossings.

To translate the DPs and rules that result from the renamed termination graph into
real first-order terms, we introduce new function symbols fn for every function symbol
f and every n ∈ N, and apply the following translation tr.

tr(x) = x for variables x
tr(( f t1 . . . tn)) = fn(tr(t1), . . . , tr(tn)) for function symbols f
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After this translation, there is no connection between a function symbol f applied
to two arguments (which is translated to the symbol f2) and an application where f
is only applied to one argument (which is translated to the symbol f1). Indeed, such
remaining partial applications of functions no longer pose a problem. More precisely, if
a function symbol f is only applied to marguments with m < arity( f ), then by rewriting
with DPs or rules, it will never be possible to “supply” the missing arguments which
would be needed to evaluate f . The reason is that the DPs and rules no longer contain
any subterms of the form (x t1 . . . tn). Moreover, it is no longer possible to have rules in
the DP problems which add more and more arguments to a function symbol.

Example 5.3. To illustrate this, consider again the tma program from Example 3.2
and the corresponding termination graph in Figure 2. If we abbreviate the fresh func-
tion symbol “ ftma n” by tma, then applying rl to the renamed node A yields the rule
“tma (S m) → tma mm”. Hence, after applying tr, we obtain the rule

tma1(S1(m)) → tma2(m, m).

This rule does not correspond to the real behavior of tma, since the connection between
tma1 and tma2 is lost. However, this problem only occurs in SCCs of the termination
graph where an argument of a function symbol is “removed” via an instantiation edge
to the node “x y”. Thus, nodes like A are predecessors of “x y”, that is, they are contained
in PUG. According to the definition of con, one never creates any rules for such nodes,
even if “tma n” occurred in the recursive call of another function.

The renaming r has another important benefit. It ensures that one obtains DPs and
rules that are nonoverlapping. As shown in Giesl et al. [2005a], for such DP problems
it suffices to prove that they are finite with respect to innermost rewriting. This has
important advantages since, in general, proving innermost termination is significantly
easier than proving full termination automatically.

6. IMPROVED HANDLING OF TYPES

In this section, we improve our method by considering also built-in primitive data types
(Section 6.1) and by handling type classes and overloading (Section 6.2).

6.1. Predefined Data Types

To treat the predefined data types Int, Integer, Char, Float, and Double of Haskell, we
use a very straightforward approach and simply represent them using the following
data declarations.

data Nats = Z | S Nats data Char = Char Nats
data Int = Pos Nats | Neg Nats data Float = Float Int Int
data Integer = Integer Int data Double = Double Int Int

So our termination analyzer internally converts every integer number into a term
built with the constructors Pos and Neg which take arguments of type Nats. Hence, 1
is converted into “Pos (S Z)” and the number 0 has two possible representations “Pos Z”
and “Neg Z”.26 Our representation of integers does not handle overflows, that is, it
treats fixed-precision integers (Int) in the same way as arbitrary-precision integers

26Of course, this representation has disadvantages when considering “large” numbers. Very recently, there
has been work on extending termination methods from term rewriting such that they can also deal with
rewrite rules containing integers and other predefined data types [Falke and Kapur 2008; Fuhs et al. 2009].
Then such data types do not have to be represented by terms anymore. In future work, we will investigate the
use of such extensions of term rewriting for termination analysis of Haskell. Nevertheless, our experiments
in Section 7 show that even our straightforward encoding of data types already yields an extremely powerful
method for automated termination analysis.
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(Integer). In fact, the Haskell specification [Peyton Jones 2003] does not determine how
to deal with overflow.27

Similarly we represent characters (Char) by the type Nats. Floating-point numbers
are internally represented as fractions and we ignore their underflow and overflow,
too. (Again, the Haskell specification [Peyton Jones 2003] does not determine the im-
plementation of floating-point numbers.) Other built-in data types like Haskell’s lists
and tuples simply correspond to user-defined “ordinary” types with a different syntax.
Thus, they are internally translated into the corresponding ordinary types.

For each type, we internally implement the required primitive functions by appropri-
ate defining equations. For example, we use the following implementations for addition
of integers and multiplication of floating-point numbers.

primPlusInt :: Int → Int → Int
primPlusInt (Pos x) (Neg y) = primMinusNats x y
primPlusInt (Neg x) (Pos y) = primMinusNats y x
primPlusInt (Pos x) (Pos y) = Pos (primPlusNats x y)
primPlusInt (Neg x) (Neg y) = Neg (primPlusNats x y)

primPlusNats :: Nats → Nats → Nats
primPlusNats Z Z = Z
primPlusNats Z (S y) = S y
primPlusNats (S x) Z = S x
primPlusNats (S x) (S y) = S (S (primPlusNats x y))

primMinusNats :: Nats → Nats → Int
primMinusNats Z Z = Pos Z
primMinusNats Z (S y) = Neg (S y)
primMinusNats (S x) Z = Pos (S x)
primMinusNats (S x) (S y) = primMinusNats x y

primMulFloat :: Float → Float → Float
primMulFloat (Float x1 x2) (Float y1 y2) =

Float (primMulInt x1 y1) (primMulInt x2 y2)

The result of more complex primitive functions is “approximated” by free variables.
For example, consider the primitive sine function primSinFloat for the type Float. The
result of “primSinFloat t” for a term t is irrelevant for the termination behavior of
most programs in practice. Thus, instead of implementing a complex algorithm to
compute such results, we decided to return a fresh variable for each evaluation of
primSinFloat. More precisely, we introduce a new primitive function terminator of type
a, which is replaced by a new fresh variable when building dependency pairs or rules
(i.e., ev(terminator) is a fresh variable). Then we use equations like the following to
define complex functions like primSinFloat.

primSinFloat = terminator

Finally, we describe how we handle Haskell’s built-in IO functions. Since devices could
be nonresponding, IO functions that read from a device are considered to be potentially
nonterminating. Furthermore, primitive functions handling exceptions are also con-
sidered to be possibly nonterminating, since exceptions bypass the usual evaluation

27Moreover, we treat the functions primMinInt and primMaxInt that return the smallest and largest number
of type Int as being non-H-terminating. In this way, our method does not prove termination for programs
depending on the handling of overflow errors via primMinInt and primMaxInt.
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process of Haskell. All other IO functions (in particular those that only write to some
device) are considered to be terminating.

6.2. Type Classes and Overloading

Up to now, we did not permit any use of type classes when analyzing the termination be-
havior of Haskell programs. In this section, we will extend our approach appropriately.
Section 6.2.1 illustrates the concept of type classes in Haskell. Afterwards, Section 6.2.2
describes how to construct termination graphs for Haskell programs with type classes
and how to obtain DP problems from these termination graphs. Finally, Section 6.2.3
shows how to adapt the renaming refinement from Section 5 to Haskell programs with
type classes.

6.2.1 Type Classes in Haskell

Example 6.1 (Size and Max). Now we also permit programs with class and instance
declarations like the following.

data Maybe b = Nothing | Just b

class Size b where class Max b where
size :: b → Nats max :: b

instance Size Bool where instance Max Bool where
size x = S Z max = True

instance Size Nats where instance Max b ⇒ Max (Maybe b) where
size x = S x max = Just max

instance Size b ⇒ Size (Maybe b) where headSize :: Size b ⇒ List b → Nats
size (Just x) = S (size x) headSize (Cons x xs) = size x
size Nothing = S Z

The first class declaration introduces the new type class Size with the method size.
This means that if a type τ is an instance of the class Size, then there must be a
function size of type τ → Nats. The idea is that for any object t, “size t” should compute
the number of data constructors in t. Similarly, the type class Max with the method max
is introduced. Here, the idea is that for any type τ of class Max, max :: τ should return
a “largest” object of type τ . To declare that a type is an instance of a class, an instance
declaration is used. Here, the type Bool is declared to be an instance of the class Size. In
the corresponding instance declaration, the function size of type Bool → Nats is defined.
So this implementation of size is executed whenever size is applied to an argument of
type Bool. For example, we have size True = S Z.

The next instance declaration that follows states that the type Nats is also an instance
of the class Size and it implements the function size of type Nats → Nats. Thus,
size is overloaded and when evaluating a term “size t”, it depends on the type of the
argument term t which implementation of size is executed. For example, we have
size (S Z) = S (S Z) .

The function headSize returns the size of the first element in a list. It can be applied
to any argument of type “List τ ”, provided that size is defined on arguments of type τ .
In other words, it can be applied whenever τ is an instance of the type class Size. So
the type of the function headSize is not “List b → Nats” (since the type variable b may
not be instantiated by arbitrary types), but its type is “ Size b ⇒ List b → Nats”.
Here, “Size b” is a class context which ensures that the type variable b may only be
instantiated by types from the class Size. In general, class contexts take the form
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“(C1 τ1, . . . , Cn τn)”, where the Ci are classes and the τi are types. Such a context means
that the type variables in τ1, . . . , τn may only be instantiated in such a way that the
resulting instantiated types are instances of the classes C1, . . . , Cn.

Class contexts can also be used in instance declarations and class declarations. For
example, “instance Size b ⇒ Size (Maybe b)” means that the type “Maybe τ ” is an
instance of the class Size, provided that τ is also an instance of the class Size. Similar
statements hold for the instance declarations of the class Max. For more details about
type classes in Haskell we refer to Peyton Jones [2003].

In order to handle the overloading of functions properly, we now consider anno-
tated terms. An annotated term is a term where every variable and every function
symbol is annotated with a corresponding type. For example, Nil

List a
denotes the term

Nil annotated by its type “List a”. Similarly, Nil
List Nats

is also an annotated term, but this
time, Nil is not annotated by its most general type. A more complex annotated term is

Cons
Nats→List Nats→List Nats

Z
Nats

Nil
List Nats

. If we additionally want to state the class context for an anno-
tated term, then we add it in front. This results in annotated terms like Size b⇒ headSize

List b→Nats

since the term headSize has the type “List b → Nats” and the class context “Size b”.
Another example for an annotated term is Size a⇒ size

a→Nats

x
a

. Of course, annotated terms
have to be well typed. So for terms of the form ( t1

τ1

t2
τ2

. . .
tn
τn

) we must have τ1 = τ2 →
τ3 → . . . → τn → τn+1. Moreover, if a term contains several occurrences of the same
variable (i.e., x

τ1
, . . . , x

τn
), then we must have τ1 = . . . = τn.

From now on, we only consider annotated terms (which we simply refer to as “terms”).
While V(t) denotes the set of (object) variables of a term, we now also define VT(t) to
be the set of type variables occurring in an (annotated) term t. So if t is Size a⇒ size

a→Nats

x
a

,
then we have V(t) = {x} and VT(t) = {a}. If a function f is annotated with a type τ
and there is no defining equation � = r with head(�) = f where the type of f in �

is the same or more general28 than the type τ , then we say that f
τ

is indetermined.
So size

a→Nats
in a term with the class context “Size a” is indetermined, whereas size

Bool→Nats
is

not indetermined. Note also that an indetermined function symbol has no arity (e.g.,
arity( size

a→Nats
) is undefined). The reason is that an overloaded function may have different

arities in the different instances of a class. In other words, f may have n arguments
in the defining equations of one instance declaration, but m arguments in the defining
equations of another instance declaration, where m can be different from n.

Similarly, concerning the operational semantics of Haskell, now an equation � = r
with head(�) = f can only be feasible for a term t with head(t) = f if the type of f in �
is the same or more general than the type of f in t.

Example 6.2 (Feasible Equations for Overloaded Functions). To illustrate this, con-
sider the program of Example 6.1 and let t be the annotated term Size a⇒ size

a→Nats

x
a

. The
left-hand side of the first defining equation of size (in the instance declaration of Bool)
is size

Bool→Nats

x
Bool

. This equation is not feasible, since the type “Bool → Nats” of “size” in � is
not the same or more general than the type “Size a ⇒ a → Nats” of “size” in t. So in
fact, no equation is feasible for t.29

28Of course, here one also has to take the respective class contexts into account.
29This would even hold if there were a (default) implementation of the function size in the declaration of the
class Size. The reason is that such a default implementation is only copied into those instance declarations of
Size where an implementation of the function size is missing. So even then, there would not be any defining
equation where “size” has the type “Size a ⇒ a → Nats”.
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Fig. 10. Termination graph for “size x”.

In an analogous way, one also has to take the types of annotated terms into account
during pattern matching and during evaluations with “→H”.

6.2.2 Termination Graphs and DP Problems for Haskell with Type Classes

The next example illustrates the construction of termination graphs for programs using
type classes. We consider the program of Example 6.1 and the following start term t.

(Max a, Size a) ⇒ size
a → Nats

x
a

(8)

In the beginning, the graph only consists of the node A marked with the start term,
as in Figure 10. Now we try to evaluate t. But due to the overloading of the function
size, this is not possible since it is unclear which instance of size should be used. An
evaluation is only possible if we know how the type variable a is instantiated. More
precisely, there is no feasible defining equation “size . . . = . . .” where the type of size
is the same or more general than the type “(Max a, Size a) ⇒ a → Nats” of size in the
term t. In other words, this occurrence of the function size is indetermined. Therefore,
we introduce a new Type Case rule (“TyCase”) which works on type variables in essen-
tially the same way that the Case rule works on object variables. To apply the TyCase
rule, we first check how the type variable a in size’s type “(Max a, Size a) ⇒ a → Nats”
could be instantiated in order to make a defining equation of size applicable. Here, we
proceed in two steps. In the first step, we ignore all class contexts like (Max a, Size a).
Then size has the type “a → Nats” in the term t. Now we compute all possible sub-
stitutions of the type variable a that would allow defining equations of size to become
applicable. In general, for any function f and any type τ , let instances( f, τ ) be the set
of the most general substitutions {δ1, . . . , δm} such that there are defining equations for
f in which f has the type δ1(τ ), . . . , δm(τ ) (or a more general one). So for example, we
obtain

instances(size, a → Nats) = {[a/Bool], [a/Nats], [a/Maybe b]}. (9)

The general definition of instances is as follows. Without loss of generality, here we
assume that the type variables in the type τ of the function f are disjoint from the type
variables occurring in class and instance declarations. (Otherwise, the variables in the
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class and instance declarations are renamed.)

instances( f, τ ) = {δ | f is a method declared in a declaration “class C b . . . ”,
in this class declaration, f has the type τ ′,
there is a declaration “instance cx ⇒ C τ ′′ . . . ”, and
δ is the mgu of τ and τ ′[b/τ ′′]}

Here, “cx” denotes an arbitrary class context.
To illustrate the definition, consider again our example, where f is the function size

and τ is the type a → Nats. The function size is a method of the class Size (i.e., C
is Size) and in this class declaration, size has the type τ ′ which is b → Nats. Now
we consider every instance of the class Size. For example, Bool is declared to be an
instance of the class Size. So here, cx is an empty class context and τ ′′ is the type
Bool. Hence, in the defining size equation of this instance declaration, the function size
has the type τ ′[b/τ ′′] which is Bool → Nats. Therefore, the first substitution δ in the
set instances(size, a → Nats) is the mgu of τ and τ ′[b/τ ′′], that is, of a → Nats and
Bool → Nats. Thus, δ = [a/Bool]. By considering the other two instances of the class
Size, one also obtains the other substitutions in instances(size, a → Nats); see (9).

So if f occurs in a term t where f has the type τ , then instances( f, τ ) computes all
substitutions δ which would have to be applied to the type τ in order to resolve the
overloading of f and to apply actual defining f -equations. However, the term t usually
also has a class context and this class context could rule out some of the possible
substitutions δ in instances( f, τ ). For example, the term t from (8) has the class
context “(Max a, Size a)”. Hence, not all substitutions from instances(size, a → Nats)
can really be used. The first substitution [a/Bool] is indeed possible, since Bool is an
instance of both classes Max and Size. In other words, the instantiated class context
(Max Bool, Size Bool) is valid and can be reduced to the empty class context. Hence, the
first child node of t that is created by the TyCase rule is marked with the term “size x”
where size has the type Bool → Nats and the class context is empty.

In contrast, the second substitution [a/Nats] from instances(size, a → Nats) is ruled
out by the class context of t. When instantiating (Max a, Size a) with this substitution,
the resulting class context (Max Nats, Size Nats) could be reduced to (Max Nats) since
Nats is an instance of Size, but the remaining context is invalid since Nats is not
an instance of Max. So the substitution [a/Nats] may not be used when applying the
TyCase rule to t.

Finally, when applying the substitution [a/Maybe b], we obtain the instantiated class
context (Max (Maybe b), Size (Maybe b)). According to the instance declarations this can
be reduced, since “Size (Maybe b)” holds whenever “Size b” holds (and similar for Max).
This results in the reduced class context (Max b, Size b). So the second child node of t
that is created by the TyCase rule is marked with the term “size x” where size has the
type “Maybe b → Nats” and it has the class context “(Max b, Size b)”. In other words,
the node A gets the child nodes B and C which are marked with

size
Bool → Nats

x
Bool

and (Max b, Size b) ⇒ size
Maybe b → Nats

x
Maybe b

.

To perform this reduction of class contexts, we define the following relation �→ on class
contexts. Whenever a class context contains the constraint “C (d τ1 . . . τm)” for a class
C, a type constructor d, and types τ1, . . . , τm and whenever there exists a declaration

instance (C1 ai1 , . . . , Cn ain) ⇒ C (d a1 . . . am) . . .

with n ≥ 0, then one can replace the constraint “C (d τ1 . . . τm)” by the new constraints
C1 τi1 , . . . , Cn τin. For example, consider the constraint “Size (Maybe b)”. So here C is
the class Size, the type constructor d is Maybe, and τ1 is the type variable b. Due to the
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instance declaration

instance Size b ⇒ Size (Maybe b) . . .

(where C1 corresponds to the class Size), we obtain the reduction

Size (Maybe b) �→ Size b.

It is clear that the relation �→ is confluent and terminating (as cyclic dependencies of
classes or “overlapping” instance declarations are forbidden in Haskell). For any class
context cx, let reduce(cx) be the normal form of cx with respect to �→. In other words,
reduce(cx) is the result of applying �→ repeatedly as long as possible to cx. For example,
we have

—reduce( (Max Bool, Size Bool) ) = ( ), since
(Max Bool, Size Bool) �→ (Max Bool) �→ ( )

—reduce( (Max Nats, Size Nats) ) = (Max Nats), since
(Max Nats, Size Nats) �→ (Max Nats)

—reduce( (Max (Maybe b), Size (Maybe b)) ) = (Max b, Size b), since
(Max (Maybe b), Size (Maybe b)) �→ (Max (Maybe b), Size b) �→ (Max b, Size b)

Recall that we considered an annotated term t containing a function f of type τ
and our goal was to compute all specializations of τ such that the function f can
be evaluated. To this end, we first ignored the class context cx of the term t. Then
instances( f, τ ) contains all most general substitutions δ of the type variables in τ such
that defining f -equations would become applicable if f had the type δ(τ ). However, now
we have to filter out those substitutions δ from instances( f, τ ) which contradict the
class context cx. To this end, we apply the type substitution δ also on the class context
cx and then reduce the instantiated class context, that is, we build reduce(δ(cx)). If
reduce(δ(cx)) is not invalid, then the TyCase rule generates a child node marked with
t, but where the types of all variables and function symbols in t are refined by applying
δ to them. Moreover, the former class context cx is replaced by reduce(δ(cx)). A reduced
class context is invalid whenever it contains a constraint like “C (d τ1 . . . τm)” where
d is a type constructor. (Indeed, then (d τ1 . . . τm) is not an instance of the class C,
because otherwise “C (d τ1 . . . τm)” would have been reduced further with the relation
�→.) So the only constraints which may occur in a valid reduced class context are of
the form “C (a τ1 . . . τm)” where a is a type variable. For instance, a valid reduced class
context could contain a constraint like “Max a” (where a is a type variable and there
are no argument types τ1 . . . τm, i.e., m = 0). It could also contain a constraint like
“Max (a Bool)”.

Given a set S of type substitutions and a class context cx, filter(S, cx) removes all
substitutions δ from S where the instantiated class context δ(cx) would be invalid (i.e.,
where reduce(δ(cx)) contains constraints like “C (d τ1 . . . τm)”).

filter(S, cx) = {δ ∈ S | reduce(δ(cx)) does not contain any constraint
“C (d τ1 . . . τm)” where d is a type constructor}

When computing the children of node A in Figure 10, S is instances(size, a →
Nats), that is, S = {[a/Bool], [a/Nats], [a/Maybe b]}. Moreover, cx is (Max a, Size a).
The substitutions [a/Bool] and [a/Maybe b] lead to valid reduced class contexts, as
reduce((Max Bool, Size Bool)) = ( ) and reduce((Max (Maybe b), Size (Maybe b))) =
(Max b, Size b). But the substitution [a/Nats] yields an invalid reduced class context,
as reduce( (Max Nats, Size Nats) ) = (Max Nats). So here the reduced context has the
form (C d) for the class C = Max and the type constructor d = Nats. Hence, we obtain

filter(S, cx) = {[a/Bool], [a/Maybe b]}.
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For this reason, in the graph in Figure 10 the node A only has two children B and C

corresponding to the substitutions [a/Bool] and [a/Maybe b], but no child corresponding
to the substitution [a/Nats].

For the nodes B and C we can apply the other expansion rules as before. Once we
have reached node J, we can again apply the Ins rule, because the term in node J is an
instance of the term in node A. Here, one not only has to instantiate the object variable
x in a suitable way, but one also has to instantiate the type variable a of the term in
node A, that is, x and a are instantiated by y and b, respectively.

Thus, we now adapt the definition of termination graphs (Definition 3.1) which de-
scribes how to extend a graph with a leaf marked with t by adding new children ch(t).
Now the nodes in the graph are marked with annotated terms. The expansion rules of
Definition 3.1 remain the same, except for three changes. The first change consists of
adding a new TyCase rule in addition to the previous five rules for extending graphs.
In the following three expansion rules, we make the class contexts explicit and let t
denote an annotated term without class context.

TyCase: ch(cx⇒t) = {cx1⇒δ1(t), . . . , cxm⇒δm(t)} if head(t) is a defined function symbol
and head(t|e(t)) = g

τ
for a defined function symbol g which is indetermined. Here,

let {δ1, . . . , δm} = filter(instances(g, τ ), cx) and let cxi = reduce(δi(cx)), for 1 ≤
i ≤ m. The edge from cx⇒t to cxi⇒δi(t) is marked with the substitution δi .

The second change concerns the VarExp rule. This rule is used to add additional
arguments whenever a function symbol is applied to less arguments than its arity
requires. But for indetermined functions, the arity is not yet clear and thus, here one
should apply the TyCase rule first. Thus, the VarExp rule is now restricted to function
symbols that are not indetermined.

VarExp: ch(cx⇒t) = {cx⇒t x
τn+1

}, if t = ( f
τ

t1 . . . tn), τ has the form τ1 → . . . → τn →
τn+1 → τ ′, f

τ
is a defined function symbol which is not indetermined, n < arity( f

τ
),

x is a fresh variable.

The last change compared to Definition 3.1 is that in the Ins rule, we now also take
the types and the class context into account.

Ins: ch(cx⇒t) = {cx1⇒s1, . . . , cxm⇒sm, c̃x⇒t̃}, if t = ( f
τ

t1 . . . tn), t is not an er-

ror term,30 f
τ

is a defined symbol which is not indetermined, n ≥ arity( f
τ

),
t = t̃σ for some term t̃, σ = [x1/s1, . . . , xm/sm, a1/τ1, . . . , a�/τ�], where V(t̃) =
{x1, . . . , xm} and VT(t̃) = {a1, . . . , a�}. Moreover, the instantiated class context σ (c̃x)
must be the same or more general than the context cx, that is, reduce(σ (c̃x))
⊆ reduce(cx). Here, either t̃ = (x y) for fresh variables x and y or t̃ is an Eval,
Case, or TyCase node. If t̃ is a Case or TyCase node, then it must be guaranteed
that all paths starting in t̃ reach an Eval node or a leaf with an error term after
traversing only Case or TyCase nodes.

Now Theorem 3.3 still holds, that is, for every (annotated) start term there exists a
termination graph.

30Note that the definition of error terms from Section 2 now also has to be adapted, since a term where further
evaluations are only blocked because of an indetermined overloaded function symbol are no error terms. So
an (annotated) term s is an error term if there is no feasible equation for s, if head(s) and head(s|e(s)) = g

τ

are defined function symbols, and if g
τ

is not indetermined. Moreover, a TyCase node without children in
the termination graph (i.e., where filter(instances(g, τ ), cx) = ∅) also corresponds to an error term. In the
following, we will not consider such nodes as TyCase nodes anymore, but simply as error terms. So when
speaking of TyCase nodes, we now assume that they have at least one child.
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The extraction of DP problems from the termination graph works as in Section 4. The
only change is that we have to extend the functions ev and con from Definition 4.4 and
4.6 to TyCase nodes. Here, we simply treat TyCase nodes in the same way as Case
nodes. So for any annotated term t in a TyCase node, we define

ev(t) = t and con(t) = {t}.
Similarly, TyCase nodes are also treated like Case nodes in the definition of rule paths
(Definition 4.8).

So from the only SCC of the termination graph in Figure 10, we obtain the DP
problem ({t1 → t2}, ∅), where

t1 = (Max (Maybe b), Size (Maybe b)) ⇒ size
(Maybe b) → Nats

(
Just

b → Maybe b
y
b

)
t2 = (Max b , Size b) ⇒ size

b → Nats
y
b

6.2.3 First-Order DP Problems for Type Classes

Now we show how to adapt the technique of Section 5 which renames the higher-order
terms in the termination graph to first-order terms such that it can also deal with type
classes. To rename a term t in a TyCase node, we again proceed as for Case nodes and
replace the term by a new function symbol ft. The arguments of ft are the variables
occurring in t. However, since we now deal with annotated terms, we can also benefit
from the type information in these terms. So in addition to the object variables in V(t),
the type variables in VT(t) are also given to ft as additional arguments. So each Eval,
Case, TyCase, or VarExp node t is renamed to the term r(t) = ( ft x1 . . . xn a1 . . . a�),
where ft is a new function symbol for the term t, V(t) = {x1, . . . , xn}, and VT(t) =
{a1, . . . , a�}. Note that while t is an annotated term, the renamed term r(t) is no longer
annotated. Now the definition of r in Definition 5.1 can be refined as follows for any
termination graph G and any node t in G.

r(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t, if t is a leaf, where t results from the
annotated term t by removing all annotations

( ft x1 . . . xn a1 . . . a�), if t is an Eval, Case, TyCase, VarExp,
or Ins node with instantiation edge to t̃ ∈ UG,
where V(t) = {x1, . . . , xn}
and VT(t) = {a1, . . . , a�}

(c r(t1) . . . r(tn)), if t is a ParSplit node with
head(t) = c

τ
and ch(t) = {t1, . . . , tn}

( f r(s1)...r(sm) τ1...τ�), if t is an Ins node with
t = t̃[x1/s1, . . . , xm/sm, a1/τ1, . . . , a�/τ�],
ch(t) = {s1, . . . , sm, t̃}, t̃ /∈ UG,
and r(t̃) = ( f x1 . . . xm a1 . . . a�)

Again, our main soundness theorem (Theorem 4.11) still holds: if all DP problems for
the SCCs of the renamed termination graph are finite, then all terms in the original
termination graph are H-terminating.

Finally, we again use the translation tr from Section 5 to obtain first-order terms.
Here, tr also transforms types into terms (i.e., now there are function symbols for type
constructors like List, Maybe, etc.).31 Note that due to the renaming r we then again

31Note that due to constructor classes like Monad, there can be type variables m whose type is a class. As an
example consider the following program.

f :: Monad m ⇒ a → mb → c
f x y = f y y
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Fig. 11. Original termination graph for “max”.

obtain nonoverlapping DPs and rules. For overloaded functions, this nonoverlapping-
ness is only due to the fact that the renaming r transforms the types into additional
arguments. As in Section 5, consequently it suffices to prove that the resulting DP
problems are finite with respect to innermost rewriting.

Example 6.3. To illustrate the renaming for programs with type classes, we consider
the program from Example 6.1 and the start term t in (8) again. When applying the
renaming to the termination graph in Figure 10, instead of the dependency pair given
at the end of Section 6.2.2, we now obtain the dependency pair

f( Just(y), Maybe(b) ) → f(y, b).

(Here, we wrote “Maybe” instead of “Maybe1”, etc., to ease readability.) Now it is
straightforward to prove automatically that the corresponding DP problem is finite.

The following example shows why it is crucial to add the type variables from VT(t)
when translating terms with the function r. Indeed, in this example this addition is
required in order to prove termination, since only the type of the term is decreasing
in the recursive call. This is another important advantage of the renaming, because in
this way, type information can be taken into account although the rewrite rules in DP
problems only contain untyped terms.

Example 6.4. Consider the program of Example 6.1 and the start term t:

Max a ⇒max
a

Its (original nonrenamed) termination graph is shown in Figure 11. If one ignores
the types, then the DP constructed from the only DP path A, C, E, F is “max → max”.
Showing termination for this dependency pair must fail, due to the existence of the
infinite chain “max →P max →P . . . ”. However, in reality, the function max terminates.
For example, the term max

Maybe Bool
has the following reduction.

max
Maybe Bool

→H
Just

Bool → Maybe Bool
max
Bool

→H
Just

Bool → Maybe Bool
True
Bool

The type of the function symbol max decreases whenever the recursive equation
“max = Just max” is applied. In other words, the start term t is terminating since

To avoid “higher-order” terms resulting from types, we represent applications of type variables to other
types in applicative notation using the special symbol ap. So from the renamed termination graph of this
example, we obtain a dependency pair of the form h(x, y, m, a, b, c) → h(y, y, m, ap(m, b), b, c). As long as
such an applicative notation is only used for the representation of types, this does not yield problems for
automated termination proofs, because then ap is not a defined symbol (i.e., there is no rule or dependency
pair with ap at the root position of the left-hand side).
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Fig. 12. Renamed termination graph for “max”.

the type decreases in the DP path A, C, E, F. This becomes clear when considering the
corresponding renamed termination graph in Figure 12. From this renamed graph, we
obtain the DP problem with the following dependency pair.

f(Maybe(b)) → f(b)

Since we have encoded types as extra arguments, finiteness of this DP problem is easy
to show automatically.

7. EXPERIMENTS

We implemented our technique in the automated termination prover AProVE [Giesl
et al. 2006b]. The implementation accepts the full Haskell 98 language defined in
Peyton Jones [2003]. However, we do not handle extensions like quantified types that
are available in several implementations of Haskell. Our goal was to make all recent
advances in automated termination analysis of term rewriting applicable for termi-
nation analysis of Haskell. The power of termination tools is compared at the annual
International Termination Competition and AProVE has been the most powerful sys-
tem for automated termination analysis of term rewriting in all these competitions
so far. Therefore, to solve the DP problems resulting from Haskell programs, in our
implementation we apply the termination techniques and the strategy used by AProVE
in the most recent competition 2009.

A main application of automated termination analysis in practice is to prove termi-
nation of as many auxiliary functions as possible. In contrast, the “main” function in a
program is often nonterminating. For example, this main function may read input from
the user repeatedly and it only terminates if the user explicitly “quits” the program.
But it is important that most of the auxiliary functions used by this main function are
terminating. Therefore, to assess the power of our method, we evaluated our implemen-
tation with the standard libraries FiniteMap, List, Monad, Prelude, and Queue from the
distribution of the popular Haskell interpreter Hugs [Jones and Peterson 1999]. These
are indeed typical auxiliary functions that are used in many real Haskell applications.
As described in Section 6.1, we supplied implementations for primitive functions like
primPlusInt, primMulFloat, . . . that are declared but not implemented in the Hugs pre-
lude. Moreover, we also wanted to evaluate the effects of the renaming improvement
in Section 5. Therefore, in addition to the full version of AProVE that contains all con-
tributions of the current article, we also tested a version (called AProVEPLAIN) where
we ignored the results of Section 5. Since some of AProVE’s termination techniques
are only applicable for proving innermost termination, they could not be used in the
variant AProVEPLAIN.

We ran AProVE and AProVEPLAIN on a test corpus consisting of 1272 examples. Here,
we tried to prove H-termination of every exported function in the preceding Hugs
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libraries. For each such function, we first attempted a termination proof for its “most
general” version. Moreover, whenever the most general type of a function had a class
context “C a”, then we also tried termination proofs for all versions of the function
where the type variable a was instantiated with an instance of the type class C. The
reason is that by considering all instances separately, we get a finer analysis for those
cases where the most general form of the function does not H-terminate (or cannot
be shown H-terminating), whereas the function can still be proved H-terminating for
certain instances.

The following table summarizes the results of our experimental evaluation. Each ter-
mination proof was performed with a time limit of 5 minutes. Here, YES indicates the
number of functions where proving H-termination succeeded. MAYBE gives the num-
ber of examples where the H-termination proof failed within 5 minutes and TIMEOUT
shows the number of functions where no proof could be found within the time limit. It
should be mentioned that it is impossible to prove H-termination for all 1272 examples,
since at least 49 of the functions are actually not H-terminating.

Version YES MAYBE TIMEOUT

AProVEPLAIN 717 (56.37 %) 104 (8.12 %) 451 (35.46 %)
AProVE 999 (78.54 %) 68 (5.35 %) 205 (16.12 %)

The table shows that our approach is indeed very powerful for analyzing the ter-
mination behavior of Haskell functions, in particular, of auxiliary functions used in
Haskell programs. Discounting the functions known to be not H-terminating, AProVE
can prove H-termination for 81.68 % of all functions in these libraries. The examples
where AProVE fails in proving H-termination are mostly functions on rational numbers,
IO functions, and several of those functions that require a special evaluation strategy
(due to the use of the “seq” operator). A MAYBE typically results from cases where
the resulting DP problems are not finite. (As illustrated in Example 4.12, due to the
incompleteness of our approach, this does not necessarily imply non-H-termination of
the original Haskell function). The results are similar to the results in the Termination
Competitions, where a shorter time limit of 1 minute was used. Indeed, 950 of the
999 successful termination proofs already succeed within 1 minute (and many of these
proofs need only a few seconds). So in fact, the time limit has no big impact on the
success rate, as long as one permits runtimes of at least 1 minute.

Moreover, the table also shows that AProVE is substantially more powerful than
AProVEPLAIN. In other words, the improvements of Section 5 lead to a significant increase
in power. Here, it is also interesting to investigate in which modules these gains in
power were achieved. The next table shows the numbers broken down according to the
modules.

Module Version YES MAYBE TIMEOUT

FiniteMap
AProVEPLAIN 116 (36.13 %) 16 (4.98 %) 189 (58.87 %)
AProVE 258 (80.37 %) 0 (0.00 %) 63 (19.62 %)

List
AProVEPLAIN 64 (36.78 %) 29 (16.66 %) 81 (46.55 %)
AProVE 168 (96.56 %) 4 (2.29 %) 2 (1.14 %)

Monad
AProVEPLAIN 68 (85.00 %) 11 (13.75 %) 1 (1.25 %)
AProVE 69 (86.25 %) 11 (13.75 %) 0 (0.00 %)

Prelude
AProVEPLAIN 464 (67.05 %) 48 (6.93 %) 180 (26.01 %)
AProVE 499 (72.10 %) 53 (7.65 %) 140 (20.23 %)

Queue
AProVEPLAIN 5 (100.00 %) 0 (0.00 %) 0 (0.00 %)
AProVE 5 (100.00 %) 0 (0.00 %) 0 (0.00 %)
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So in particular for the modules FiniteMap and List, the number of functions where
H-termination can be proved is more than doubled by the contributions of Section 5.
This is due to the high number of higher-order functions in these libraries. For these
functions, the better handling of higher-order terms by the renaming technique of Sec-
tion 5 is very advantageous. Furthermore, the gain is more than 5 % for the Prelude.
This is also due to the better handling of higher-order functions, but also due to the
fact that the renaming technique results in nonoverlapping DPs and rules. Therefore,
it suffices to prove only innermost termination. The techniques to prove finiteness of
DP problems for innermost rewriting are considerably more powerful than the corre-
sponding techniques for full rewriting.32

8. CONCLUSION

We presented a technique for automated termination analysis of Haskell which works
in three steps: First, it generates a termination graph for the given start term. Then it
extracts DP problems from the termination graph. Finally, one uses existing methods
from term rewriting to prove finiteness of these DP problems.

A preliminary version of parts of this article was already presented in Giesl et al.
[2006a]. However, the present article extends Giesl et al. [2006a] substantially.

(a) In Giesl et al. [2006a], Haskell terms with higher-order functions were converted
into applicative first-order terms for termination analysis. In contrast, in the cur-
rent article we presented a technique to rename the terms in termination graphs
which avoids the problems of applicative terms; see Section 5. Moreover, in this way
we can improve the handling of types and convert Haskell termination problems to
termination problems for innermost rewriting.

(b) In Giesl et al. [2006a], we only considered a restricted version of Haskell without
type classes. In contrast, in Section 6 of the current article, we extended our ap-
proach to deal with type classes and overloading. Moreover, in Giesl et al. [2006a]
we did not handle any predefined data types of Haskell, whereas we now included
such data types.

(c) In contrast to Giesl et al. [2006a], the online appendix of the present article acces-
sible in the ACM Digital Library, contains the full proofs for the theorems. We have
also included a detailed description of our experimental evaluation in Section 7.

Moreover, compared to Giesl et al. [2006a], several details were added and improved
throughout the article.

In this article, we have shown for the first time that termination techniques from
term rewriting are indeed suitable for termination analysis of an existing functional
programming language. Term rewriting techniques are also suitable for termination
analysis of other kinds of programming languages. In Schneider-Kamp et al. [2009,
2010], we recently adapted the dependency pair method in order to prove termination
of Prolog programs and in Otto et al. [2010] and Brockschmidt et al. [2010], it was
adapted to prove termination of Java Bytecode. While there have been impressive
recent results on automated termination analysis of imperative languages (e.g., Albert
et al. [2008], Berdine et al. [2006], Bradley et al. [2005], Chawdhary et al. [2008], Colon
and Sipma [2002], Cook et al. [2006], Podelski and Rybalchenko [2004a, 2004b], Spoto
et al. [2010], and Tiwari [2004]) the combination of these results with approaches based

32To access the implementation via a Web interface, for further information on our experiments, and for
further details of our method, we refer to:

http://aprove.informatik.rwth-aachen.de/eval/Haskell/
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on rewriting yields substantial improvements, in particular for programs operating on
user-defined data types.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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