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Cogrowth

Let G be a group with symmetric generating set S and Cayley
graph I'(G,S).

For each n € Z>q, let a, be the number of walks of length 2nin I
Equivalently, a, is the number of words w of length 2n over the
alphabet S which satisfy w = 1.

It is known that G is amenable if and only if

: _ 2
im /2, =[S[*.

The aim of this work is to compute as much of the cogrowth series
of Thompson's group as we can, then analyse the sequence to
determine whether Thompson's group F seems to be amenable.
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We compute the first 100 terms as, ap, ..., aigo in the cogrowth
sequence for the lamplighter group.
If the sequence aj, as, ... behaves like a, ~ " n8, then the ratios

fn = an+1/an will behave like

rp~ U+ —
n

This means that if we plot the ratios against % the graph will be
roughly linear.
This is the case for nice groups such as Z*.
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The curvature in that graph suggests that there is some stretched
exponential term, so
an ~ u"k" n8,

where Kk < 1 and o < 1.
In this case the ratios r, = ap+1/an behave like

o log k

n ~ [t nl—O’

This means that if we plot the ratios against nl%(, the graph will
be roughly linear.
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From the linearity of this graph we can see that o = %

Extrapolating the line, we see that the ratios will converge to
w=9.

This implies that the lamplighter group is amenable.

This, and the detected value of o agree precisely with known
results about the cogrowth of the lamplighter group.

We did the same analysis for the Baumslag-Solitar group BS(1,2),
and it is equally straight forward to detect the behaviour of the
cogrowth sequence.
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We compute the first 275 terms of the cogrowth series a;, ap, . . .
for the group Z Z.

As with the lamplighter group, we plot the ratios against rﬂ%" for
different value of o:
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Now we construct modified ratios of ratios to eliminate the
O(1/n?) term:

1 1
r,(,2) _ ”25& ) — (n— 1)2r£—)1 14 (0 —1)logk

on 1 o + o(l/nz).

Then the plot of log(r\?) — 1) against log(n) should be linear, with

gradient o — 2.
Taking the local gradients of this plot gives us an estimate of o — 2
for each value of n, so we plot these estimates against 1/n.
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This suggests a value of 0 — 2 which is about —1.61, though it is
not clear.

The reason for this difficult is that our assumption about the
growth is wrong, it is actually known that the streched exponential
term is actually " (lo8 3.

Including this in our analysis, we get

c1(log n)?/3 1
———— 40| 5———73 |-
T n2=2(log n)1/3

2/3 term in our estimates of o — 2, we get a

Including the (log n)
new plot:
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Clearly the estimates of o — 2 are converging to about —1.66, so

we can guess that o = %

Now, assuming that

2~ Mnﬁnl/?’(log n)?/3 ng
n )
we get
log r(log n)?/3 2log k g
= 1 = 1 .
n = 4 < + a2/ + 30273 (log n)1/? +oF o(1/n)

then, by taking successive triples r,, rp11, ra+2 and ignoring the
o(1/n) term, we can (approximately) solve for u, plogk and pug.
We show the plots of the esimates for each value of n:
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We clearly see from this that i = 16, so Z 1 Z is amenable.
We also get i log k ~ —26.7 and pug ~ 10, so k ~ 0.19 and g ~ 3.
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We computed the first 32 terms of the cogrowth series ty, t1, . ..
for Thompson's group F.

| might describe the algorithm a bit at the end...

We use the method of differential approximants to estimate the
next 100 terms before analysing the sequence further.
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Differential approximants
This is a summary of the method for approximately extending the
series:
> Let F(x) = to + tix + tox? + ...
> Choose a random sequence of positive integers
L, M,do,...,dy which sum to 31 (where M =2 or 3 and no
two values of d; differ by more than 2).
» Calculate the unique polynomials P, Qo, Q1, ..., Qum (up to
scaling) of degrees L, M, dp, ..., dy such that the first 32
coefficients of

P(x) — 2:: Qu(x) <X % ) k F(x)

are all 0.
» Approximate F by the solution F of

kZMO Q) (x5 ) " F0 - P00
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Differential approximants

» Repeat the steps on the previous slide for every possible
sequence P, Qqp, Q1, ..., Qu to obtain many approximations F

» For each ratio r, = t,4+1/t, we get a range of approximations,
which give us an expected value (given by the mean of most
of the approximation) and error estimate (given by the
standard deviation of the approximations).

Surprisingly, these estimates generally seem to be very accurate.
We give the equivalent result for Z{ Z to justify this method:
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Using only the terms for n < 31, we approximate the next 80
ratios. The left column gives the actual error of this
approximation, and the right column give the estimated error.

n Actual error 1 standard deviation
1 269x10°Y 2.02 x 10717
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Differential approximant results for Z 7Z.

Using only the terms for n < 31, we approximate the next 80
ratios. The left column gives the actual error of this
approximation, and the right column give the estimated error.

n Actual error 1 standard deviation
1 269x10°Y 2.02 x 10717

5 1.14x10°13 7.85 x 10714
10 337 x10° 11 2.08 x 10711
20 2.22x10°8 1.23 x 108
30 9.63x 1077 5.39 x 10~ 7
40 1.22x10°° 6.88 x 107°
50 7.59 x 107° 473 x 107°
60 3.13x 1074 223 x 1074
70 9.39 x107* 8.11 x 10~
80 2.44 x 1073 2.44 x 1073

The actual error is consistently less than twice the estimate error.



Differential approximant results for Thompson's group F.

Using only the terms for n < 31, we approximate the next 100
ratios. The left column gives the estimated value and right column
give the estimated error.

n Estimated term 1 standard deviation
1 12.1393 4.47 x 10~20
10 12.3773 3.76 x 10714
20 12.5722 2.43 x 1079
30 12.7224 1.25 x 10~8
40 12.8433 2.02 x 10~
50 12.9437 1.85 x 1079
60 13.02893 1.11 x 1079
80 13.16718 2.19 x 107°

100 13.2756 2.17 x 104
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As we did for Zy 1 Z and Z 7Z, we plot all 132 ratios against nl%"
for different values of o
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Again, none of these graphs are linear, so if
(o
an ~ u"k" né,

then we do not have a clear value for o.

To estimate the value of o, we take modified ratios of ratios r,(,2)
as we did for Z ! Z, then take the local gradients of the graph of
Iog(r,(,z) — 1) against log(n) to estimate o — 2.

This analysis amplifies any inaccuracy in the terms, so we only use
n <75.
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This suggests a value of ¢ — 2 which is about —1.5, or perhaps
—1.4.

If we assume instead that the terms behave like
o 1/2
t ~ Mnﬂn (log n)/ ng7

then we get the following estimates of o
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These estimates also seem to be converging to about
0 —2 = —1.5, so our best guess is 0 = %
Now, assuming that

1/2 c
t, N,unlin (log n) ng,

we get

B log x(log n)© clogk g
rn = 4 <1 + T + 72(log n)1—< +o o(1/n) | .

then, for a fixed value of ¢, by taking successive triples

Iy Int1, fnt-2 and ignoring the o(1/n) term, we can
(approximately) solve for p, plogk and u/g.

We show the plots of the esimates for ¢ = 0, and varying n:
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This suggests that p ~ 14.8.
We also get plogx ~ —15 and ug ~ 15, so k ~ 0.37 and g =~ 1.
This makes it possible that the exact growth rate is

tn ~ pu" exp(—n'/?)n.

For other values of ¢ we get similar values of y, all well below 16,
which would be needed for amenability.
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Some rigourous analysis

so, for any o,k < 1, the following is true for all sufficiently large n:

t, < 16"k" .

This is obvious if Thompson's group is not amenable. If
thompson's group is amenable, then this is quite surprising since
then it does not hold for o = 1.

In fact, it follows that if Thompson's group is amenable, then our
earlier estimates of o — 2 for Thompson's group must converge to
-1, if they converge to anything.
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Analysis of Thompson's group F

For one final test, we look at the the ratio of the nth ratio r, for
Thompson's group over the nth ratio s, for the group Z 1 Z.
Since the ratios s, converge to 16, Thompson's group F is
amenable if and only if this ratio r,/s, converges to 1.

We plot these ratios against 1/n:
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Based on this analysis, it seems highly unlikely that Thompson's
group is amenable.
Further questions:

» How does the cogrowth sequence for Thompson's group really
behave? The conclusion that Thompson's group is not
amenable would be somewhat more convincing if we could
confidently say exactly how the cogrowth sequence really is
behaving.

» Can we get more confident about this by using our methods in
conjuction with methods for approximating a lot more of the
coefficients?
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Computing the number of loops of each length in
Thompson's group

The first part of the algorithm is exactly the same as what
Haagerup, Haagerup and Ramirez-Solano did:

For each vertex v in the Cayley graph I'(F,S), let p,(v) be the
number of paths of length n between the identity and v in T.

Each loop of length 2n can be seen as two paths of length n to the
same vertex, so the number of loops of length 2n is equal to the
sum of the squares p,(v)? over all vertices v in T.

So, during the algorithm we calculate the number p,(v) of paths
to each vertex v within the ball of radius n.
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Computing the number of loops of each length in
Thompson's group

One way to compute each pp(v) is to first compute p,_1(u) for
each vertex u in the ball of radius u, then calculate each p,(v)
using those terms. Unfortunately, this becomes essentially
impossible for n > 24 due to memory usage.

Instead, we choose k = n/2, and compute px(u) and p,_x(u) for
each vertex u.

Then to compute p,(v) we sum the values of py(u)pp_x(u=1v) for
each vertex u which is in the ball of radius k and such that u~tv is
in the ball of radius n — k.

For large n, there are on average only about 8 such vertices v, so
the algorithm will be reasonably fast as long as we can quickly find
all of these vertices u for each v.
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First, construct a subtree T, of the ball of radius k in I, such that
each vertex except for the identity in T is connected to exactly one
vertex which is closer to the identity in I

Given a vertex v, to find vertices u such that v and u~1v are in
the balls of radius k and n — k, respectively, we do the following:
Do a depth-first seach of Ty, to find vertices u, except that if we
are at a vertex x such that |x| + |x“1v| > n, then it is impossible
for any descendant of x to be a relevant vertex u, so we don't
traverse them at all.



Computing the number of loops of each length in
Thompson's group

First, construct a subtree T, of the ball of radius k in I, such that
each vertex except for the identity in T is connected to exactly one
vertex which is closer to the identity in I

Given a vertex v, to find vertices u such that v and u~1v are in
the balls of radius k and n — k, respectively, we do the following:
Do a depth-first seach of Ty, to find vertices u, except that if we
are at a vertex x such that |x| 4+ |x~1v| > n, then it is impossible
for any descendant of x to be a relevant vertex u, so we don't
traverse them at all.

This algorithm parallelises very easily, so we ran it on the University
of Melbourne’s new high performance computer, Spartan. to
calculate t31, it ran for about two weeks on about 150 cores.



Thank you



