Thompson's Group is Probably **NOT** Amenable

Andrew Elvey Price

Joint work with Tony Guttmann

University of Melbourne

2016

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let G be a group with symmetric generating set S and Cayley graph $\Gamma(G, S)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let G be a group with symmetric generating set S and Cayley graph $\Gamma(G, S)$. For each $n \in \mathbb{Z}_{\geq 0}$, let a_n be the number of walks of length 2n in Γ .

Let G be a group with symmetric generating set S and Cayley graph $\Gamma(G, S)$. For each $n \in \mathbb{Z}_{\geq 0}$, let a_n be the number of walks of length 2n in Γ . Equivalently, a_n is the number of words w of length 2n over the alphabet S which satisfy $\overline{w} = 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let G be a group with symmetric generating set S and Cayley graph $\Gamma(G, S)$. For each $n \in \mathbb{Z}_{\geq 0}$, let a_n be the number of walks of length 2n in Γ . Equivalently, a_n is the number of words w of length 2n over the alphabet S which satisfy $\overline{w} = 1$. It is known that G is amenable if and only if

$$\lim_{n\to\infty}\sqrt[n]{a_n}=|S|^2.$$

Let G be a group with symmetric generating set S and Cayley graph $\Gamma(G, S)$. For each $n \in \mathbb{Z}_{\geq 0}$, let a_n be the number of walks of length 2n in Γ . Equivalently, a_n is the number of words w of length 2n over the alphabet S which satisfy $\overline{w} = 1$. It is known that G is amenable if and only if

$$\lim_{n\to\infty}\sqrt[n]{a_n}=|S|^2.$$

The aim of this work is to compute as much of the cogrowth series of Thompson's group as we can, then analyse the sequence to determine whether Thompson's group F seems to be amenable.

We compute the first 100 terms $a_1, a_2, \ldots, a_{100}$ in the cogrowth sequence for the lamplighter group.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We compute the first 100 terms $a_1, a_2, \ldots, a_{100}$ in the cogrowth sequence for the lamplighter group. If the sequence a_1, a_2, \ldots behaves like $a_n \sim \mu^n n^g$, then the ratios

 $r_n = a_{n+1}/a_n$ will behave like

$$r_n \sim \mu + rac{\mu g}{n}$$

We compute the first 100 terms $a_1, a_2, \ldots, a_{100}$ in the cogrowth sequence for the lamplighter group. If the sequence a_1, a_2, \ldots behaves like $a_n \sim \mu^n n^g$, then the ratios $r_n = a_{n+1}/a_n$ will behave like

$$r_n \sim \mu + \frac{\mu g}{n}$$

This means that if we plot the ratios against $\frac{1}{n}$ the graph will be roughly linear.

We compute the first 100 terms $a_1, a_2, \ldots, a_{100}$ in the cogrowth sequence for the lamplighter group. If the sequence a_1, a_2, \ldots behaves like $a_n \sim \mu^n n^g$, then the ratios

 $r_n = a_{n+1}/a_n$ will behave like

$$r_n \sim \mu + \frac{\mu g}{n}$$

This means that if we plot the ratios against $\frac{1}{n}$ the graph will be roughly linear.

This is the case for nice groups such as \mathbb{Z}^k .

Analysis of the lamplighter group $\mathbb{Z}_2 \wr \mathbb{Z}$

The curvature in that graph suggests that there is some stretched exponential term, so

$$a_n \sim \mu^n \kappa^{n^\sigma} n^g$$
,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $\kappa < 1$ and $\sigma < 1$.

The curvature in that graph suggests that there is some stretched exponential term, so

$$a_n \sim \mu^n \kappa^{n^\sigma} n^g$$

where $\kappa < 1$ and $\sigma < 1$.

In this case the ratios $r_n = a_{n+1}/a_n$ behave like

$$r_n \sim \mu + \frac{\mu \sigma \log \kappa}{n^{1-\sigma}}$$

The curvature in that graph suggests that there is some stretched exponential term, so

$$a_n \sim \mu^n \kappa^{n^\sigma} n^g,$$

where $\kappa < 1$ and $\sigma < 1$. In this case the ratios $r_n = a_{n+1}/a_n$ behave like

$$r_n \sim \mu + rac{\mu\sigma\log\kappa}{n^{1-\sigma}}$$

This means that if we plot the ratios against $\frac{1}{n^{1-\sigma}}$ the graph will be roughly linear.

Analysis of the lamplighter group $\mathbb{Z}_2 \wr \mathbb{Z}$

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト ● ④ ● ●

From the linearity of this graph we can see that $\sigma = \frac{1}{3}$. Extrapolating the line, we see that the ratios will converge to $\mu = 9$.

From the linearity of this graph we can see that $\sigma = \frac{1}{3}$. Extrapolating the line, we see that the ratios will converge to $\mu = 9$. This implies that the lamplighter group is amenable.

From the linearity of this graph we can see that $\sigma = \frac{1}{3}$. Extrapolating the line, we see that the ratios will converge to $\mu = 9$.

This implies that the lamplighter group is amenable.

This, and the detected value of σ agree precisely with known results about the cogrowth of the lamplighter group.

From the linearity of this graph we can see that $\sigma = \frac{1}{3}$. Extrapolating the line, we see that the ratios will converge to $\mu = 9$.

This implies that the lamplighter group is amenable.

This, and the detected value of σ agree precisely with known results about the cogrowth of the lamplighter group.

We did the same analysis for the Baumslag-Solitar group BS(1,2), and it is equally straight forward to detect the behaviour of the cogrowth sequence.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

We compute the first 275 terms of the cogrowth series $a_1, a_2, ...$ for the group $\mathbb{Z} \wr \mathbb{Z}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We compute the first 275 terms of the cogrowth series a_1, a_2, \ldots for the group $\mathbb{Z} \wr \mathbb{Z}$. As with the lamplighter group, we plot the ratios against $\frac{1}{n^{1-\sigma}}$ for different value of σ :

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Analysis of the group $\mathbb{Z}\wr\mathbb{Z}$

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Analysis of the group $\mathbb{Z}\wr\mathbb{Z}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Since the graph of the ratios plotted against $1/\sqrt{n}$ is convex and the graph against $1/n^{2/3}$ is concave, we might guess that

$$a_n \sim \mu^n \kappa^{n^\sigma} n^g,$$

for some $\sigma \in (1/2, 2/3)$.

Since the graph of the ratios plotted against $1/\sqrt{n}$ is convex and the graph against $1/n^{2/3}$ is concave, we might guess that

$$a_n \sim \mu^n \kappa^{n^\sigma} n^g$$

for some $\sigma \in (1/2, 2/3)$. To estimate the value of σ , we take ratios of successive ratios $r_n^{(1)} = \frac{r_n}{r_{n-1}}$. Then these should behave as

$$r_n^{(1)} = 1 - \frac{(\sigma - 1)\log \kappa}{n^{2-\sigma}} + O(1/n^2).$$

Since the graph of the ratios plotted against $1/\sqrt{n}$ is convex and the graph against $1/n^{2/3}$ is concave, we might guess that

$$a_n \sim \mu^n \kappa^{n^\sigma} n^g$$

for some $\sigma \in (1/2, 2/3)$. To estimate the value of σ , we take ratios of successive ratios $r_n^{(1)} = \frac{r_n}{r_{n-1}}$. Then these should behave as

$$r_n^{(1)} = 1 - \frac{(\sigma - 1)\log \kappa}{n^{2-\sigma}} + O(1/n^2).$$

Now we construct modified ratios of ratios to eliminate the $O(1/n^2)$ term:

$$r_n^{(2)} = \frac{n^2 r_n^{(1)} - (n-1)^2 r_{n-1}^{(1)}}{2n-1} = 1 + \frac{(\sigma-1)\log\kappa}{n^{2-\sigma}} + o(1/n^2).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Now we construct modified ratios of ratios to eliminate the $O(1/n^2)$ term:

$$r_n^{(2)} = \frac{n^2 r_n^{(1)} - (n-1)^2 r_{n-1}^{(1)}}{2n-1} = 1 + \frac{(\sigma-1)\log\kappa}{n^{2-\sigma}} + o(1/n^2).$$

Then the plot of $\log(r_n^{(2)} - 1)$ against $\log(n)$ should be linear, with gradient $\sigma - 2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Now we construct modified ratios of ratios to eliminate the $O(1/n^2)$ term:

$$r_n^{(2)} = \frac{n^2 r_n^{(1)} - (n-1)^2 r_{n-1}^{(1)}}{2n-1} = 1 + \frac{(\sigma-1)\log\kappa}{n^{2-\sigma}} + o(1/n^2).$$

Then the plot of $\log(r_n^{(2)} - 1)$ against $\log(n)$ should be linear, with gradient $\sigma - 2$.

Taking the local gradients of this plot gives us an estimate of $\sigma - 2$ for each value of *n*, so we plot these estimates against 1/n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

This suggests a value of $\sigma - 2$ which is about -1.61, though it is not clear.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

This suggests a value of $\sigma - 2$ which is about -1.61, though it is not clear.

The reason for this difficult is that our assumption about the growth is wrong, it is actually known that the streched exponential term is actually $\kappa^{n^{\sigma}(\log n)^{2/3}}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This suggests a value of $\sigma - 2$ which is about -1.61, though it is not clear.

The reason for this difficult is that our assumption about the growth is wrong, it is actually known that the streched exponential term is actually $\kappa^{n^{\sigma}(\log n)^{2/3}}$. Including this in our analysis, we get

$$r_n^{(2)} = 1 + \frac{c_1(\log n)^{2/3}}{n^{2-\sigma}} + O\left(\frac{1}{n^{2-\sigma}(\log n)^{1/3}}\right)$$

Including the $(\log n)^{2/3}$ term in our estimates of $\sigma - 2$, we get a new plot:
Analysis of The group $\mathbb{Z} \wr \mathbb{Z}$

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト → 臣 → の � @

Clearly the estimates of $\sigma-2$ are converging to about -1.66, so we can guess that $\sigma=\frac{1}{3}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Clearly the estimates of $\sigma-2$ are converging to about -1.66, so we can guess that $\sigma=\frac{1}{3}.$ Now, assuming that

$$a_n \sim \mu^n \kappa^{n^{1/3} (\log n)^{2/3}} n^g,$$

we get

$$r_n = \mu \left(1 + \frac{\log \kappa (\log n)^{2/3}}{3n^{2/3}} + \frac{2\log \kappa}{3n^{2/3} (\log n)^{1/3}} + \frac{g}{n} + o(1/n) \right).$$

Clearly the estimates of σ – 2 are converging to about –1.66, so we can guess that $\sigma = \frac{1}{3}$. Now, assuming that

$$a_n \sim \mu^n \kappa^{n^{1/3} (\log n)^{2/3}} n^g,$$

we get

$$r_n = \mu \left(1 + \frac{\log \kappa (\log n)^{2/3}}{3n^{2/3}} + \frac{2\log \kappa}{3n^{2/3} (\log n)^{1/3}} + \frac{g}{n} + o(1/n) \right).$$

then, by taking successive triples r_n, r_{n+1}, r_{n+2} and ignoring the o(1/n) term, we can (approximately) solve for μ , $\mu \log \kappa$ and μg .

Clearly the estimates of σ – 2 are converging to about –1.66, so we can guess that $\sigma = \frac{1}{3}$. Now, assuming that

$$a_n \sim \mu^n \kappa^{n^{1/3} (\log n)^{2/3}} n^g,$$

we get

$$r_n = \mu \left(1 + \frac{\log \kappa (\log n)^{2/3}}{3n^{2/3}} + \frac{2\log \kappa}{3n^{2/3} (\log n)^{1/3}} + \frac{g}{n} + o(1/n) \right).$$

then, by taking successive triples r_n, r_{n+1}, r_{n+2} and ignoring the o(1/n) term, we can (approximately) solve for μ , $\mu \log \kappa$ and μg . We show the plots of the esimates for each value of n:

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

Analysis of The group $\mathbb{Z} \wr \mathbb{Z}$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

We clearly see from this that $\mu = 16$, so $\mathbb{Z} \wr \mathbb{Z}$ is amenable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We clearly see from this that $\mu = 16$, so $\mathbb{Z} \wr \mathbb{Z}$ is amenable. We also get $\mu \log \kappa \approx -26.7$ and $\mu g \approx 10$, so $\kappa \approx 0.19$ and $g \approx \frac{5}{8}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We computed the first 32 terms of the cogrowth series t_0, t_1, \ldots for Thompson's group *F*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

We computed the first 32 terms of the cogrowth series t_0, t_1, \ldots for Thompson's group *F*. I might describe the algorithm a bit at the end...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We computed the first 32 terms of the cogrowth series t_0, t_1, \ldots for Thompson's group F.

I might describe the algorithm a bit at the end...

We use the method of differential approximants to estimate the next 100 terms before analysing the sequence further.

This is a summary of the method for approximately extending the series:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Let
$$F(x) = t_0 + t_1 x + t_2 x^2 + \dots$$

This is a summary of the method for approximately extending the series:

- Let $F(x) = t_0 + t_1 x + t_2 x^2 + \dots$
- Choose a random sequence of positive integers L, M, d₀, ..., d_M which sum to 31 (where M = 2 or 3 and no two values of d_i differ by more than 2).

This is a summary of the method for approximately extending the series:

- Let $F(x) = t_0 + t_1 x + t_2 x^2 + \dots$
- Choose a random sequence of positive integers L, M, d₀,..., d_M which sum to 31 (where M = 2 or 3 and no two values of d_i differ by more than 2).
- ► Calculate the unique polynomials P, Q₀, Q₁,..., Q_M (up to scaling) of degrees L, M, d₀,..., d_M such that the first 32 coefficients of

$$P(x) - \sum_{k=0}^{M} Q_k(x) \left(x \frac{d}{dx}\right)^k F(x)$$

(日) (同) (三) (三) (三) (○) (○)

are all 0.

This is a summary of the method for approximately extending the series:

• Let
$$F(x) = t_0 + t_1 x + t_2 x^2 + \dots$$

- Choose a random sequence of positive integers L, M, d₀,..., d_M which sum to 31 (where M = 2 or 3 and no two values of d_i differ by more than 2).
- ► Calculate the unique polynomials P, Q₀, Q₁,..., Q_M (up to scaling) of degrees L, M, d₀,..., d_M such that the first 32 coefficients of

$$P(x) - \sum_{k=0}^{M} Q_k(x) \left(x \frac{d}{dx} \right)^k F(x)$$

are all 0.

• Approximate F by the solution \tilde{F} of

$$\sum_{k=0}^{M} Q_k(x) \left(x \frac{d}{dx} \right)^k \tilde{F}(x) = P(x)$$

 Repeat the steps on the previous slide for every possible sequence P, Q₀, Q₁,..., Q_M to obtain many approximations F

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Repeat the steps on the previous slide for every possible sequence P, Q₀, Q₁,..., Q_M to obtain many approximations *F*
- ► For each ratio r_n = t_{n+1}/t_n we get a range of approximations, which give us an expected value (given by the mean of most of the approximation) and error estimate (given by the standard deviation of the approximations).

- Repeat the steps on the previous slide for every possible sequence P, Q₀, Q₁,..., Q_M to obtain many approximations F
- ► For each ratio r_n = t_{n+1}/t_n we get a range of approximations, which give us an expected value (given by the mean of most of the approximation) and error estimate (given by the standard deviation of the approximations).

Surprisingly, these estimates generally seem to be very accurate. We give the equivalent result for $\mathbb{Z} \wr \mathbb{Z}$ to justify this method:

Differential approximant results for $\mathbb{Z} \wr \mathbb{Z}$.

Using only the terms for $n \le 31$, we approximate the next 80 ratios. The left column gives the actual error of this approximation, and the right column give the estimated error.

n	Actual error	1 standard deviation
1	$2.69 imes10^{-17}$	$2.02 imes10^{-17}$
5	$1.14 imes10^{-13}$	$7.85 imes10^{-14}$
10	$3.37 imes10^{-11}$	$2.08 imes10^{-11}$
20	$2.22 imes 10^{-8}$	$1.23 imes10^{-8}$
30	$9.63 imes10^{-7}$	$5.39 imes10^{-7}$
40	$1.22 imes 10^{-5}$	$6.88 imes10^{-6}$
50	$7.59 imes10^{-5}$	$4.73 imes10^{-5}$
60	$3.13 imes10^{-4}$	$2.23 imes10^{-4}$
70	$9.39 imes10^{-4}$	$8.11 imes10^{-4}$
80	$2.44 imes10^{-3}$	$2.44 imes10^{-3}$

Differential approximant results for $\mathbb{Z} \wr \mathbb{Z}$.

Using only the terms for $n \leq 31$, we approximate the next 80 ratios. The left column gives the actual error of this approximation, and the right column give the estimated error.

-		
n	Actual error	1 standard deviation
1	$2.69 imes10^{-17}$	$2.02 imes10^{-17}$
5	$1.14 imes10^{-13}$	$7.85 imes10^{-14}$
10	$3.37 imes10^{-11}$	$2.08 imes10^{-11}$
20	$2.22 imes 10^{-8}$	$1.23 imes10^{-8}$
30	$9.63 imes10^{-7}$	$5.39 imes10^{-7}$
40	$1.22 imes 10^{-5}$	$6.88 imes10^{-6}$
50	$7.59 imes10^{-5}$	$4.73 imes10^{-5}$
60	$3.13 imes10^{-4}$	$2.23 imes10^{-4}$
70	$9.39 imes10^{-4}$	$8.11 imes10^{-4}$
80	$2.44 imes10^{-3}$	$2.44 imes10^{-3}$

The actual error is consistently less than twice the estimate error.

Differential approximant results for Thompson's group F.

Using only the terms for $n \le 31$, we approximate the next 100 ratios. The left column gives the estimated value and right column give the estimated error.

n	Estimated term	1 standard deviation
1	12.1393	$4.47 imes10^{-20}$
10	12.3773	$3.76 imes10^{-14}$
20	12.5722	$2.43 imes10^{-9}$
30	12.7224	$1.25 imes10^{-8}$
40	12.8433	$2.02 imes10^{-7}$
50	12.9437	$1.85 imes10^{-6}$
60	13.02893	$1.11 imes 10^{-6}$
80	13.16718	$2.19 imes10^{-5}$
100	13.2756	$2.17 imes10^{-4}$

As we did for $\mathbb{Z}_2 \wr \mathbb{Z}$ and $\mathbb{Z} \wr \mathbb{Z}$, we plot all 132 ratios against $\frac{1}{n^{1-\sigma}}$ for different values of σ :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト ● ④ ● ●

Again, none of these graphs are linear, so if

$$a_n \sim \mu^n \kappa^{n^\sigma} n^g$$
,

then we do not have a clear value for σ .

To estimate the value of σ , we take modified ratios of ratios $r_n^{(2)}$, as we did for $\mathbb{Z} \wr \mathbb{Z}$, then take the local gradients of the graph of $\log(r_n^{(2)} - 1)$ against $\log(n)$ to estimate $\sigma - 2$. This analysis amplifies any inaccuracy in the terms, so we only use $n \le 75$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

This suggests a value of $\sigma - 2$ which is about -1.5, or perhaps -1.4.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

This suggests a value of $\sigma - 2$ which is about -1.5, or perhaps -1.4.

If we assume instead that the terms behave like

$$t_n \sim \mu^n \kappa^{n^\sigma (\log n)^{1/2}} n^g$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

then we get the following estimates of σ :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

These estimates also seem to be converging to about $\sigma - 2 = -1.5$, so our best guess is $\sigma = \frac{1}{2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

These estimates also seem to be converging to about $\sigma - 2 = -1.5$, so our best guess is $\sigma = \frac{1}{2}$. Now, assuming that

$$t_n \sim \mu^n \kappa^{n^{1/2} (\log n)^c} n^g,$$

we get

$$r_n = \mu \left(1 + \frac{\log \kappa (\log n)^c}{2n^{1/2}} + \frac{c \log \kappa}{n^{1/2} (\log n)^{1-c}} + \frac{g}{n} + o(1/n) \right).$$
These estimates also seem to be converging to about $\sigma - 2 = -1.5$, so our best guess is $\sigma = \frac{1}{2}$. Now, assuming that

$$t_n \sim \mu^n \kappa^{n^{1/2} (\log n)^c} n^g,$$

we get

$$r_n = \mu \left(1 + \frac{\log \kappa (\log n)^c}{2n^{1/2}} + \frac{c \log \kappa}{n^{1/2} (\log n)^{1-c}} + \frac{g}{n} + o(1/n) \right).$$

then, for a fixed value of c, by taking successive triples r_n, r_{n+1}, r_{n+2} and ignoring the o(1/n) term, we can (approximately) solve for μ , $\mu \log \kappa$ and μ/g .

These estimates also seem to be converging to about $\sigma - 2 = -1.5$, so our best guess is $\sigma = \frac{1}{2}$. Now, assuming that

$$t_n \sim \mu^n \kappa^{n^{1/2} (\log n)^c} n^g,$$

we get

$$r_n = \mu \left(1 + \frac{\log \kappa (\log n)^c}{2n^{1/2}} + \frac{c \log \kappa}{n^{1/2} (\log n)^{1-c}} + \frac{g}{n} + o(1/n) \right).$$

then, for a fixed value of c, by taking successive triples r_n, r_{n+1}, r_{n+2} and ignoring the o(1/n) term, we can (approximately) solve for μ , $\mu \log \kappa$ and μ/g . We show the plots of the esimates for c = 0, and varying n:

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q ()

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

This suggests that $\mu \approx 14.8$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

This suggests that $\mu \approx 14.8$. We also get $\mu \log \kappa \approx -15$ and $\mu g \approx 15$, so $\kappa \approx 0.37$ and $g \approx 1$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

This suggests that $\mu \approx 14.8$. We also get $\mu \log \kappa \approx -15$ and $\mu g \approx 15$, so $\kappa \approx 0.37$ and $g \approx 1$. This makes it possible that the exact growth rate is

$$t_n \sim \mu^n \exp(-n^{1/2})n.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This suggests that $\mu \approx 14.8$. We also get $\mu \log \kappa \approx -15$ and $\mu g \approx 15$, so $\kappa \approx 0.37$ and $g \approx 1$. This makes it possible that the exact growth rate is

$$t_n \sim \mu^n \exp(-n^{1/2})n.$$

For other values of c we get similar values of μ , all well below 16, which would be needed for amenability.

<ロト (個) (目) (目) (目) (0) (0)</p>

Given a group G and generating set S, for each n, let $\phi_n(G,S) = t_n/|S|^{2n}$. This is the probability that a random walk on of length 2n on the Cayley graph of G ends at the identity.

Given a group G and generating set S, for each n, let $\phi_n(G, S) = t_n/|S|^{2n}$. This is the probability that a random walk on of length 2n on the Cayley graph of G ends at the identity. Pittet and Saloff-Coste proved that for $G_d = \mathbb{Z} \wr \mathbb{Z} \wr \ldots \wr \mathbb{Z}$, the sequence $\phi_n(G_d)$ grows approximately like

$$\exp\left(-n^{\frac{d-1}{d+1}}(\log n)^{\frac{2}{d+1}}\right),\,$$

where *d* is the number of copies of \mathbb{Z} in the product.

Given a group G and generating set S, for each n, let $\phi_n(G, S) = t_n/|S|^{2n}$. This is the probability that a random walk on of length 2n on the Cayley graph of G ends at the identity. Pittet and Saloff-Coste proved that for $G_d = \mathbb{Z} \wr \mathbb{Z} \wr \ldots \wr \mathbb{Z}$, the sequence $\phi_n(G_d)$ grows approximately like

$$\exp\left(-n^{\frac{d-1}{d+1}}(\log n)^{\frac{2}{d+1}}\right),\,$$

where *d* is the number of copies of \mathbb{Z} in the product.

They also proved that if A is a subgroup of B, then there is some $c \in \mathbb{Z}_{>0}$ such that $\phi_{cn}(B) \leq c\phi_n(A)$ for all n.

Given a group G and generating set S, for each n, let $\phi_n(G, S) = t_n/|S|^{2n}$. This is the probability that a random walk on of length 2n on the Cayley graph of G ends at the identity. Pittet and Saloff-Coste proved that for $G_d = \mathbb{Z} \wr \mathbb{Z} \wr \ldots \wr \mathbb{Z}$, the sequence $\phi_n(G_d)$ grows approximately like

$$\exp\left(-n^{\frac{d-1}{d+1}}(\log n)^{\frac{2}{d+1}}\right),\,$$

where *d* is the number of copies of \mathbb{Z} in the product.

They also proved that if A is a subgroup of B, then there is some $c \in \mathbb{Z}_{>0}$ such that $\phi_{cn}(B) \leq c\phi_n(A)$ for all n.

Since each G_d is a subgroup of Thompson's group F, the sequence $\phi_n(F)$ grows no faster than

$$\exp\left(-n^{\frac{d-1}{d+1}}(\log n)^{\frac{2}{d+1}}\right).$$

Given a group G and generating set S, for each n, let $\phi_n(G, S) = t_n/|S|^{2n}$. This is the probability that a random walk on of length 2n on the Cayley graph of G ends at the identity. Pittet and Saloff-Coste proved that for $G_d = \mathbb{Z} \wr \mathbb{Z} \wr \ldots \wr \mathbb{Z}$, the sequence $\phi_n(G_d)$ grows approximately like

$$\exp\left(-n^{\frac{d-1}{d+1}}(\log n)^{\frac{2}{d+1}}\right),\,$$

where *d* is the number of copies of \mathbb{Z} in the product.

They also proved that if A is a subgroup of B, then there is some $c \in \mathbb{Z}_{>0}$ such that $\phi_{cn}(B) \leq c\phi_n(A)$ for all n.

Since each G_d is a subgroup of Thompson's group F, the sequence $\phi_n(F)$ grows no faster than

$$\exp\left(-n^{\frac{d-1}{d+1}}(\log n)^{\frac{2}{d+1}}\right).$$

so, for any $\sigma,\kappa<1$, the following is true for all sufficiently large n:

 $t_n < 16^n \kappa^{n^{\sigma}}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

so, for any $\sigma, \kappa < 1$, the following is true for all sufficiently large *n*:

 $t_n < 16^n \kappa^{n^{\sigma}}$.

This is obvious if Thompson's group is not amenable. If thompson's group is amenable, then this is quite surprising since then it does not hold for $\sigma = 1$.

so, for any $\sigma, \kappa < 1$, the following is true for all sufficiently large *n*:

 $t_n < 16^n \kappa^{n^{\sigma}}$.

This is obvious if Thompson's group is not amenable. If thompson's group is amenable, then this is quite surprising since then it does not hold for $\sigma = 1$. In fact, it follows that if Thompson's group is amenable, then our earlier estimates of $\sigma - 2$ for Thompson's group must converge to

(日) (同) (三) (三) (三) (○) (○)

-1, if they converge to anything.

Estimates of σ for Thompson's group F

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

For one final test, we look at the the ratio of the *n*th ratio r_n for Thompson's group over the *n*th ratio s_n for the group $\mathbb{Z} \wr \mathbb{Z}$. Since the ratios s_n converge to 16, Thompson's group F is amenable if and only if this ratio r_n/s_n converges to 1. We plot these ratios against 1/n:

Comparison of Thompson's group F with $\mathbb{Z} \wr \mathbb{Z}$ using the 32 known terms

Comparison of Thompson's group F with $\mathbb{Z} \wr \mathbb{Z}$ using all 132 terms

Based on this analysis, it seems highly unlikely that Thompson's group is amenable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Based on this analysis, it seems highly unlikely that Thompson's group is amenable.

Further questions:

How does the cogrowth sequence for Thompson's group really behave? The conclusion that Thompson's group is not amenable would be somewhat more convincing if we could confidently say exactly how the cogrowth sequence really is behaving.

Based on this analysis, it seems highly unlikely that Thompson's group is amenable.

Further questions:

- How does the cogrowth sequence for Thompson's group really behave? The conclusion that Thompson's group is not amenable would be somewhat more convincing if we could confidently say exactly how the cogrowth sequence really is behaving.
- Can we get more confident about this by using our methods in conjuction with methods for approximating a lot more of the coefficients?

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 → 의식()~

The first part of the algorithm is exactly the same as what Haagerup, Haagerup and Ramirez-Solano did:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The first part of the algorithm is exactly the same as what Haagerup, Haagerup and Ramirez-Solano did: For each vertex v in the Cayley graph $\Gamma(F, S)$, let $p_n(v)$ be the number of paths of length n between the identity and v in Γ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The first part of the algorithm is exactly the same as what Haagerup, Haagerup and Ramirez-Solano did: For each vertex v in the Cayley graph $\Gamma(F, S)$, let $p_n(v)$ be the number of paths of length n between the identity and v in Γ . Each loop of length 2n can be seen as two paths of length n to the same vertex, so the number of loops of length 2n is equal to the sum of the squares $p_n(v)^2$ over all vertices v in Γ .

The first part of the algorithm is exactly the same as what Haagerup, Haagerup and Ramirez-Solano did: For each vertex v in the Cayley graph $\Gamma(F, S)$, let $p_n(v)$ be the number of paths of length n between the identity and v in Γ . Each loop of length 2n can be seen as two paths of length n to the same vertex, so the number of loops of length 2n is equal to the sum of the squares $p_n(v)^2$ over all vertices v in Γ . So, during the algorithm we calculate the number $p_n(v)$ of paths to each vertex v within the ball of radius n.

One way to compute each $p_n(v)$ is to first compute $p_{n-1}(u)$ for each vertex u in the ball of radius u, then calculate each $p_n(v)$ using those terms. Unfortunately, this becomes essentially impossible for n > 24 due to memory usage.

One way to compute each $p_n(v)$ is to first compute $p_{n-1}(u)$ for each vertex u in the ball of radius u, then calculate each $p_n(v)$ using those terms. Unfortunately, this becomes essentially impossible for n > 24 due to memory usage. Instead, we choose $k \approx n/2$ and compute $p_1(u)$ and $p_2(u)$ for

Instead, we choose $k \approx n/2$, and compute $p_k(u)$ and $p_{n-k}(u)$ for each vertex u.

One way to compute each $p_n(v)$ is to first compute $p_{n-1}(u)$ for each vertex u in the ball of radius u, then calculate each $p_n(v)$ using those terms. Unfortunately, this becomes essentially impossible for n > 24 due to memory usage.

Instead, we choose $k \approx n/2$, and compute $p_k(u)$ and $p_{n-k}(u)$ for each vertex u.

Then to compute $p_n(v)$ we sum the values of $p_k(u)p_{n-k}(u^{-1}v)$ for each vertex u which is in the ball of radius k and such that $u^{-1}v$ is in the ball of radius n-k.

One way to compute each $p_n(v)$ is to first compute $p_{n-1}(u)$ for each vertex u in the ball of radius u, then calculate each $p_n(v)$ using those terms. Unfortunately, this becomes essentially impossible for n > 24 due to memory usage.

Instead, we choose $k \approx n/2$, and compute $p_k(u)$ and $p_{n-k}(u)$ for each vertex u.

Then to compute $p_n(v)$ we sum the values of $p_k(u)p_{n-k}(u^{-1}v)$ for each vertex u which is in the ball of radius k and such that $u^{-1}v$ is in the ball of radius n-k.

For large n, there are on average only about 8 such vertices u, so the algorithm will be reasonably fast as long as we can quickly find all of these vertices u for each v.

First, construct a subtree T_k of the ball of radius k in Γ , such that each vertex except for the identity in T is connected to exactly one vertex which is closer to the identity in Γ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

First, construct a subtree T_k of the ball of radius k in Γ , such that each vertex except for the identity in T is connected to exactly one vertex which is closer to the identity in Γ .

Given a vertex v, to find vertices u such that u and $u^{-1}v$ are in the balls of radius k and n - k, respectively, we do the following:
Computing the number of loops of each length in Thompson's group

First, construct a subtree T_k of the ball of radius k in Γ , such that each vertex except for the identity in T is connected to exactly one vertex which is closer to the identity in Γ .

Given a vertex v, to find vertices u such that u and $u^{-1}v$ are in the balls of radius k and n - k, respectively, we do the following: Do a depth-first seach of T_k , to find vertices u, except that if we are at a vertex x such that $|x| + |x^{-1}v| > n$, then it is impossible for any descendant of x to be a relevant vertex u, so we don't traverse them at all.

Computing the number of loops of each length in Thompson's group

First, construct a subtree T_k of the ball of radius k in Γ , such that each vertex except for the identity in T is connected to exactly one vertex which is closer to the identity in Γ .

Given a vertex v, to find vertices u such that u and $u^{-1}v$ are in the balls of radius k and n - k, respectively, we do the following: Do a depth-first seach of T_k , to find vertices u, except that if we are at a vertex x such that $|x| + |x^{-1}v| > n$, then it is impossible for any descendant of x to be a relevant vertex u, so we don't traverse them at all.

This algorithm parallelises very easily, so we ran it on the University of Melbourne's new high performance computer, Spartan. to calculate t_{31} , it ran for about two weeks on about 150 cores.

Thank you

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ≧ ∽のへで