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Cogrowth

Let G be a group with symmetric generating set S and Cayley
graph Γ(G , S).

For each n ∈ Z≥0, let an be the number of walks of length 2n in Γ.
Equivalently, an is the number of words w of length 2n over the
alphabet S which satisfy w = 1.
It is known that G is amenable if and only if

lim
n→∞

n
√
an = |S |2.

The aim of this work is to compute as much of the cogrowth series
of Thompson’s group as we can, then analyse the sequence to
determine whether Thompson’s group F seems to be amenable.
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Analysis of the lamplighter group Z2 o Z

We compute the first 100 terms a1, a2, . . . , a100 in the cogrowth
sequence for the lamplighter group.
If the sequence a1, a2, . . . behaves like an ∼ µnng , then the ratios
rn = an+1/an will behave like

rn ∼ µ+
µg

n

This means that if we plot the ratios against 1
n the graph will be

roughly linear.
This is the case for nice groups such as Zk .
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The curvature in that graph suggests that there is some stretched
exponential term, so

an ∼ µnκn
σ
ng ,

where κ < 1 and σ < 1.

In this case the ratios rn = an+1/an behave like

rn ∼ µ+
µσ log κ

n1−σ

This means that if we plot the ratios against 1
n1−σ

the graph will
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Analysis of the lamplighter group Z2 o Z

From the linearity of this graph we can see that σ = 1
3 .

Extrapolating the line, we see that the ratios will converge to
µ = 9.

This implies that the lamplighter group is amenable.
This, and the detected value of σ agree precisely with known
results about the cogrowth of the lamplighter group.
We did the same analysis for the Baumslag-Solitar group BS(1, 2),
and it is equally straight forward to detect the behaviour of the
cogrowth sequence.
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for the group Z o Z.
As with the lamplighter group, we plot the ratios against 1

n1−σ
for

different value of σ:
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Analysis of the group Z o Z

Since the graph of the ratios plotted against 1/
√
n is convex and

the graph against 1/n2/3 is concave, we might guess that

an ∼ µnκn
σ
ng ,

for some σ ∈ (1/2, 2/3).

To estimate the value of σ, we take ratios of successive ratios
r
(1)
n = rn

rn−1
. Then these should behave as

r
(1)
n = 1− (σ − 1) log κ

n2−σ
+ O(1/n2).
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Analysis of the group Z o Z

Now we construct modified ratios of ratios to eliminate the
O(1/n2) term:

r
(2)
n =

n2r
(1)
n − (n − 1)2r

(1)
n−1

2n − 1
= 1 +

(σ − 1) log κ

n2−σ
+ o(1/n2).

Then the plot of log(r
(2)
n − 1) against log(n) should be linear, with

gradient σ − 2.
Taking the local gradients of this plot gives us an estimate of σ− 2
for each value of n, so we plot these estimates against 1/n.
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Analysis of The group Z o Z

This suggests a value of σ − 2 which is about −1.61, though it is
not clear.

The reason for this difficult is that our assumption about the
growth is wrong, it is actually known that the streched exponential
term is actually κn

σ(log n)2/3 .
Including this in our analysis, we get

r
(2)
n = 1 +

c1(log n)2/3

n2−σ
+ O

(
1

n2−σ(log n)1/3

)
.

Including the (log n)2/3 term in our estimates of σ − 2, we get a
new plot:
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Clearly the estimates of σ − 2 are converging to about −1.66, so
we can guess that σ = 1

3 .

Now, assuming that

an ∼ µnκn
1/3(log n)2/3ng ,

we get

rn = µ

(
1 +

log κ(log n)2/3

3n2/3
+

2 log κ

3n2/3(log n)1/3
+

g

n
+ o(1/n)

)
.

then, by taking successive triples rn, rn+1, rn+2 and ignoring the
o(1/n) term, we can (approximately) solve for µ, µ log κ and µg .
We show the plots of the esimates for each value of n:
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We clearly see from this that µ = 16, so Z o Z is amenable.

We also get µ log κ ≈ −26.7 and µg ≈ 10, so κ ≈ 0.19 and g ≈ 5
8 .
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Analysis of Thompson’s group F

We computed the first 32 terms of the cogrowth series t0, t1, . . .
for Thompson’s group F .
I might describe the algorithm a bit at the end...
We use the method of differential approximants to estimate the
next 100 terms before analysing the sequence further.
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Differential approximants
This is a summary of the method for approximately extending the
series:

I Let F (x) = t0 + t1x + t2x
2 + . . .

I Choose a random sequence of positive integers
L,M, d0, . . . , dM which sum to 31 (where M = 2 or 3 and no
two values of di differ by more than 2).

I Calculate the unique polynomials P,Q0,Q1, . . . ,QM (up to
scaling) of degrees L,M, d0, . . . , dM such that the first 32
coefficients of

P(x)−
M∑
k=0

Qk(x)

(
x
d

dx

)k

F (x)

are all 0.
I Approximate F by the solution F̃ of

M∑
k=0

Qk(x)

(
x
d

dx

)k

F̃ (x) = P(x)
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Differential approximants

I Repeat the steps on the previous slide for every possible
sequence P,Q0,Q1, . . . ,QM to obtain many approximations F̃

I For each ratio rn = tn+1/tn we get a range of approximations,
which give us an expected value (given by the mean of most
of the approximation) and error estimate (given by the
standard deviation of the approximations).

Surprisingly, these estimates generally seem to be very accurate.
We give the equivalent result for Z o Z to justify this method:
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Differential approximant results for Z o Z.

Using only the terms for n ≤ 31, we approximate the next 80
ratios. The left column gives the actual error of this
approximation, and the right column give the estimated error.

n Actual error 1 standard deviation

1 2.69× 10−17 2.02× 10−17

5 1.14× 10−13 7.85× 10−14

10 3.37× 10−11 2.08× 10−11

20 2.22× 10−8 1.23× 10−8

30 9.63× 10−7 5.39× 10−7

40 1.22× 10−5 6.88× 10−6

50 7.59× 10−5 4.73× 10−5

60 3.13× 10−4 2.23× 10−4

70 9.39× 10−4 8.11× 10−4

80 2.44× 10−3 2.44× 10−3

The actual error is consistently less than twice the estimate error.
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Differential approximant results for Thompson’s group F .

Using only the terms for n ≤ 31, we approximate the next 100
ratios. The left column gives the estimated value and right column
give the estimated error.

n Estimated term 1 standard deviation

1 12.1393 4.47× 10−20

10 12.3773 3.76× 10−14

20 12.5722 2.43× 10−9

30 12.7224 1.25× 10−8

40 12.8433 2.02× 10−7

50 12.9437 1.85× 10−6

60 13.02893 1.11× 10−6

80 13.16718 2.19× 10−5

100 13.2756 2.17× 10−4



Analysis of Thompson’s group F

As we did for Z2 o Z and Z o Z, we plot all 132 ratios against 1
n1−σ

for different values of σ:
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Analysis of Thompson’s group F

Again, none of these graphs are linear, so if

an ∼ µnκn
σ
ng ,

then we do not have a clear value for σ.
To estimate the value of σ, we take modified ratios of ratios r

(2)
n ,

as we did for Z o Z, then take the local gradients of the graph of

log(r
(2)
n − 1) against log(n) to estimate σ − 2.

This analysis amplifies any inaccuracy in the terms, so we only use
n ≤ 75.
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This suggests a value of σ − 2 which is about −1.5, or perhaps
−1.4.

If we assume instead that the terms behave like

tn ∼ µnκn
σ(log n)1/2ng ,

then we get the following estimates of σ:
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These estimates also seem to be converging to about
σ − 2 = −1.5, so our best guess is σ = 1

2 .

Now, assuming that

tn ∼ µnκn
1/2(log n)cng ,

we get

rn = µ

(
1 +

log κ(log n)c

2n1/2
+

c log κ

n1/2(log n)1−c
+

g

n
+ o(1/n)

)
.

then, for a fixed value of c , by taking successive triples
rn, rn+1, rn+2 and ignoring the o(1/n) term, we can
(approximately) solve for µ, µ log κ and µ/g .
We show the plots of the esimates for c = 0, and varying n:
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This suggests that µ ≈ 14.8.

We also get µ log κ ≈ −15 and µg ≈ 15, so κ ≈ 0.37 and g ≈ 1.
This makes it possible that the exact growth rate is

tn ∼ µn exp(−n1/2)n.

For other values of c we get similar values of µ, all well below 16,
which would be needed for amenability.
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Some rigourous analysis

Given a group G and generating set S , for each n, let
φn(G , S) = tn/|S |2n. This is the probability that a random walk on
of length 2n on the Cayley graph of G ends at the identity.
Pittet and Saloff-Coste proved that for Gd = Z o Z o . . . o Z, the
sequence φn(Gd) grows approximately like

exp
(
−n

d−1
d+1 (log n)

2
d+1

)
,

where d is the number of copies of Z in the product.
They also proved that if A is a subgroup of B, then there is some
c ∈ Z>0 such that φcn(B) ≤ cφn(A) for all n.
Since each Gd is a subgroup of Thompson’s group F , the sequence
φn(F ) grows no faster than

exp
(
−n

d−1
d+1 (log n)

2
d+1

)
.
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Some rigourous analysis

so, for any σ, κ < 1, the following is true for all sufficiently large n:

tn < 16nκn
σ
.

This is obvious if Thompson’s group is not amenable. If
thompson’s group is amenable, then this is quite surprising since
then it does not hold for σ = 1.
In fact, it follows that if Thompson’s group is amenable, then our
earlier estimates of σ − 2 for Thompson’s group must converge to
-1, if they converge to anything.
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Estimates of σ for Thompson’s group F



Analysis of Thompson’s group F

For one final test, we look at the the ratio of the nth ratio rn for
Thompson’s group over the nth ratio sn for the group Z o Z.
Since the ratios sn converge to 16, Thompson’s group F is
amenable if and only if this ratio rn/sn converges to 1.
We plot these ratios against 1/n:



Comparison of Thompson’s group F with Z o Z using the
32 known terms
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Analysis of Thompson’s group F

Based on this analysis, it seems highly unlikely that Thompson’s
group is amenable.

Further questions:

I How does the cogrowth sequence for Thompson’s group really
behave? The conclusion that Thompson’s group is not
amenable would be somewhat more convincing if we could
confidently say exactly how the cogrowth sequence really is
behaving.

I Can we get more confident about this by using our methods in
conjuction with methods for approximating a lot more of the
coefficients?
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Computing the number of loops of each length in
Thompson’s group

The first part of the algorithm is exactly the same as what
Haagerup, Haagerup and Ramirez-Solano did:
For each vertex v in the Cayley graph Γ(F , S), let pn(v) be the
number of paths of length n between the identity and v in Γ.
Each loop of length 2n can be seen as two paths of length n to the
same vertex, so the number of loops of length 2n is equal to the
sum of the squares pn(v)2 over all vertices v in Γ.
So, during the algorithm we calculate the number pn(v) of paths
to each vertex v within the ball of radius n.
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Computing the number of loops of each length in
Thompson’s group

One way to compute each pn(v) is to first compute pn−1(u) for
each vertex u in the ball of radius u, then calculate each pn(v)
using those terms. Unfortunately, this becomes essentially
impossible for n > 24 due to memory usage.

Instead, we choose k ≈ n/2, and compute pk(u) and pn−k(u) for
each vertex u.
Then to compute pn(v) we sum the values of pk(u)pn−k(u−1v) for
each vertex u which is in the ball of radius k and such that u−1v is
in the ball of radius n − k.
For large n, there are on average only about 8 such vertices u, so
the algorithm will be reasonably fast as long as we can quickly find
all of these vertices u for each v .
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Computing the number of loops of each length in
Thompson’s group

First, construct a subtree Tk of the ball of radius k in Γ, such that
each vertex except for the identity in T is connected to exactly one
vertex which is closer to the identity in Γ.

Given a vertex v , to find vertices u such that u and u−1v are in
the balls of radius k and n − k , respectively, we do the following:
Do a depth-first seach of Tk , to find vertices u, except that if we
are at a vertex x such that |x |+ |x−1v | > n, then it is impossible
for any descendant of x to be a relevant vertex u, so we don’t
traverse them at all.
This algorithm parallelises very easily, so we ran it on the University
of Melbourne’s new high performance computer, Spartan. to
calculate t31, it ran for about two weeks on about 150 cores.
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