TASK 1

(a) $(0,0)$ is feasible $\Rightarrow z=0=L B$

(c) | x_{1} | x_{2} | 5_{1} | s_{2} | s_{3} | $-z$ | b |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 1 | 0 | 0 | 0 | 12 |
| 4 | 6 | 0 | 1 | 0 | 0 | 27 |
| 4 | 2 | 0 | 0 | 1 | 0 | 20 |
| 4 | 7 | 0 | 0 | 0 | 1 | 0 |

$b_{i} / a_{i 1}$	$b_{i} / a_{i 2}$	$c_{j} \cdot b_{i}$
12	4	$7.4=28$
$27 / 4 \pm 8$	$\frac{27}{6} \simeq 4$	
5	10	$5 \cdot 4=20$

laigest coefficient $\longrightarrow 7$
Sargest increase $\Rightarrow 7$
(e)
$\left.\begin{array}{ccccccc}0 & 1 & 2 / 3 & -1 / 6 & 0 & 0 & 7 / 2 \\ 1 & 0 & -1 & 1 / 2 & 0 & 0 & 3 / 2 \\ 0 & 0 & 8 / 3 & -5 / 3 & 1 & 0 & 7 \\ 0 & 0 & -2 / 2 & -5 / 6 & 0 & -6 / 2\end{array}\right]=\frac{61 / 2-0}{61 / 2}=10 p=\frac{1}{G \Delta P}$
(f) I now: $\frac{2}{3}, \frac{5}{6} \frac{5}{2} \geqslant \frac{1}{2}$ $\frac{1}{2} s_{1} \geqslant \frac{1}{2}$

$$
\begin{aligned}
& \frac{2}{3}\left(12-x_{1}-3 x_{2}\right)+\frac{5}{6}\left(27-4 x_{1}-6 x_{2}\right) \geqslant \frac{1}{2} \\
& 8-\frac{2 x_{1}}{3}-2 x_{2}+\frac{135}{6}-\frac{10 x_{1}-5 x_{2} \geqslant \frac{1}{3}}{2}-4 x_{1}-7 x_{2} \geqslant \frac{1}{2}-\frac{135}{6}
\end{aligned}
$$

II row: $\frac{1}{2} s_{2} \geqslant \frac{1}{2}$
(i) - forinan

$$
\begin{aligned}
1\left(27-4 x_{1}-6 x_{2}\right) & \geqslant 1 \\
-4 x_{1}-6 x_{2} & \geqslant-26 \\
-2 x_{1}-3 x_{2} & \geqslant-13 \\
2 x_{1}+3 x_{3} & \leqslant 12
\end{aligned}
$$

(ii) -80 m
(g) Itroduany the inform we lave a basis but infeasible -
Itrodmoing the ii-porm we do electary row operations to arivive to a comorical form with infeasible basis.
We use dual simplex:

$$
\begin{array}{cccccccc}
0 & 0 & 0 & -1 / 2 & 0 & 0 & 1 & -1 / 2 \\
0 & 1 & 2 / 3 & -1 / 6 & 0 & 0 & 0 & 7 / 2 \\
1 & 0 & -1 & 1 / 2 & 0 & 0 & 0 & 3 / 2 \\
0 & 0 & 8 / 3 & -5 / 3 & 1 & 0 & 0 & 7 \\
0 & 0 & -2 / 3 & -5 / 6 & 0 & 1 & 0 & -61 / 2
\end{array}
$$

1) pivot <0
2) row with b term negative
3) col that main $\left|\frac{c_{j}}{a_{i j}}\right| \quad \Rightarrow-\frac{1}{2}$ is pivot
(h) Using brand and bound an we taus

$$
x_{2} \geqslant 5, \quad 0 \quad x_{2} \leq 3
$$

are could use heuristics again at sal mode
tee lp requires a
sal will be $(2,3)$ of dual-singex step val 29
sol. will bo
$(0,5)$ of val 28

Tysk 2
(a)

Nst metwork:

Aply max flow to $N_{s+} \frac{\text { netwank. Fand Fulkersan als: }}{0}$

$\operatorname{task} 3$
(a)
$\frac{\left[\begin{array}{c|c|c}A_{8} & A_{d} & c_{\infty}\end{array} c_{0}\right]}{c_{\infty}}$

$$
\begin{aligned}
& X_{B} X_{B}+\Delta_{N} X_{N}=b \\
& X_{B}=A_{B}^{-1} b \\
& \bar{C}_{B}^{\top}=C_{B}^{\top}-\Pi \Delta_{B}=0 \Rightarrow C_{B}^{\top} \Delta_{B}^{-1}=\Pi \\
& \bar{C}_{N}^{\top}=C_{N}^{\top}-\Pi A_{N}=C_{N}^{\top}-C_{B}^{\top} \Delta_{B}^{1} \Delta_{N}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{llllllll}
2 & 1 & 5 & 1 & 1 & 0 & 0 & 0 \\
x_{2} & 8 \\
2 & 2 & 0 & 4 & 0 & 1 & 0 & 0 \\
12 \\
3 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\
18 \\
1 & 2 & 1 & 1 & 0 & 0 & 0 & 1
\end{array} 0\right]} \\
& \Delta_{B}=\left[\begin{array}{ccc}
5 & 1 & 0 \\
0 & 2 & 0 \\
2 & 1 & 1
\end{array}\right] \quad A_{B}^{-1}=\left[\begin{array}{ccc}
\frac{2}{10} & 0 & -\frac{5}{10} \\
-\frac{1}{10} & \frac{5}{10} & -\frac{3}{10} \\
0 & 0 & 1
\end{array}\right]^{\top}=\left[\begin{array}{ccc}
0,2 & -0,1 \\
0 & 0,5 & 0 \\
-0,4 & -0,3 & 1
\end{array}\right. \\
& x_{B}=\left[\begin{array}{ccc}
0,2 & -0,1 & 0 \\
0 & 0,5 & 0 \\
-0,4 & -0,3 & 1
\end{array}\right]\left[\begin{array}{c}
8 \\
12 \\
18
\end{array}\right]=\left[\begin{array}{cc}
1,6-1,2 \\
6 \\
-3,2-3,6+18
\end{array}\right]=\left[\begin{array}{c}
0,4 \\
11,2
\end{array}\right]=\left[\begin{array}{c}
x_{3} \\
x_{2} \\
5
\end{array}\right] \\
& \bar{c}_{N}^{T}=\left[\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right]-\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right]\left[\begin{array}{cccc}
0,2 & -0,1 & 0 \\
0 & 0,5 & 0 \\
-0,4 & -0,3 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 1 \\
2 & 5 & 0 \\
2 \\
3 & 0 & 0
\end{array}\right] \\
& =\| \quad \begin{array}{ccccc}
\\
& 0,4-0,2 & 0,2-0,4 & 0,2 & -0,1 \\
1 & 2 & 0 & 0,5 \\
-0,8-0,6+2 & -0,4-1,2 & -0,4 & -0,3
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right]-\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right]\left[\begin{array}{cccc}
0,2 & -0,2 & 0,2 & -0,1 \\
1 & 2 & 0 & 0,5 \\
1,6 & -1,6 & -0,4 & -0,3
\end{array}\right]= \\
& =\left[\begin{array}{lll}
111 & 0 & 0
\end{array}\right]-\left[\begin{array}{cccc}
0,2+2 & -0,2+4 & 0,2 & -0,1+1
\end{array}\right]= \\
& =\left[\begin{array}{llll}
-1,2 & -2,8 & -0,2 & -0,0
\end{array}\right]
\end{aligned}
$$

All red cots are negative \Rightarrow sal is oftinil.
b) $\pi^{\top}=C_{B}^{\top} A_{B}^{-1}=\left[\begin{array}{lll}1 & 2 & 0\end{array}\right]\left[\begin{array}{ccc}0,2 & -0,1 & 0 \\ 0 & 0,5 & 0 \\ -0,4 & -0,3 & 1\end{array}\right]=\left[\begin{array}{lll}0,2 & 0,9 & 0\end{array}\right]$

The dual variables ane the reduce l costs of slack variables with change of ign. (This has hem shown in the proof of the Stray debit, Thearin).

$$
y^{\top}=\left[\begin{array}{llll}
0,2 & 0,9 & 0
\end{array}\right]=\pi^{\top}
$$

c) Looking at the dual var, the print ad real constr a are bind t_{r} The thine les a slack:

$$
b_{i}-\sum_{j=1}^{m} a_{i j} x_{j}>0
$$

d) $z^{\top}=y^{\top} b=\left[\begin{array}{lll}0,2 & 0,9 & 0\end{array}\right]\left[\begin{array}{l}8 \\ \frac{26}{18}\end{array}\right]=1,6+\quad+0=23,5$
before it was

$$
C^{\top} x^{*}=\left[\begin{array}{llllll}
1 & 2 & 1 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
6 \\
0,4 \\
0 \\
0 \\
11,2
\end{array}\right]=12+0,5=12,5
$$

hanse obj increases

But we must make sure th b tern dares mat became mogdive.

$$
\bar{b}=A_{B}^{-1} b=\left[\begin{array}{ccc}
0,2 & 0,1 & 0 \\
0 & 0,5 & 0 \\
-0,4 & -0,3 & 1
\end{array}\right]\left[\begin{array}{c}
8 \\
26 \\
18
\end{array}\right]=\left[\begin{array}{cc}
1,6 & -2,6 \\
13 \\
-3,2-7,8+18
\end{array}\right]=13
$$

are term become negative \Rightarrow we meed to iterate.
(e) we Col back at haw we can tad aol cots.

$$
\begin{aligned}
\bar{c}_{N} & =\left[\begin{array}{llll}
3 & 1 & 0 & 0
\end{array}\right]-\left[\begin{array}{llll}
2,2 & 3,8 & 0,2 & 0,0
\end{array}\right]= \\
& =\left[\begin{array}{lll}
0,8 & \cdots
\end{array}\right]
\end{aligned}
$$

the red cost of x_{1} becounes rontive $\Rightarrow x_{1}$ enters the basis.
To determine the leaving van we kevel to see law much we can increase:

$$
\begin{aligned}
& X_{B}=X_{B}^{*}-A_{B}^{-1} A_{N} X_{N}=X_{B}^{*}-A_{B}^{-1} a_{E} X_{N} \\
& A_{8}^{-1} \cdot a=\left[\begin{array}{ccc}
0,2 & -0,1 & 0 \\
0 & 0,5 & 0 \\
0,1 & -0,5 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{ccc}
0,6-0,2 \\
1 & \text { col } \\
-0,8-0,6+3
\end{array}\right]=10,2 \\
& x_{B}=\left[\begin{array}{c}
0,4 \\
6 \\
112
\end{array}\right]-\left[\begin{array}{c}
0,2 \\
1 \\
1,6
\end{array}\right] t \geqslant 0 \quad t \leqslant 0,6 / 0,2=0,2 \leqslant
\end{aligned}
$$

x_{3} laves the basis
(f) We mud to detenni= the red. cost for the mew wail.

$$
\left.\begin{array}{rl}
\bar{C}_{N}^{T}= & C_{N}^{T}-\Pi A_{N}= \\
= & {[\delta 11100}
\end{array}\right]=
$$

$$
=\left[\begin{array}{llll}
(5) & 1 & 0 & 0
\end{array}\right]-\left[\begin{array}{llll}
0,2 & 0,9 & 0
\end{array}\right] \cdot\left[\begin{array}{llll}
3 \\
5 & 2 & 1 & 1 \\
2 & 4 & 0 & 1 \\
6 & 0 & 0 & 0
\end{array}\right]=
$$

TASK ム
(a)

$$
\begin{aligned}
& \Rightarrow \text { TUM for } I_{1}=\infty \\
& I_{2}=\varnothing \\
& \sum_{i \in I_{1}} a_{i j}=\sum_{i \in I_{2}} a_{i j}=0 \quad \forall_{j}
\end{aligned}
$$

the first column has only one entry not zero. However since the matrix without that column is TUM, all its square submatrices have determinant $0,1,-1$, hence also all matrices obtained by adding the first column will have determinants $0,1,-1$ since all its elements are 0 or 1 .
b)
$\left.\begin{array}{ccccccc}1 \\ 2 & 0 & 0 & 1 & 1 & 10 & 0 \\ 0 & 1 & 1 & 1 & 0 & -100 & 0 \\ 3 \\ 4 & 1 & 1 & 1 & 0 & 0 & -10 \\ 5 & 0 & 1 & 1 & 0 & 0 & 0\end{array}\right]$
c) min $720 x_{1}+800 x_{2}+740 x_{3}+680 x_{4}+720 x_{3}+780 x_{6}+640 x_{7}$

$$
\begin{array}{lrl}
0-6: & x_{1}+x_{2} & \geqslant 2 \\
6-8: & x_{2}+x_{3} & \geqslant 8 \\
8-11: & x_{3}+x_{4} & \geqslant= \\
11-14: & x_{3}+x_{4} & \geqslant \\
14-16: & x_{4}+x_{5} & x_{5}+x_{6} \\
16-18: & x_{5}+x_{6}+x_{7} \geqslant 6 \\
18-20: & x_{5}+x_{6}+x_{7} \geqslant 3 \\
20-22: & & x_{6}+x_{7} \geqslant 1
\end{array}
$$

$x_{1}, x_{2} \cdots x_{7} \geqslant 0$ and integer.
The matrix has canseanilive i's property an cols hence cp relax gives integer results.

TASK 5
(a)
max $x_{1}-2 x_{2}$
(P)

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3} \geqslant 0 \\
& 4 x_{1}+3 x_{2}+4 x_{3} \leqslant 3 \\
& 2 x_{1}-x_{2}+2 x_{3}=1 \\
& x_{2} x_{3} \geqslant 0 \\
& x_{1} \in \mathbb{R}
\end{aligned}
$$

We wat an UB; we bring (relax) comstraints in abj. func.

$$
\begin{aligned}
& p\left(y_{1}, y_{2}, y_{3}\right)=\max x_{1}-2 x_{2}+y_{1}\left(x_{1}+2 x_{2}-x_{3}\right)+y_{2}\left(4 x_{1}+3 x_{2}+4 x_{3}-3\right) \\
& +y_{3}\left(2 x_{1}-x_{1}+2 x_{3}-1\right) \\
& \forall y_{1} \geqslant 0, y_{2} \leqslant 0, y_{3} \in \mathbb{R} \quad P\left(y_{2}, y_{2}, y_{3}\right) \geqslant \operatorname{opt}(p)
\end{aligned}
$$

(this proves the weak dulit, then. by coustrunction)
$\operatorname{mim}_{y_{1} y_{0} y_{3}} P\left(y_{1} y_{2} y_{3}\right)$ this will gove us the best UB.

$$
y, y=y_{3}
$$

max $\left(1+y_{2}+6 y_{2}+2 y_{3}\right) x_{1}+$

$$
\begin{aligned}
& +\left(-2+2 y_{1}+3 y_{2}-y_{3}\right) x_{2} \\
& +\left(-y_{1}+4 y_{2}+2 y_{3}\right) x_{3} \\
& -3 y_{2}-y_{3}
\end{aligned}
$$

This panblem can be selved by inspestion. st is of te foom:
$\max c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{m} \left\lvert\, \Rightarrow \begin{aligned} & \text { if } c_{i}>0 \wedge x_{i} \geqslant 0 \Rightarrow x_{i}=+\infty \\ & \text { if } c_{i} \leqslant 0 \wedge x_{i} \geqslant 0 \Rightarrow x_{i}=0, \text { bam }\end{aligned}\right.$
if $c_{i} \neq \wedge x_{i} \in \mathbb{R} \Rightarrow$ unbaunded if $c_{i}=0$ i $x_{i} \in \mathbb{R} \Rightarrow$ bounded
We are aly i tierested i- the comes whera the pablem is baunded trence:
mion $-3 y_{2}-y_{3}$

$$
\begin{aligned}
& y_{1}+4 y_{2}+2 y_{3}=-1 \\
& 2 y_{1}+3 y_{2}-y_{3} \leqslant 2 \\
& -y_{1}+4 y_{2}+2 y_{3} \leqslant 0 \\
& y_{1} \geqslant 0 \\
& y_{2} \leqslant 0 \\
& y_{3} \leqslant \mathbb{R}
\end{aligned}
$$

min $+3 y_{2}+y_{3}$

$$
\begin{aligned}
& -y_{1}+4 y_{2}-2 y_{3}=-1 \\
& -2 y_{1}-3 y_{2}+y_{3} \leqslant 2 \\
& +y_{1}-4 y_{2}+2 y_{3} \leqslant 0 \\
& y_{1} \leqslant 0 \\
& y_{2} \geqslant 0 \\
& y_{3} \in \mathbb{R}
\end{aligned}
$$

a) it is a tramspotation prablen:
$\operatorname{mim} \sum_{i j} c_{i j} x_{i j}$

$$
\sum_{j} x_{i j}-\sum_{j} x_{j i}=f_{i}-d_{i} \quad \forall i
$$

$x_{i j}$ integer
$>_{y}$ dosined

This is a mitwank plaiu prablem, spealpicel, a tromspatation prablem hena any alg. Por it wauld gat:

