Critical graphs and hypergraphs with few edges

Michael Stiebitz
Technische Universität Ilmenau, Germany

A graph G is called k-critical if $\chi(H)<\chi(G)=k$ for every proper subgraph H of G. Clearly, K_{k} is a k-critical graph and for $k=1,2$ there are no other k-critical graphs. König's theorem implies that the only 3 critical graphs are the odd cycles. However, for a given integer $k \geq 4$, a characterization of all k-critical graphs seems unattainable. Critical graphs were first defined and investigated by Dirac in the 1950s. In particular, Dirac investigated the function

$$
f_{k}(n)=\min \{|E(G)| \mid G \text { is } k \text {-critical and }|V(G)|=n\}
$$

If $k \geq 4$, this function is defined for all n with $n \geq k$ and $n \neq k+1$. Since any k-critical graph has minimum degree at least $k-1$, we have $f_{k}(n) \geq \frac{1}{2}(k-1) n$. Brooks' theorem implies that $f_{k}(n)=\frac{1}{2}(k-1) n$ if and only if $n=k$. Recently, Yancey and Kostochka found the best linear approximation for the function $f_{k}(n)$. We also consider the corresponding function for k-critical hypergraphs and k-list-critical graphs.

Figure 1: The only 4 -critical graphs of order $n=6,7,8$ with $f_{4}(n)$ edges.

