Kempe Chains and Rooted Minors

MATTHIAS KRIESELL and SAMUEL MOHR

A (minimal) transversal of a partition is a set which contains exactly one member from each member of the partition and nothing else. We study the following problem. Given a transversal T of a proper coloring \mathfrak{C} of some graph G, is there a partition \mathfrak{H} of a subset of V(G) into connected sets such that T is a transversal of \mathfrak{H} and such that two sets of \mathfrak{H} are adjacent if their corresponding vertices from T are connected by a path using only two colors?

It has been conjectured earlier that for any transversal T of a coloring \mathfrak{C} of order k of some graph G such that any pair of color classes induces a connected graph, there exists a partition \mathfrak{H} into pairwise disjoint pairwise adjacent sets such that T is a transversal of \mathfrak{H} (which would prove Hadwigers conjecture for the class of uniquely colorable graphs); this is open for each $k \geq 5$ and follows from our results for the case that k = 5 and the subgraph induced by T is connected.