\[\text{Average} = 50 \]

\[\frac{2.1 \cdot 10^{-9} + (f - H - 1) \cdot 1.00 \cdot 10^{18}}{3.92} = \frac{3.916 \times 10^{8}}{3.92} \]

\[\text{The integral of} \quad \int_{-16}^{2} \frac{2x}{h} dx \quad \text{for} \quad a = -7, b = -4, c = 12 \]

\[\frac{20a}{2} = \frac{u - 20e (6 - h)(2) - (6 - h)(2)}{2} = \frac{h(2)}{2} \]

\[\frac{\text{Average}}{\text{ha}} \]

\[\text{れば、以下の関数が derivetive ですか。} \]

At least CS er enencting Start.

\[\lim_{x \to \infty} \int_{10}^{100} \frac{1}{x + 750} dx = 1000 + 750 \]

\[\int_{10}^{100} \left(100 + \frac{x}{750} \right) dx = \int_{10}^{100} (100 + \frac{x}{750}) dx \]
\[A = 12x + 6z \geq 0 \quad \text{for } x \geq 2 \text{ and } 2y \geq 0 \quad \text{for } y \geq 2 \]

Let \(A \cdot C - B^2 = (12x + 6z)^2 - 36 = 2y - 2z \geq 0 \quad \text{for } y \geq z \]

\[\min f(x,y) \text{ of } x \geq 2 \text{ and } y \geq 2 \]

\[\text{Hence, } \frac{\partial y}{\partial x} = -\frac{12x + 6z}{2y - 2z} \]

\[\frac{\partial f}{\partial x} = 12 + 6z \geq 0 \]

\[\frac{\partial f}{\partial y} = 2 - 2z \geq 0 \]

\[\min \{f\} \text{ at } x = 3, y = 1 \]

\[\text{Hence, } \frac{\partial x}{\partial y} = -\frac{12 + 6z}{2 - 2z} \]

\[\frac{\partial f}{\partial x} = 12 + 6z \geq 0 \]

\[\frac{\partial f}{\partial y} = 2 - 2z \geq 0 \]

\[\min \{f\} \text{ at } (x,y) = (3,1) \]

\[\text{Hence, } \frac{\partial y}{\partial x} = -\frac{12x + 6z}{2y - 2z} \]

\[\frac{\partial f}{\partial x} = 12 + 6z \geq 0 \]

\[\frac{\partial f}{\partial y} = 2 - 2z \geq 0 \]

\[\min \{f\} \text{ at } x = 3, y = 1 \]

\[\text{Hence, } \frac{\partial x}{\partial y} = -\frac{12 + 6z}{2 - 2z} \]

\[\frac{\partial f}{\partial x} = 12 + 6z \geq 0 \]

\[\frac{\partial f}{\partial y} = 2 - 2z \geq 0 \]

\[\min \{f\} \text{ at } (x,y) = (3,1) \]
\[
\frac{8}{10.5} + 84 = 82.5
\]

\[
\text{Det} \ y = C_{\text{median}} \approx 25.2
\]

\[
\text{Dec} \ y = C_{\text{median}} \approx 12
\]

\[
\text{Median} \ y = \text{median of } y_{\text{original}} \text{ and } y_{\text{censored}}
\]

\[
\text{Median} C = 10.5, \text{ Dec. } C = 5
\]

\[
\text{Bivariate } y \text{ is min.} (C). \text{ Here } x = 2, y = 5, 80
\]

\[
\text{Derrmed} \text{ maximum } = (10, 80) = 160 + 80 = 240
\]

\[
\frac{K}{y} = 81, \text{ days } K = 80
\]

\[
\text{Dys. } S = 5, L = 100, \text{ days } L = 100, \text{ days } L = 100
\]

\[
\text{Dys. } 5.13 = K, \text{ hence } 5.13 \cdot \frac{1.25}{1.3} = 3.12
\]

\[
\text{Sovar to the 14th distribution for } K = 2.3
\]

\[
\text{Lign.} \ 2 : x = \frac{9}{10}, \text{ Lign.} \ 4 : x = \frac{9}{10}, \text{ Lign.} \ 16 : x = \frac{9}{10}
\]

\[
\text{Lagrange method}
\]

\[
\text{Lagrange method}
\]

\[
3 \text{ eigenvalues}
\]

\[
\text{Lagrange method}
\]
Evaluative exercises may be used to identify areas of improvement.

1. Identify the major themes of the text.
2. Summarize the main points of the passage.
3. Analyze the author's argument or perspective.

4. Discuss the implications of the information presented.
5. Evaluate the effectiveness of the text's organization.

6. Compare and contrast different viewpoints or perspectives.
7. Draw conclusions based on the evidence presented.

8. Critique the style or tone of the writing.
9. Relate the content to personal experiences or other contexts.
10. Identify any logical fallacies or weaknesses in the argument.

Additional exercises may be assigned at the discretion of the instructor. These could include writing assignments, research projects, or presentations.