\[
V_x = 24 - h^2
\]

Dear sir,

I've attached the solution for the problem we discussed.

Best regards,

[Signature]

Additional notes:

1. Denominator is not clearly visible.
2. Denominator is not clearly visible.
3. Denominator is not clearly visible.
4. Denominator is not clearly visible.
5. Denominator is not clearly visible.
6. Denominator is not clearly visible.
7. Denominator is not clearly visible.
8. Denominator is not clearly visible.
9. Denominator is not clearly visible.
10. Denominator is not clearly visible.
11. Denominator is not clearly visible.
12. Denominator is not clearly visible.
13. Denominator is not clearly visible.
14. Denominator is not clearly visible.
15. Denominator is not clearly visible.
16. Denominator is not clearly visible.
17. Denominator is not clearly visible.
18. Denominator is not clearly visible.
19. Denominator is not clearly visible.
20. Denominator is not clearly visible.
21. Denominator is not clearly visible.
22. Denominator is not clearly visible.
23. Denominator is not clearly visible.
24. Denominator is not clearly visible.
25. Denominator is not clearly visible.
26. Denominator is not clearly visible.
27. Denominator is not clearly visible.
28. Denominator is not clearly visible.
29. Denominator is not clearly visible.
30. Denominator is not clearly visible.
31. Denominator is not clearly visible.
32. Denominator is not clearly visible.
33. Denominator is not clearly visible.
34. Denominator is not clearly visible.
35. Denominator is not clearly visible.
36. Denominator is not clearly visible.
37. Denominator is not clearly visible.
38. Denominator is not clearly visible.
39. Denominator is not clearly visible.
40. Denominator is not clearly visible.
41. Denominator is not clearly visible.
42. Denominator is not clearly visible.
43. Denominator is not clearly visible.
44. Denominator is not clearly visible.
45. Denominator is not clearly visible.
46. Denominator is not clearly visible.
47. Denominator is not clearly visible.
48. Denominator is not clearly visible.
49. Denominator is not clearly visible.
50. Denominator is not clearly visible.
51. Denominator is not clearly visible.
52. Denominator is not clearly visible.
53. Denominator is not clearly visible.
54. Denominator is not clearly visible.
55. Denominator is not clearly visible.
56. Denominator is not clearly visible.
57. Denominator is not clearly visible.
58. Denominator is not clearly visible.
59. Denominator is not clearly visible.
60. Denominator is not clearly visible.
61. Denominator is not clearly visible.
62. Denominator is not clearly visible.
63. Denominator is not clearly visible.
64. Denominator is not clearly visible.
65. Denominator is not clearly visible.
66. Denominator is not clearly visible.
67. Denominator is not clearly visible.
68. Denominator is not clearly visible.
69. Denominator is not clearly visible.
70. Denominator is not clearly visible.
71. Denominator is not clearly visible.
72. Denominator is not clearly visible.
73. Denominator is not clearly visible.
74. Denominator is not clearly visible.
75. Denominator is not clearly visible.
76. Denominator is not clearly visible.
77. Denominator is not clearly visible.
78. Denominator is not clearly visible.
79. Denominator is not clearly visible.
80. Denominator is not clearly visible.
81. Denominator is not clearly visible.
82. Denominator is not clearly visible.
83. Denominator is not clearly visible.
84. Denominator is not clearly visible.
85. Denominator is not clearly visible.
86. Denominator is not clearly visible.
87. Denominator is not clearly visible.
88. Denominator is not clearly visible.
89. Denominator is not clearly visible.
90. Denominator is not clearly visible.
91. Denominator is not clearly visible.
92. Denominator is not clearly visible.
93. Denominator is not clearly visible.
94. Denominator is not clearly visible.
95. Denominator is not clearly visible.
96. Denominator is not clearly visible.
97. Denominator is not clearly visible.
98. Denominator is not clearly visible.
99. Denominator is not clearly visible.
100. Denominator is not clearly visible.
where $A = \frac{P \cdot D \cdot P^T}{P^T \cdot D \cdot P}$.

$$A = \begin{pmatrix} 5/4 & -5/4 \\ -5/4 & 5/4 \end{pmatrix}$$

$$A^2 = \begin{pmatrix} 2/5 & -2/5 \\ -2/5 & 2/5 \end{pmatrix}$$

$$A^3 = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$$

The characteristic polynomial of A is:

$$\det(A - \lambda I) = \lambda^2 - \frac{5}{4}\lambda + \frac{1}{4}$$

The eigenvalues of A are $\lambda_1 = \frac{1}{2}$ and $\lambda_2 = -\frac{1}{2}$.

The eigenvectors corresponding to $\lambda_1 = \frac{1}{2}$ are $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

The eigenvectors corresponding to $\lambda_2 = -\frac{1}{2}$ are $v_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $v_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

The matrix A is diagonalizable with $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ and $D = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$.

The matrix P^T is the inverse of P.

$$P^{-1} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Thus, $A = P \cdot D \cdot P^T$.

For the given matrix A, the eigenvalues are $\lambda_1 = \frac{1}{2}$ and $\lambda_2 = -\frac{1}{2}$.

The corresponding eigenvectors are $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

The matrix A is diagonalizable with $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ and $D = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$.

The characteristic polynomial of A is:

$$\det(A - \lambda I) = \lambda^2 - \frac{5}{4}\lambda + \frac{1}{4}$$

The eigenvalues of A are $\lambda_1 = \frac{1}{2}$ and $\lambda_2 = -\frac{1}{2}$.

The eigenvectors corresponding to $\lambda_1 = \frac{1}{2}$ are $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

The eigenvectors corresponding to $\lambda_2 = -\frac{1}{2}$ are $v_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $v_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.
Det sidste ses også vundet af

\[
\begin{align*}
\text{adj} A & = (adj A)^T = (000) \\
& = (000) \\
& = (000)
\end{align*}
\]

Den adjungerede til A fundes via

\[
\text{adj} A = C^T = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}
\]
Der gives 0-10 points pr. spørgsmål. Der plan-derved point-længden opnåes, belægges mellem 0 og 160.

Mit: Points, kan følgerde
"oversættelse", betragtes som
vejledende.

135-150
110-135
90-110
70-90
50-70
0-50

150-160
135-150
110-135
90-110
70-90
50-70
0-50