
DM510 - Operating Systems, Weekly Notes, Week 13, 2015

Lecture

� In the lecture on March 23 we will mainly discuss Chapter 6 (Process Scheduling) and

start with Chapter 7 (Deadlocks). Example were be shown for the simulation of the

Dining Philosopher problem, a solution with monitors was shown.

� Next Lecture is on April 7th at 10.15.

There is no lecture on April 7th 14.15.

Exercises and lectures on 8th and 9th of April are switched, i.e., there is a lecture on

Wednesday April 8th at 12.15 and there is a tutorial section on Thursday April 9th.

Exercises

Note, as usual, that you �nd even more exercises including solutions here :

http://codex.cs.yale.edu/avi/os-book/OS9/practice-exer-dir/index.html

Prepare for the Tutorial Session on Wednesday, March 25, 2015:

All exercises not discussed so far. In addition:

5.21 Under what circumstances is rate-monotonic scheduling inferior to earliest-deadline-�rst

scheduling in meeting the deadlines associated with processes?

5.22 Consider two processes, P1 and P2 , where p1 = 50, t1 = 25, p2 = 75, and t2 = 30.

a. Can these two processes be scheduled using rate-monotonic scheduling? Illustrate

your answer using Gantt chart.

b. Illustrate the scheduling of these two processes using earliest-deadline-�rst (EDF)

scheduling.

5.23 Explain why interrupt and dispatch latency times must be bounded in a hard real-time

system.

6.1 Race conditions are possible in many computer systems. Consider a banking system

with two methods: deposit(amount) and withdraw(amount). These two methods are

passed the amount that is to be deposited or withdrawn from a bank account. Assume

that a husband and wife share a bank account and that concurrently the husband calls

the withdraw() method and the wife calls deposit(). Describe how a race condition is

possible and what might be done to prevent the race condition from occurring.

6.2 The �rst known correct software solution to the critical-section problem for two processes

was developed by Dekker. The two processes, P0 and P1 , share the following variables:

boolean flag[2]; /* initially false */

int turn;

http://codex.cs.yale.edu/avi/os-book/OS9/practice-exer-dir/index.html

DM510 - Operating Systems, Weekly Notes, Week 13, 2015

The structure of process Pi (i = 0 or 1) is shown in the Figure below; the other process

is Pj, (j = 1 or 0). Prove that the algorithm satis�es all three requirements for the

critical-section problem.

do {

flag[i] = true;

while (flag[j]) {

if (turn == j) {

flag[i] = false;

while (turn == j)

; /* do nothing */

flag[i] = true;

}

}

/* critical section */

turn = j;

flag[i] = false;

/* remainder section */

} while (true);

6.3 The �rst known correct software solution to the critical-section problem for n processes

with a lower bound on waiting of n − 1 turns was presented by Eisenberg and McGuire.

The processes share the following variables:

enum pstate {idle, want_in, in_cs};

pstate flag[n];

int turn;

All the elements of
ag are initially idle; the initial value of turn is immaterial (between

0 and n − 1). The structure of process Pi is shown in the Figure below. Prove that the

algorithm satis�es all three requirements for the critical-section problem.

do {

while (true) {

flag[i] = want in;

j = turn;

while (j != i) {

if (flag[j] != idle) {

j = turn;

else

j = (j + 1) % n;

}

flag[i] = in cs;

DM510 - Operating Systems, Weekly Notes, Week 13, 2015

j = 0;

while ((j < n) && (j == i || flag[j] != in cs))

j++;

}

if ((j >= n) && (turn == i || flag[turn] == idle))

break;

/* critical section */

j = (turn + 1) % n;

while (flag[j] == idle)

j = (j + 1) % n;

turn = j;

flag[i] = idle;

/* remainder section */

} while (true);

6.4 Explain why implementing synchronization primitives by disabling interrupts is not ap-

propriate in a single-processor system if the synchronization primitives are to be used in

user-level programs.

6.5 Explain why interrupts are not appropriate for implementing synchronization primitives

in multiprocessor systems.

6.6 The Linux kernel has a policy that a process cannot hold a spinlock while attempting to

acquire a semaphore. Explain why this policy is in place.

6.7 Describe two kernel data structures in which race conditions are possible. Be sure to

include a description of how a race condition can occur.

6.8 (modi�ed) Describe how the compare and swap() (not described in detail in the lecture)

instruction can be used i.) to provide mutual exclusion and ii.) to provide mutual

exclusion that satis�es the bounded-waiting requirement.

6.9 Consider how to implement a mutex lock using an atomic hardware instruction. Assume

that the following structure de�ning the mutex lock is available:

typedef struct {

int available;

} lock;

where (available == 0) indicates the lock is available; a value of 1 indicates the lock is

unavailable. Using this struct, illustrate how the following functions may be implemented

using the test and set() and compare and swap() instructions.

– void acquire(lock *mutex)

DM510 - Operating Systems, Weekly Notes, Week 13, 2015

– void release(lock *mutex)

Be sure to include any initialization that may be necessary.

6.11 Assume that a system has multiple processing cores. For each of the following scenarios,

describe which is a better locking mechanism-a spinlock or a mutex lock where waiting

processes sleep while waiting for the lock to become available:

– The lock is to be held for a short duration.

– The lock is to be held for a long duration.

– The thread may be put to sleep while holding the lock.

6.12 Assume a context switch takes T time. Suggest an upper bound (in terms of T) for holding

a spin lock and that if the spin lock is held for any longer duration, a mutex lock (where

waiting threads are put to sleep) is a better alternative.

6.14 Consider the code example for allocating and releasing processes shown in the Figure

below.

#define MAX PROCESSES 255

int number of processes = 0;

/* the implementation of fork() calls this function */

int allocate process() {

int new pid;

if (number of processes == MAX PROCESSES)

return -1;

else {

/* allocate necessary process resources */

++number of processes;

}

}

return new pid;

/* the implementation of exit() calls this function */

void release process() {

/* release process resources */

--number of processes;

}

a. Identify the race condition(s).

b. Assume you have a mutex lock named mutex with the operations acquire() and

release(). Indicate where the locking needs to be placed to prevent the race condi-

tion(s).

c. Could we replace the integer variable

DM510 - Operating Systems, Weekly Notes, Week 13, 2015

int number_of_processes = 0

with the atomic integer

atomic_t number_of_processes = 0

to prevent the race condition(s)?

6.19 Demonstrate that monitors and semaphores are equivalent insofar as they can be used to

implement the same types of synchronization problems.

6.22 Discuss the tradeo� between fairness and throughput of operations in the readers-writers

problem. Propose a method for solving the readers-writers problem without causing

starvation.

6.23 How does the signal() operation associated with monitors di�er from the corresponding

operation de�ned for semaphores?

6.28 Suppose we replace the wait() and signal() operations of monitors with a single con-

struct await(B), where B is a general Boolean expression that causes the process executing

it to wait until B becomes true.

a. Write a monitor using this scheme to implement the readers-writers problem. b.

Explain why, in general, this construct cannot be implemented e�ciently.

b. Why is it important for the scheduler to distinguish I/O-bound programs from CPU-

bound programs?

