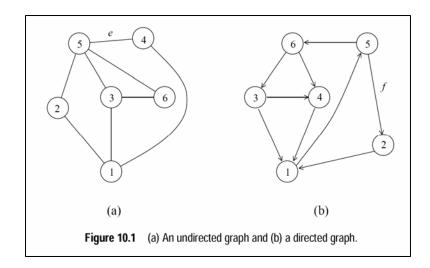
Introduction to Parallel Computing

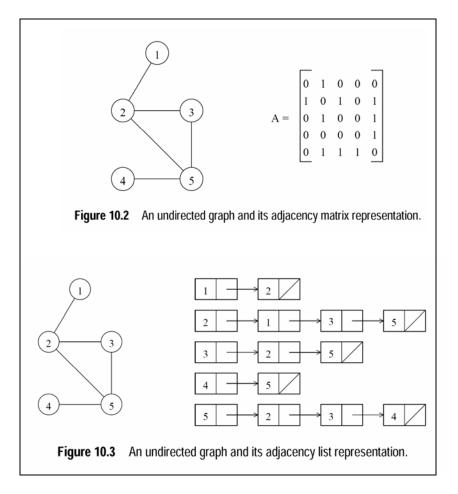
George Karypis Graph Algorithms

Outline

- Graph Theory Background
- Minimum Spanning Tree
 Prim's algorithm
- Single-Source Shortest Path
 Dijkstra's algorithm
- All-Pairs Shortest Path
 - Dijkstra's algorithm
 - Floyd's algorithm
- Maximal Independent Set
 - Luby's algorithm

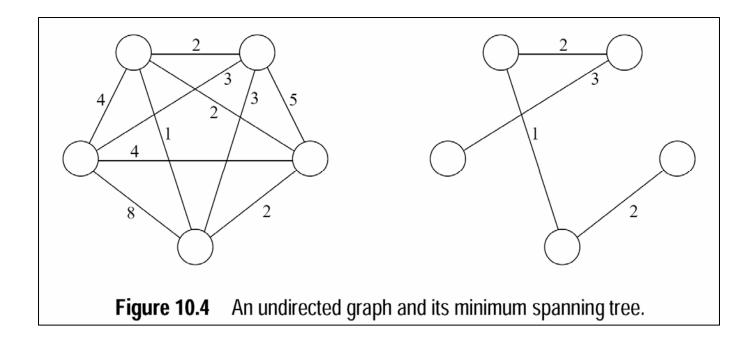
Background





Minimum Spanning Tree

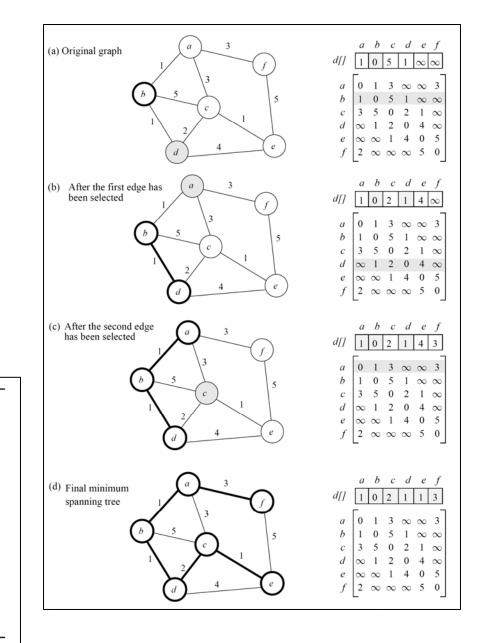
Compute the minimum weight spanning tree of an undirected graph.



Prim's Algorithm

- Prim's Algorithm
 - \Box $\Theta(n^2)$ serial complexity for dense graphs.
 - why?
- How can we parallelize this algorithm?
- Which steps can be done in parallel?

1.	procedure PRIM_MST(V, E, w, r)
2.	begin
3.	$V_T := \{r\};$
4.	d[r] := 0;
5.	for all $v \in (V - V_T)$ do
6.	if edge (r, v) exists set $d[v] := w(r, v)$;
7.	else set $d[v] := \infty;$
8.	while $V_T \neq V$ do
9.	begin
10.	find a vertex u such that $d[u] := \min\{d[v] v \in (V - V_T)\};$
11.	$V_T := V_T \cup \{u\};$
12.	for all $v \in (V - V_T)$ do
13.	$d[v] := \min\{d[v], w(u, v)\};$
14.	endwhile
15.	end PRIM_MST



Parallel Formulation of Prim's Algorithm

- Parallelize the inner-most loop of the algorithm.
 - □ Parallelize the selection of the "minimum weight edge" connecting an edge in V_T to a vertex in V- V_T .
 - Parallelize the updating of the d[] array.
- What is the maximum concurrency that such an approach can use?
- How do we "implement" it on a distributed-memory architecture?

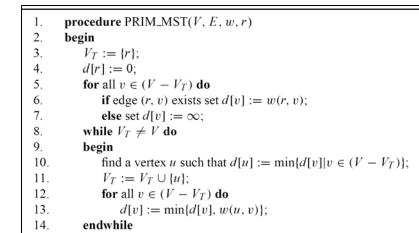
1. procedure PRIM_MST(V, E, w, r) 2. begin 3. $V_T := \{r\};$ 4. d[r] := 0;5. for all $v \in (V - V_T)$ do 6. if edge (r, v) exists set d[v] := w(r, v); 7. else set $d[v] := \infty$; 8. while $V_T \neq V$ do 9. begin 10. find a vertex u such that $d[u] := \min\{d[v] | v \in (V - V_T)\};$ 11. $V_T := V_T \cup \{u\};$ 12. for all $v \in (V - V_T)$ do 13. $d[v] := \min\{d[v], w(u, v)\};\$ 14. endwhile 15. end PRIM_MST

Parallel Formulation of Prim's Algorithm

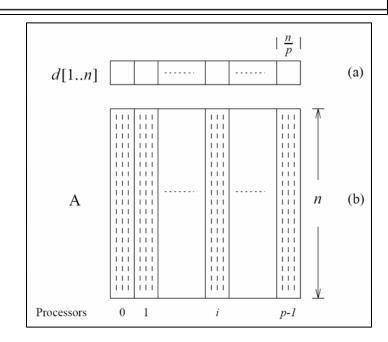
- Decompose the graph A (adjacency matrix) and vector d vector using a 1D block partitioning along columns.
 - □ Why columns?
- Assign each block of size n/p to one of the processors.
- How will lines 10 & 12—13 be performed?
- Complexity?

$$T_P = \Theta\left(\frac{n^2}{p}\right) + \Theta(n \log p).$$

Isoefficiency: $\Theta(p^2 \log^2 p)$



15. end PRIM_MST



Single-Source Shortest Path

- Given a source vertex s find the shortest-paths to all other vertices.
- Dijkstra's algorithm.
- How can it be parallelized for dense graphs?

```
procedure DIJKSTRA_SINGLE_SOURCE_SP(V, E, w, s)
1.
2.
     begin
3.
         V_T := \{s\};
4.
         for all v \in (V - V_T) do
5.
             if (s, v) exists set l[v] := w(s, v);
6.
             else set l[v] := \infty;
7.
         while V_T \neq V do
8.
         begin
9.
             find a vertex u such that l[u] := \min\{l[v] | v \in (V - V_T)\};
10.
             V_T := V_T \cup \{u\};
11.
             for all v \in (V - V_T) do
                l[v] := \min\{l[v], l[u] + w(u, v)\};
12.
13.
         endwhile
14.
     end DIJKSTRA_SINGLE_SOURCE_SP
```

Algorithm 10.2 Dijkstra's sequential single-source shortest paths algorithm.

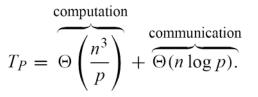
All-pairs Shortest Paths

- Compute the shortest paths between all pairs of vertices.
- Algorithms
 - Dijkstra's algorithm
 - Execute the single-source algorithm *n* times.
 - Floyd's algorithm
 - Based on dynamic programming.

All-Pairs Shortest Path Dijkstra's Algorithm

- Source-partitioned formulation
 - Partition the sources along the different processors.
 - Is it a good algorithm?
 - Computational & memory scalability
 - What is the maximum number of processors that it can use?
- Source-parallel formulation
 - \Box Used when p > n.
 - Processors are partitioned into *n* groups each having *p/n* processors.
 - Each group is responsible for one singlesource SP computation.
 - □ Complexity?

 $T_P = \Theta(n^2).$ $\Theta(p^3),$



 $\Theta((p\log p)^{1.5}).$

Floyd's Algorithm

- Solves the problem using a dynamic programming algorithm.
 - □ Let $d^{(k)}_{i,j}$ be the shortest path distance between vertices *i* and *j* that goes only through vertices 1,..., *k*.

$$d_{i,j}^{(k)} = \begin{cases} w(v_i, v_j) & \text{if } k = 0\\ \min\left\{d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)}\right\} & \text{if } k \ge 1 \end{cases}$$

1. **procedure** FLOYD_ALL_PAIRS_SP(*A*)
2. **begin**
3.
$$D^{(0)} = A;$$

4. **for** $k := 1$ **to** n **do**
5. **for** $i := 1$ **to** n **do**
6. **for** $j := 1$ **to** n **do**
7. $d_{i,j}^{(k)} := \min \left(d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)} \right);$
8. **end** FLOYD_ALL_PAIRS_SP

 \Box Complexity: $\Theta(n^3)$.

☐ Note: The algorithm can run in-place.

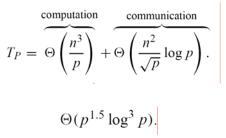
How can we parallelize it?

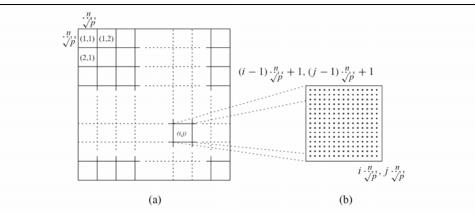
Parallel Formulation of Floyd's Algorithm

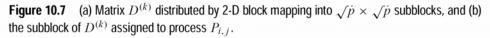
- Distribute the matrix using a 2D block decomposition.
- Parallelize the double inner-most loop.

1.	procedure FLOYD_ALL_PAIRS_SP(A)
2.	begin
3.	$D^{(0)} = A;$
4.	for $k := 1$ to n do
5.	for $i := 1$ to n do
6.	for $j := 1$ to n do
3. 4. 5. 6. 7.	$d_{i,j}^{(k)} := \min\left(d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)}\right);$
8.	end FLOYD_ALL_PAIRS_SP

- Communication pattern?
- Complexity?







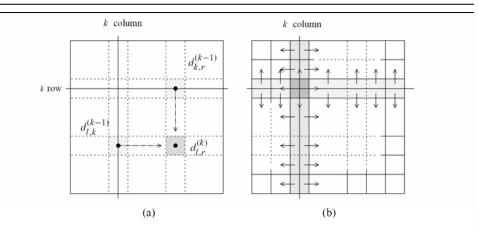


Figure 10.8 (a) Communication patterns used in the 2-D block mapping. When computing $d_{i,j}^{(k)}$, information must be sent to the highlighted process from two other processes along the same row and column. (b) The row and column of \sqrt{p} processes that contain the k^{th} row and column send them along process columns and rows.

procedure FLOYD_2DBLOCK(D⁽⁰⁾) 1. 2. begin 3. for k := 1 to n do 4. begin each process $P_{i,j}$ that has a segment of the k^{th} row of $D^{(k-1)}$; 5. broadcasts it to the $P_{*,j}$ processes; each process $P_{i,j}$ that has a segment of the k^{th} column of $D^{(k-1)}$; 6. broadcasts it to the $P_{i,*}$ processes; each process waits to receive the needed segments; 7. each process $P_{i, i}$ computes its part of the $D^{(k)}$ matrix; 8. 9. end 10. end FLOYD_2DBLOCK

Algorithm 10.4 Floyd's parallel formulation using the 2-D block mapping. $P_{*,j}$ denotes all the processes in the j^{th} column, and $P_{i,*}$ denotes all the processes in the i^{th} row. The matrix $D^{(0)}$ is the adjacency matrix.

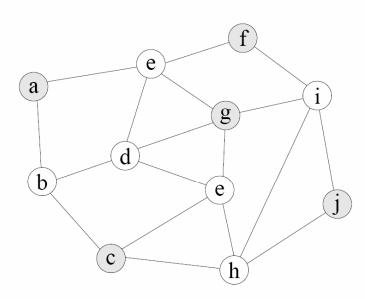
Comparison of All-Pairs SP Algorithms

Table 10.1 The performance and scalability of the all-pairs shortest paths algorithms on various architectures with O(p) bisection bandwidth. Similar run times apply to all k - d cube architectures, provided that processes are properly mapped to the underlying processors.

	Maximum Number of Processes for $E = \Theta(1)$	er Corresponding Parallel Run Time	Isoefficiency Function
Dijkstra source-partitioned Dijkstra source-parallel Floyd 1-D block Floyd 2-D block Floyd pipelined 2-D block	$\Theta(n) \\ \Theta(n^2/\log n) \\ \Theta(n/\log n) \\ \Theta(n^2/\log^2 n) \\ \Theta(n^2)$	$\Theta(n^2)$ $\Theta(n \log n)$ $\Theta(n^2 \log n)$ $\Theta(n \log^2 n)$ $\Theta(n)$	$ \begin{split} &\Theta(p^3) \\ &\Theta((p\log p)^{1.5}) \\ &\Theta((p\log p)^3) \\ &\Theta(p^{1.5}\log^3 p) \\ &\Theta(p^{1.5}) \end{split} $

Maximal Independent Sets

Find the maximal set of vertices that are not adjacent to each other.



{a, d, i, h} is an independent set
{a, c, j, f, g} is a maximal independent set
{a, d, h, f} is a maximal independent set

Figure 10.15 Examples of independent and maximal independent sets.

Serial Algorithms for MIS

- Practical MIS algorithms are incremental in nature.
 - □ Start with an empty set.
 - 1. Add the vertex with the smallest degree.
 - 2. Remove adjacent vertices
 - 3. Repeat 1—2 until the graph becomes empty.
- These algorithms are impossible to parallelize.
 Why?
- Parallel MIS algorithms are based on the ideas initially introduced by Luby.

Luby's MIS Algorithm

Randomized algorithm.

- □ Starts with an empty set.
- 1. Assigns random numbers to each vertex.
- Vertices whose random number are smaller than all of the numbers assigned to their adjacent vertices are included in the MIS.
- 3. Vertices adjacent to the newly inserted vertices are removed.
- Repeat steps 1—3 until the graph becomes empty.
- This algorithms will terminate in O(log (n)) iterations.
- Why is this a good algorithm to parallelize?
- How will the parallel formulation proceed?
 - □ Shared memory
 - Distributed memory

