Introduction to

Parallel Computing

George Karypis

Programming Shared Address Space
Platforms

S
Outline

m Shared Address-Space Programming
Models

m Thread-based programming
POSIX API/Pthreads

m Directive-based programming
OpenMP API

S
Shared Memory Programming

m Communication is implicitly specified

m Focus on constructs for expressing
concurrency and synchronization

Minimize data-sharing overheads

Commonly Used Models

m Process model

All memory is local unless explicitly specified/allocated as shared.
Unix processes.

m Light-weight process/thread model

All memory is global and can be accessed by all the threads.
m Runtime stack is local but it can be shared.

POSIX thread API/Pthreads
m Low-level & system-programming flavor to it.

m Directive model

Concurrency is specified in terms of high-level compiler directives.

m High-level constructs that leave some of the error-prone details to the
compiler.

OpenMP has emerged as a standard.

S
POSIX API/Pthreads

m Has emerged as the de-facto standard
supported by most OS vendors.
Aids in the portability of threaded applications.

m Provides a good set of functions that allow for
the creation, termination, and synchronization of

threads.
However, these functions are low-level and the APl is
missing some high-level constructs for efficient data-

sharing

m There are no collective communication operation like those
provided by MPI.

S
Pthreads Overview

m [hread creation & termination

m Synchronization primitives
Mutual exclusion locks
Conditional variables

m Object attributes

hread Creation & Termination

1l #include <pthread.h>

2 int

3 pthread_create (

4 pthread t *thread handle,

5 const pthread attr_t *attribute,

6 void * (*thread_function) (void *),
7 void *arg) ;

int

pthread join (
pthread t thread,
void **ptr) ;

=) —

The pthread_create function creates a single thread that corresponds
to the invocation of the function thread_function (and any other functions
called by thread function). On successful creation of a thread, a unique
identifier 1s associated with the thread and assigned to the location pointed to by
thread_handle. The thread has the attributes described by the attribute ar-
gument. When this argument is NULL, a thread with default attributes is created.
We will discuss the attribute parameter in detail in Section 7.6. The arg field
specifies a pointer to the argument to function thread_function. This argument
i1s typically used to pass the workspace and other thread-specific data to a thread. In
the compute_pi example, it 1s used to pass an integer id that is used as a seed for
randomization. The thread handle variable is written before the the function
pthread_create returns; and the new thread is ready for execution as soon as it
is created. If the thread is scheduled on the same processor, the new thread may, in
fact, preempt its creator. This is important to note because all thread initialization
procedures must be completed before creating the thread. Otherwise, errors may re-
sult based on thread scheduling. This is a very common class of errors caused by
race conditions for data access that shows itself in some execution instances, but not
in others. On successful creation of a thread, pthread_create returns 0: else
it returns an error code. The reader is referred to the Pthreads specification for a
detailed description of the error-codes.

A call to this function waits for the termination of the thread whose id is
given by thread. On a successful call to pthread_join, the value passed to
pthread_exit is returned in the location pointed to by ptr. On successful com-
pletion, pthread_join returns 0, else it returns an error-code.

Computing

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

#include <pthread.h>
#include <stdlib.h>

#define MAX THREARDS 512
void *compute pi (void *);

int total hits, total misses, hits[MAX THREADS],
sample points, sample points_per thread, num_threads;

main(}
int i;
pthread_t p_threads [MAX_THREADS] ;
pthread attr t attr;
double computed pi;
double time_start, time_end;
struct timewval twv;
struct timezone tz;

pthread_attr_init (&attr);

pthread_attr_setscope (&attr,PTHREAD SCOPE_SYSTEM} ;
printf ("Enter number of sample points: ");

scanf ("%d", &sample_points);

printf ("Enter number of threads: ");

scanf ("$d", &num_threads);

gettimeofday(&tv, &tz);
time_start = (double)tv.tv_sec +
{double)tv.tv_usec / 1000000.0;

total_hits = 0;
sample points per thread = sample points / num_threads;
for (i=0; i< num_threads; i++) {
hits([i] = i;
pthread create(&p threads[i], &attr, compute pi,
(void *) &hits[i]l);
}
for (i=0; i< num threads; i++) |{
pthread join(p_threads([i], NULL) ;

the value of 1T

39
40
41
42
43

44

46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

total hits += hits[i];
}
computed_pi = 4.0*(double) total_hits /
((double) (sample_points));
gettimeofday (&tv, &tz);
time_end = (double)tv.tv_sec +
(double)tv.tv_usec / 1000000.0;

printf ("Computed PI = %1f\n", computed pi);
printf(" %1f\n", time_end - time_start);

}

void *compute_pi (void *s) {
int seed, i, *hit_pointer;
double rand no_x, rand no_ y;
int local_hits;

hit_pointer = (int *) s;
seed = *hit_pointer;
local _hits = 0;
for (i = 0; i < sample points_per_thread; i++) {
rand no x =(double) (rand r(&seed))/(double) ((2<<14)-1);
rand no y =(double) (rand r(&seed))/(double) ((2<<14)-1);
if (({rand_no_x - 0.5) * (rand no_x - 0.5) +
(rand_no_y - 0.5) * (rand no_y - 0.5)) < 0.25)
local hits ++;
seed *= 1i;
}
*hit_pointer = local_hits;
pthread_exit (0} ;

" I
Synchronization Primitives

m Access to shared variable need to be controlled to
remove race conditions and ensure serial semantics.

/* each thread tries to update variable best cost as follows */
if (my cost < best cost)
best_cost = my_cost;

LS B]

To understand the problem with shared data access, let us examine one execution in-
stance of the above code fragment. Assume that there are two threads, the initial value of
best_cost 1s 100, and the values of my_cost are 50 and 75 at threads t1 and t2, respec-
tively. If both threads execute the condition inside the i £ statement concurrently, then both
threads enter the then part of the statement. Depending on which thread executes first,
the value of best_cost at the end could be either 50 or 75. There are two problems here:
the first 1s the non-deterministic nature of the result; second, and more importantly, the
value 75 of best_cost is inconsistent in the sense that no serialization of the two threads
can possibly yield this result. This 1s an undesirable situation, sometimes also referred to
as a race condition (so called because the result of the computation depends on the race
between competing threads).

Mutual Exclusion Locks

m Pthreads provide a special variable called a mutex lock that can be
used to guard critical sections of the program.
The idea is for a thread to acquire the lock before entering the critical

section and release on exit.

If the lock is already owned by another thread, the thread blocks until

the lock is released.

m Lock represent serialization points, so too many locks can decrease

the performance.

I int
2 pthread_mutex_lock |
3

pthread mutex_t *mutex_lock) ;

A call to this function attempts a lock on the mutex-lock mutex_lock. (The data type
of amutex_lock is predefined to be pthread mutex_t.) If the mutex-lock 1s already
locked, the calling thread blocks; otherwise the mutex-lock is locked and the calling thread
returns. A successful return from the function returns a value 0. Other values indicate error

conditions such as deadlocks.

| int

2 pthread mutex init (

3 pthread mutex t *mutex_lock,

4 const pthread mutexattr_t *lock_attr);

This function initializes the mutex-lock mutex_lock to an unlocked state. The at-
tributes of the mutex-lock are specified by lock_attr. If this argument is set to NULL,
the default mutex-lock attributes are used (normal mutex-lock). Attributes objects for
threads are discussed in greater detail in Section 7.6.

I int
2 pthread_mutex_unlock |
pthread_mutex_t *mutex lock);

[}

On calling this function, in the case of a normal mutex-lock, the lock 1s relinquished
and one of the blocked threads is scheduled to enter the critical section. The spe-
cific thread is determined by the scheduling policy. There are other types of locks
(other than normal locks), which are discussed in Section 7.6 along with the associ-
ated semantics of the function pthread.mutex_unlock. If a programmer attempts

a pthread_mutex_unlock on a previously unlocked mutex or one that is locked by
another thread, the effect 1s undefined.

It is often possible to reduce the idling overhead associated with locks using an alternate
function, pthread mutex_trylock. This function attempts a lock on mutex_lock.
If the lock is successful, the function returns a zero. Ifit is already locked by another thread,
instead of blocking the thread execution, it returns a value EBUSY. This allows the thread to
do other work and to poll the mutex for a lock. Furthermore, pthread_.mutex_trylock
is typically much faster than pthread_mutex_lock on typical systems since it does not
have to deal with queues associated with locks for multiple threads waiting on the lock.
The prototype of pthread.mutex_trylock is:
int

1
2 pthread_mutex_trylock (
3 pthread mutex t *mutex_lock) ;

" S
omputing the minimum element of
an array.

| #include <pthread.h>

2 woid *find min(void *1list_ptr);

3 pthread mutex_t minimum_value lock;

4 int minimum_value, partial_list_size;

5

6 main() {

7 /* declare and initialize data structures and list */
8 minimum_ wvalue = MIN_INT;

9 pthread init();

10 pthread mutex init (&minimum_wvalue_ lock, NULL) ;
11

12 /* initialize lists, list ptr, and partial list size */
13 /* create and join threads here */

14}

15

16 wvoid *find min(void *list ptr) {

17 int *partial list_pointer, my min, i;

18 my_min = MIN_INT;

19 partial list pointer = (int *) list ptr;

20 for (i = 0; i < partial list size; i++)

21 if (partial_list pointer[i] < my_min)

22 my min = partial list pointer[i];

23 /* lock the mutex associated with minimum value and
24 update the wvariable as required */

25 pthread mutex lock (&minimum wvalue_ lock) ;

26 if (my_min < minimum_value)

27 minimum value = mv min;

28 /* and unlock the mutex */

29 pthread mutex unlock (&minimum_value_ lock) ;
30 pthread exit (0);

31}

Producer Consumer Queues

pthread_mutex_ t task gueue_lock;

|

2 int task_available;

3

4 /* other shared data structures here */

z

6 main() {

7 /* declarations and initializations */
task_available = 0;

9 pthread_init();

10 pthread mutex_init (&task_gueue_lock, NULL);
11 /* create and join producer and consumer threads */
12}

14 wvoid *producer(void *producer_thread_data) {

15 int inserted;

16 struct task my_task;

17 while (!done()) {

18 inserted = 0;

19 create_task (&my_task) ;

20 while (inserted == 0) |{

21 pthread mutex_lock(&task queue_lock) ;
22 if (task_available == 0)

23 insert_into_gueue (my_task);

24 task_available = 1;

25 inserted = 1;

26 }

2 pthread mutex_unlock (&task_gqueue_lock) ;
28 }

29 }

30}

31

32 void *consumer(void *consumer_thread_data) {

33 int extracted;

34 struct task my_task;

35 /* local data structure declarations */

36 while (!done()) {

37 extracted = 0;

38 while (extracted == 0) {

39 pthread mutex_lock(&task_gqueue_lock) ;
40 if (rtask_available == 1) {

41 extract_from_queue (&my_task) ;

42 task_available = 0;

43 extracted = 1;

44]

45 pthread mutex_unlock (&task_gueue_lock) ;
46 }

47 process_task(my_task);

48 }

49)

» N
Conditional Variables

m \Waiting-queue like synchronization
principles.

Based on the outcome of a certain condition a
thread may attach itself to a waiting queue.

At a later point in time, another thread that
change the outcome of the condition, will
wake up one/all of the threads so that they
can see if they can proceed.

m Conditional variables are always
associated with a mutex lock.

Conditional Variables API

1 int pthread cond_wait(pthread_cond_t *cond,
2 pthread mutex t *mutex);

A call to this function blocks the execution of the thread until it receives a signal from
another thread or is interrupted by an OS signal. In addition to blocking the thread, the
pthread_cond_wait function releases the lock on mutex. This is important because
otherwise no other thread will be able to work on the shared variable task_available
and the predicate would never be satisfied. When the thread is released on a signal, it waits
to reacquire the lock on mutex before resuming execution. It is convenient to think of each
condition variable as being associated with a queue. Threads performing a condition wait
on the variable relinquish their lock and enter the queue. When the condition is signaled
(using pthread_cond._signal), one of these threads in the queue is unblocked, and
when the mutex becomes available, it is handed to this thread (and the thread becomes
runnable).

In the above example, each task could be consumed by only one consumer thread.
Therefore, we choose to signal one blocked thread at a time. In some other computations, it
may be beneficial to wake all threads that are waiting on the condition variable as opposed
to a single thread. This can be done using the function pthread_cond_broadcast.

I int pthread_cond_broadcast (pthread_cond_t *cond) ;

1 int pthread_cond_signal (pthread _cond_t *cond) ;

The function unblocks at least one thread that is currently waiting on the condition
variable cond. The producer then relinquishes its lock on mutex by explicitly calling
pthread mutex_unlock, allowing one of the blocked consumer threads to consume
the task.

It is often useful to build time-outs into condition waits. Using the function
pthread_cond_timedwait, a thread can perform a wait on a condition variable until
a specified time expires. At this point, the thread wakes up by itself if it does not receive a
signal or a broadcast. The prototype for this function is:

I int pthread cond_timedwait (pthread cond_t *cond,
2 pthread_mutex t *mutex,
3 const struct timespec *abstime);

If the absolute time abst ime specified expires before a signal or broadcast is received,
the function returns an error message. It also reacquires the lock on mutex when it be-
comes available.

I int pthread cond_init (pthread_cond_t *cond,
2 const pthread_condattr_t *attr);
3 int pthread_cond_destroy(pthread_cond_t *cond);

The function pthread_cond_init initializes a condition variable (pointed to by
cond) whose attributes are defined in the attribute object attyr. Setting this pointer
to NULL assigns default attributes for condition variables. If at some point in a pro-
gram a condition variable is no longer required, it can be discarded using the function
pthread_cond_destroy. These functions for manipulating condition variables enable
us to rewrite our producer-consumer segment as follows:

JE——
roducer

onsumer
xample wi
onditional
ariables

26

30

36

38
39
40
41
42
43

pthread cond_t cond_queue empty, cond queue full;
pthread mutex t task gueue cond lock;
int task_available;

/* other data structures here */

main() {
/* declarations and initializations */
task _available = 0;
pthread init(};
pthread cond_init (&cond queue_empty, NULL) ;
pthread cond_ init(&cond_gueue_ full, NULL);
pthread mutex init (&task_gueue_cond_lock, NULL);
/* create and join producer and consumer threads */

}

void *producer (void *producer thread_data) {

int inserted;

while (!done()) {
create_task();
pthread mutex_ lock (&task gqueue cond lock) ;
while (task_available == 1)

pthread cond wait (&cond_gueue_empty,
&task gueue_cond lock) ;

insert_into_gueue();
task_available = 1;
pthread cond signal (&cond_gqueue_ full) ;
pthread mutex_unlock (&task_gueue cond_lock) ;

}

void *consumer (void *consumer thread_data) {

while (!done()) {
pthread mutex lock(&task gueue cond lock]) ;
while (task_available == 0)

pthread cond wait (&cond queue full,
&task_queue_cond_lock) ;
my_task = extract_from queue();
task_available = 0;
pthread cond_signal (&cond_queue_empty) ;
pthread_mutex_unlock (&task_gueue_cond_lock) ;
process_task(my_task) ;

S
Attribute Objects

m Various attributes can be associated with threads, locks, and
conditional variables.

Thread attributes:
m scheduling parameters
m stack size
s detached state

Mutex attributes:
= normal
only a single thread is allowed to lock it.
if a threads tries to lock it twice a deadlock occurs.
m recursive
a thread can lock the mutex multiple time.

each successive lock increments a counter and each successive release
decrements the counter.

a thread can lock a mutex only if its counter is zero.
m errorcheck
like normal but an attempt to lock it again by the same thread leads to an error.

The book and the Posix thread API provide additional details.

S
OpenMP

m A standard directive-based shared
memory programming API

C/C++/Fortran versions of the APl exist

m API consists of a set of compiler directive
along with a set of API functions.

I #pragma omp directive [clause list]

S
Parallel Region

m Parallel regions are specified by the paral lel directive:

1 #pragma omp parallel [clause list]
2 /* structured block */
3

m The clause list contains information about:

conditional parallelization
m IT (scalar expression)

degree of concurrency
= hum_threads (integer expression)

data handling
m private (var list), firstprivate (var list), shared (var
list)
s default(shared|private]none)

#ipragma omp parallel if (is parallel == 1) num_threads(8) \

|

2 private (a) shared (b) firstprivate(c)
304

4 /* structured block */

5

}

S
Reduction clause

Justas firstprivate specifies how multiple local copies of a variable are initialized
inside a thread, the reduction clause specifies how multiple local copies of a variable
at different threads are combined into a single copy at the master when threads exit. The
usage of the reduction clauseis reduction (operator: wvariable list).
This clause performs a reduction on the scalar variables specified in the list using the
operator. The variables in the list are implicitly specified as being private to threads.
The operatorcanbeoneof+, *, -, &, |, ~, &&and ||.

Example 7.10 Using the reduction clause

#pragma omp parallel reduction(+: sum) num_threads(8)

|

2 {

3 /* compute local sums here */

4 }

5 /* sum here contains sum of all local instances of sums */

In this example, each of the eight threads gets a copy of the variable sum. When the
threads exit, the sum of all of these local copies is stored in the single copy of the
variable (at the master thread). [|

Computing the value of 1

S B W~

—— = 0 00 =
M — O

—_——
EEa v

15
16
17
18

/* R A A S A SRR R R R R R RS R EREEEEEEERESEEESEEEEEEEEEESEE RS S

An OpenMP wversion of a threaded program to compute PI.
hkhkhkhhkhdhhdhhdhhbhhhthdhbhbrthdhhddhdhddrhddddddhdhbdhhbdhdddhddhdsk */

#pragma omp parallel default(private) shared (npoints) \
reduction(+: sum) num_threads (8)
{

num_threads = omp_get num threads() ;

sample_points_per_thread = npoints / num_threads;

sum = 0;

for (i = 0; 1 < sample points per thread; i++) {
rand no x =(double) (rand r(&seed))/ (double) ((2<<14) -1)
rand no y =(double) (rand r(&seed))/ (double) ((2<<14)-1)

if (((rand no x - 0.5) * (rand no x - 0.5) +
(rand no y - 0.5) * (rand no y - 0.5)) < 0.25)
sum ++;

I

I

S
Specifying concurrency

m Concurrent tasks are specified using the
for and sections directives.

The for directive splits the iterations of a
loop across the different threads.

The sections directive assigns each thread
to explicitly identified tasks.

The for directive

The for directive is used to split parallel iteration spaces across threads. The general form
of a for directive is as follows:
1 #pragma omp for [clause list]

2 /* for loop */
3

The clauses that can be used in this context are: private, firstprivate,
lastprivate, reduction, schedule, nowait, and ordered. The first four

clauses deal with data handling and have identical semantics as in the case of the
parallel directive. The lastprivate clause deals with how multiple local copies
of a variable are written back into a single copy at the end of the parallel for loop. When
using a for loop (or sections directive as we shall see) for farming work to threads, it
1s sometimes desired that the last iteration (as defined by serial execution) of the for loop
update the value of a variable. This is accomplished using the lastprivate directive.

The schedule clause of the for directive deals with the assignment
of iterations to threads. The general form of the schedule directive is
schedule (scheduling.class [, parameter]). OpenMP supports four
scheduling classes: static, dynamic, guided, and runtime.

Often, it is desirable to have a sequence of for-directives within a parallel construct that
do not execute an implicit barrier at the end of each for directive. OpenMP provides a
clause — nowait, which can be used with a for directive to indicate that the threads can
proceed to the next statement without waiting for all other threads to complete the for
loop execution. This is illustrated in the following example:

An example

1 #pragma omp parallel default (private) shared (npoints) \

2 reduction(+: sum) num_threads(8)

3 {

4 sum = 0;

5 #pragma omp for

6 for (i = 0; 1 < npoints; i++) {

7 rand_no_x =(double) (rand_r (&seed))/ (double) ((2<<14)-1);
8 rand no_y =(double) (rand_r(&seed))/ (double) ((2<<14)-1);
9 if (((rand no x - 0.5) * (rand no x - 0.5) +

10 (rand no y - 0.5) * (rand no y - 0.5)) < 0.25)

11 sum ++;

12 }

13 }

The loop index for the for directive is assumed to be private.

" A
More one For directive

m Loop scheduling schemes

schedule(static[, chunk-size])

m splits the iterations into consecutive chucks of size chunk-size and
assigns them in round-robin fashion.

schedule(dynamic [, chunk-size])

m splits the iterations into consecutive chunks of size chunk-size and
gives to each thread a chunk as soon as it finishes processing its
previous chunk.

schedule(guided [, chunk-size])

m like dynamic but the chunk-size is reduced exponentially as each
chunk is dispatched to a thread.

schedule(runtime)
m IS determined by reading an environmental variable.

JE
Restrictions on the For directive

m For loops must not have break statements.
m Loop control variables must be integers.

m [he initialization expression of the control
variable must be an integer.

m The logical expression must be one of <
<= > >=

m The increment expression must have
integer increments and decrements.

" A
The sectirons directive

| #pragma omp parallel

2 {

3 #pragma omp sections

4 {

5 #pragma omp section
6 {

7 taskA() ;

8)

9 #pragma omp section
10 {

11 taskB () ;

12 }

13 #pragma omp section
14 {

15 taskC() ;

16 }

17 }

18 }

If there are three threads, each section (in this case, the associated task) 1s assigned to
one thread. At the end of execution of the assigned section, the threads synchronize (unless
the nowait clause is used). Note that it is illegal to branch in and out of sect ion blocks.

Synchronization Directives

m barrier directive

1

#pragma omp barrier

m single/master directives

| #pragma omp

2 structured block 2

single [clause list] | #pragma omp master

structured block

m critical/atomic directives

| #pragma omp critical [(name)]
2 structured block

m ordered directive

2 structured block

| #pragma omp ordered

