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Abstract

In this paper, an exhaustive review of the principles and of the applications of the noising methods, recent com-
binatorial optimization metaheuristics, is attempted. The features and the variants of the noising methods are detailed
and the tunings of their parameters when applied to different combinatorial optimization problems are summarized.
The links between the noising methods and two other metaheuristics (namely, the simulated annealing method and the
threshold accepting algorithm) are also studied and that the noising methods can be considered as generalizations of
these metaheuristics when their components are properly chosen is shown. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Suppose that a company must solve daily a
problem depending on data changing slightly ev-
ery day, by the way of an iterative improvement
method. To solve one day’s problem, is it more
efficient to forget what was done previously and to
compute an entirely new initial solution or to re-
start the resolution of the problem with the solu-
tion of the day before?
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Obviously, the second behaviour is faster. But,
what is quite surprising is that it will lead to a
better solution. It is what we observed during an
experiment dealing with heuristics. We drew in-
spiration from this philosophy to design the nois-
ing methods: to compute the optimum of a
combinatorial problem, instead of taking the
genuine data into account directly, we consider
that they are the outcomes of a series of fluctuating
data converging towards the genuine ones.

The aim of this paper is to describe the possible
variants of these recent combinatorial optimiza-
tion methods and to review their applications and
their results. These heuristics, which have been
successfully applied to different combinatorial
optimization problems (see Section 3), are not

0377-2217/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0377-2217(00)00305-2



L. Charon, O. Hudry | European Journal of Operational Research 135 (2001) 86-101 87

designed to solve only one special type of prob-
lems, but, as other algorithms sometimes called
metaheuristics or local search methods (see for
instance [1,38-40], among many references, for a
general review on metaheuristics), to be applicable
to various kinds of combinatorial optimization
problems. Such a combinatorial optimization
problem can be defined as follows: given a finite set
S and a function f defined on S, find the maximum
or the minimum of f over S and on element of S
optimizing f. As maximizing a function f is the
same as minimizing —f, we will assume further,
without loss of generality, that we want to solve a
minimization problem. In the sequel, the elements
of S will be called solutions and f will be the ob-
Jjective function. The elements of S minimizing f
over S will be called the optimal solutions.

In the next section, we present the principles of
the noising methods. We also investigate the links
between the noising methods on the one hand, and
the simulated annealing method and the threshold
accepting algorithm on the other hand in Section
2. Then, in Section 3, we review the applications of
the noising methods to different combinatorial
optimization problems and we detail some of
them. Some applications were successful, some
others did not give results better than those al-
ready known and reported in literature; these ones
are shortly mentioned in Section 4, which contains
some concluding remarks.

2. Principles of the noising methods

Many heuristics applied to combinatorial opti-
mization problems are based on elementary
transformations. We call transformation any oper-
ation which changes a solution s of S into a so-
lution s of S. Elementary transformations
constitute a subset of the set of transformations;
they usually consist in changing one feature of s
without changing its global structure: for instance,
if s is a binary string, an elementary transforma-
tion (e.t. in what follows) could be to change the
bit located in the ith position of s into its com-
plement, for a given i. Such an e.t. depends on one
or several parameters (the parameter i for the
previous example). We call generic elementary

transformation (g.e.t. in what follows) the set of
e.t.s differing one from the other just by the values
taken by their parameters (the g.e.t. associated
with the e.t.s of the example can be described as
changing a non-specified bit into its complement).
For a given g.e.t. 7, the set of the solutions #(s)
that we can get by applying an e.t. ¢ belonging to T
(¢ is got by specifying the values of the parameters
associated with 7) to a given solution s is called the
neighbourhood T(s) of s, and the elements #(s) of
T(s) are called the neighbours of s.

Thanks to such a g.e.t. 7, we can design an iz-
erative improvement method (also called a descent
for a minimization problem): from the current
solution s, we apply an e.t. ¢t € T to s so that we get
a neighbour s’ € T(s); if we have f(s') < f(s), then
s’ becomes the new current solution, otherwise we
keep s as the current solution; then, we do it again
with the current solution until it is impossible to
find a neighbour of the current solution s* which is
better than s* : Vs’ € T(s*), f(s') = f(s*). Thus, the
solution s* provided by a descent is a local mini-
mum with respect to 7 (or similarly, with respect
to the neighbourhood induced by 7) and not
necessarily an optimal solution.

The noising methods are also based on ele-
mentary transformations. The main difference
with a descent is that, when we consider the value
f(s) for a given solution s, we add a perturbation
that we call a noise to f(s). This noise is ran-
domly chosen into an interval of which the range
decreases during the process. For example, if we
draw the noise into the interval [—r,+r] with a
given probability distribution, then the noise-rate
r of the noise decreases during the running of the
method. Of course, it is necessary to precise the
probability distribution of the noise and its ex-
tremal values (the initial — and maximum - value
of r and its final — and minimum - one). It is also
necessary to precise the way of decreasing the
noise-rate r. Because of the random noise, it is
not always sure to reach a local minimum and it
can be necessary to introduce a stopping crite-
rion, for instance by allowing a given number of
transformations. Moreover, as the final solution
is not necessarily the best solution computed
during the method, the best solution found since
the beginning is memorized and it is this best
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solution which is provided at the end by the
noising methods. Other variants (not exclusively
linked to the noising methods) and other pa-
rameters can be useful to define the scheme of a
noising method or to improve it. We detail these
components below.

2.1. The generic elementary transformation

As usual for the metaheuristics, the choice of
the g.e.t. (or similarly, of the neighbourhood of a
solution) is essential and highly depends on the
problem.

Such a g.e.t. should be able to generate the
whole set S of solutions when applied enough
times from any given initial solution. For example,
if a solution can be described as a binary string, the
g.e.t. changing a bit into its complement is relevant
(this transformation is illustrated in Fig. 1(left)),
but the g.e.t. changing only the bits in even posi-
tions is not. Another classic example is the g.e.t
proposed by Lin [36] and often called “2-opt™ for
the well-known travelling salesman problem
(TSP): given a Hamiltonian cycle C, remove two
edges {x;,x;} and {x,x;} from C and replace them
by the two edges {x;,x;} and {x;,x,} or by {x;,x,}
and {x,x;} (one of these two exchanges gives an-
other Hamiltonian cycle, the other gives a struc-
ture which is not connected). Lin’s 2-opt is
illustrated in Fig. 1(right). On the other hand, it
should be easy and quick to evaluate the conse-
quences involved by the transformation.

The following kinds of g.e.t.s are quite com-
mon. They are not always applicable to all com-
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binatorial optimization problems, depending on

the coding of the solutions.

o Substitution (or complementation for the solu-
tions coded as binary strings). In the case of
binary strings, the complementation transfor-
mation is illustrated in Fig. 1: a bit is changed
into its complement. It can be generalized to so-
lutions coded as strings of characters belonging
to an alphabet X, by substituting a character of
Y to a character of the current solution, when
this gives an element of S; we call substitution
this generalization.

o Swapping. When the current solution is coded as
a string of characters, the swapping transforma-
tion with parameters ¢ and b consists in swap-
ping the two characters located in positions a
and b in the current solution. For instance, ap-
plying the swapping with parameters 2 and 5
to the string ABCDEF Ggives A ECDB
F G.

o Shifting. When the current solution is still coded
as a string of characters, the shifting transfor-
mation with parameters ¢ and b consists in in-
serting in position a the character located in
position b in the current solution, and then in
shifting the characters located between a (in-
cluded) and b (excluded). For instance A B
CDEF G becomes ABF CDE G by the
shifting of parameters 3 and 6.

o [nversion. Once again, if the current solution is
coded as a string of characters, the inversion
transformation with parameters ¢ and b consists
in inverting the order of the elements located be-
tween « and b in the current solution. For exam-
ple, applying an inversion with 2 and 5 as its

Xy Xk

Fig. 1. Examples of elementary transformations; (left): Complementation of the fifth bit in a binary string; (right): Lin’s 2-opt for the

TSP applied to the edges {x;,x;} and {x;,x}.
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parameters to ABCDEF G gives AED CB
F G. It is easy to see that Lin’s 2-opt can be con-
sidered as an inversion if the Hamiltonian cycle
is properly coded (as in Section 2.2).
In the following, we shall call trial any application
of an e.t. It is the unit that we use to measure the
number of iterations performed by the noising
methods (or another metaheuristic) when applied
to a given problem.

2.2. The examination of the neighbourhood

When the g.e.t. T (and so the neighbourhood
too) is chosen, there are different ways of exploring
the neighbourhood. As said above, the application
of T depends on some parameters: for e.g.,
changing one bit in a binary string depends on one
parameter: the position of the bit to be changed in
the string; for the TSP, Lin’s 2-opt depends on two
parameters: if the current Hamiltonian cycle is
X1 X3 ...x, (Where n denotes the number of verti-
ces), the transformation specified by the two ver-
tex-positions i and j (with j > i+ 1) consists in
replacing the edges {x;,x;;1} and {x;,x;;1} by the
edges {x;,x;} and {x;11,x;11}. Then, it is possible to
examine the neighbours by choosing the values of
the parameters of 7T in different ways. Among
them, we can find (see also [26] for instance):

e The random exploration. It consists in
choosing the values of the parameters of 7T ran-
domly. This strategy is applied for instance in a
classic simulated annealing (see for e.g., [1,8,38-
40]; this list is not exhaustive and the random ex-
ploration is widely used for simulated annealing,
though it is not the only way of sampling the
neighbourhood: see [40] for instance). One draw-
back of this strategy is that we cannot benefit by
the previous trials (associated with other values of
the parameters) in order to reduce the amortized
complexity, thus involving generally a great
amount of CPU time. Another one is that we may
try a same e.t. several times (i.e., to get the same
parameter-values several times) instead of explor-
ing another part of the neighbourhood. Moreover,
it is difficult to be sure to reach a local optimum.
On the other hand, if the number of trials is very
low, it can sample the solution-space S more effi-

ciently than the following ways. Similarly, if the
size of the neighbourhood is very large (and if we
do not want to consider another g.e.t.), it can be
the best way of looking for an interesting neigh-
bour.

e The systematic (or cyclic) exploration. It
consists in trying the different values of the pa-
rameters of 7 in a systematic way in order to find
the first better (according to the acceptance crite-
rion) neighbour of the current solution. For ex-
ample, for the TSP if the current solution is the
Hamiltonian cycle x| x; ...x, (Where n denotes the
number of vertices), we try to apply successively a
2-opt with the parameters (1,3) (since (1,2) is not
possible), (1,4),..., until (I,n—1), then with
(2,4),(2,5), and so on until a neighbour better
than the current solution is found; if no such
neighbour is found before, the last trial is with the
parameters (n — 2, n). With this kind of strategy, a
neighbour is never tried twice and it is possible to
be sure to have made the exploration of the whole
neighbourhood. Another advantage is that, very
often, the consequences of the transformation with
a given set of parameters can be evaluated from
the consequences of the transformation with the
previous set of parameters and so we may save
CPU time by reducing the amortized complexity.

e The exhaustive exploration. It consists in try-
ing all the possible values of the parameters in
order to keep the ones which improve the objective
function the most possible. In other words, it
means that we look for the best neighbour of the
current solution. This strategy is applied for in-
stance in tabu search (see [1,38-40]). The main
drawback is that, when the size of the neighbour-
hood is quite large, it is long to explore it entirely.

Of course, it is more or less possible to mix
these strategies. Hence, if the systematic explora-
tion seems too deterministic, it is possible to start
the exploration of the neighbourhood with initial
parameters randomly chosen; for e.g., for the TSP,
it means that instead of (1,3), we can start from
(i,7) with i and j randomly chosen with j > i+ I;
then (1,3) will be tried after (n — 2,n). Similarly,
we may mix the systematic exploration and the
exhaustive one when the g.e.t depends on several
parameters, by looking for the best values of some
parameters and looking for good values for the
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other parameters; for e.g., still for the TSP, we
may look for the first value i for which there exists
a j such that the e.t. with parameters (i, j) leads to
a neighbour better than the current solution and,
for this fixed value of i, we look for the best value
of j. We could describe such an exploration as a
“semi-exhaustive” one.

Our experimentations (see Section 3) seem to
show that, for the noising methods as well as for
other metaheuristics (including simulated anneal-
ing), it is more efficient or quicker to apply a sys-
tematic exploration or a kind of semi-exhaustive
one.

2.3. How to add a noise

A noise is in fact a value taken by a certain
random variable following a given probability
distribution (e.g., a uniform law or a Gaussian
one). The mean and the standard deviation of this
probability distribution tend towards 0 and the
standard deviation decreases during this process;
in other words, the added noise progressively be-
comes non-existent. From a practical point of
view, the noise-rate r introduced before Section 2.1
characterizes the ‘“‘strength” of the noise (for a
chosen probability distribution); then, the de-
creasing of the noise is got by decreasing r. It is
possible to imagine different ways to add the noise;
three of them are described below, while Section
2.4 will depict the features of the laws that have
been applied in the experiments reported in this
paper.

In [2-4,6,7,9-12,20-22,25,27-31,33,35,37,42],
the noising methods can be considered as a suc-
cession of descents applied to the data that we
perturbe before each descent. For example, sup-
pose that the problem that we want to solve is
described by a complete graph G and that G(i, )
denotes the weight of the edge {i,;}. Then, one
way to proceed is to replace, for any edge {i, j}, the
weight G(i, j) by the “noised” weight Gy isea (i, j) =
G(i,j) + p(i,j), where p(i,j) is a noise. Then, we
apply a descent with respect to the noised data
Ghoised (1, 7); when a local minimum (still with re-
spect to the noised data) is reached, we reduce the
noise-rate r (in fact involving a decreasing of the

standard-deviation of the noise and maybe of the
absolute value of its mean), we generate new
noised data Gisea(i,j) in order to apply a new
descent, and so on until the noise is low enough (it
is the case for instance when the mean and the
standard-deviation of the noise are equal to 0).

In [13-19,43], another noising process is de-
signed. The genuine values of the data are always
considered, but when we compute the variation
Af(s,s") = f(s") — f(s) of the objective function f
involved by the transformation of the current
solution s into one of its neighbours s/, instead of
considering the genuine variation Af(s,s’), we
generate a noised variation Afpeised(s,s’) by adding
a noise to Af(s,s'): Afnoised(s,s") = Af(s,s") + oy,
where p, is a noise changing at each trial & and
depending on the noise-rate. This second kind of
noising generalizes the previous one, since it is
always possible, for each tried e.t., to sum up the
impact of the noises added to the data by a
properly chosen noise added to the variation of f.

The third way is more recent: it appears in [15]
(similar ideas are developed in [10]). It consists in
perturbing f by forgetting a part of the data. For
instance, in [18], we consider the problem of the
clique partitioning of a complete weighted graph
in order to minimize the sum of the weights of the
edges with their two extremities in the same clique
(see Section 3.1). Then, we can consider two ways
to forget a part of the data. In the first one, a part
of the vertices is selected randomly and the weight
of an edge is taken into account in the compu-
tation of fioseq only if its two extremities have
been selected; here, the noise-rate gives the ratio
of forgotten vertices. In the second way, we do
the same with the edges instead of the vertices: a
part of the edges is selected and an edge is in-
volved in the computation of foieq Only if it has
been selected (the noise-rate still gives the ratio of
forgotten data, that is, of forgotten edges). This
third way of noising f can be seen as a special
case of the first kind of noising: it is sufficient, for
each datum (vertex or edge), to choose the added
noise so that the effect of this datum is with-
drawn.

There are two main differences between these
three strategies. First, randomness does not occur
in the same way: in the first and third possibili-
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ties, after having fixed the noises affecting the
genuine data, the process (a descent) can be de-
terministic while, in the second possibility, ran-
domness takes place at each e.t.; in this case, the
same e.t. can be rejected a first time and then
accepted (or conversely), depending on the ran-
dom numbers p, that we draw. The second main
difference is about the probability distribution.
Imagine, for instance for the TSP, that the
probability distribution for the random numbers
p(i,j) for the first possibility and p, for the
second possibility is a uniform law on the same
interval [—r,+7]. If we apply Lin’s 2-opt for the
TSP, the variation of f involves four terms of
the type p(i,/) in the first kind of noising. Hence,
the noise added to the variation does not follow
the same probability distribution as in the second
kind of noising, since the sum of four uniform
random variables does not follow a uniform law.
This difference between the three noising kinds is
more accurate when the computation of the
variation of f does not involve always the same
number of terms (as it is often the case).

2.4. The probability distribution of the noise and
links with some other metaheuristics

The reason for which we add a noise (to the
data or to the variation) is to be able to escape a
local minimum. It means that the added noise
should be chosen in such a way that an e.t. yielding
an increase of f (called a bad transformation far-
ther) may be accepted, as in simulated annealing
for instance. Usually, we add a noise chosen in an
interval containing negative values as well as
positive ones. The consequence is that we may
accept a bad transformation, but also (contrarily
to what happens with simulated annealing) we
may reject an e.t. yielding a decrease of /' (what we
could call a good transformation).

In the experiments reported in Section 3, the
noises are usually drawn inside an interval
[—r, +r], where the initial value of the noise-rate r
depends on the data (for instance on the maximum
weight of the graph that we deal with). Most of the
time, this distribution is uniform. But, because of
the phenomenon described at the end of the pre-

vious section, the noise added to the variations of f
could be non-uniform and even close to a Gauss-
ian distribution. In some experiments, another
distribution has been tried, inspired by simulated
annealing: the noise is given by p = r- Inp with p
uniformly drawn into ]0,1[ and where r is the
noise-rate. We call logarithmic this kind of distri-
bution.

Indeed we may consider that the second type of
noising (the noise is added directly to the varia-
tions of f) is a generalization of simulated an-
nealing if we choose the parameters properly,
especially the probability distribution: in simulated
annealing, the current solution s is replaced by one
of its neighbours s’ with a probability equal to min
{1,exp(—=Af(s,s')/0)}, where 0 is the decreasing
parameter called temperature; then a bad trans-
formation (Af(s,s’) > 0) is accepted if we have:
exp(—Af(s,s')/0) > p, where p is a random num-
ber uniformly drawn into ]0,1[, or equivalently if
the following condition is fulfilled: Af(s,s')+
0-Inp < 0. So, it is the same result as adding a
logarithmic noise with 0 as the noise-rate. This
logarithmic distribution has been tried in particu-
lar in [13,14,19], as well as a uniform one.

Similarly, we may consider that the noising
method is a generalization of the threshold ac-
cepting algorithm designed by Dueck and
co-workers [23,24]. In this method, the neigh-
bourhood is systematically explored and the cur-
rent solution s is replaced by one of its neighbours
s/ if §' is better than s or if the increase (for a
minimization problem) does not overpass a given
threshold; this threshold depends on the iteration
and decreases during the process down to 0. So,
with respect to simulated annealing, the two main
differences rely in the neighbourhood exploration
and in the fact that the acceptance criterion is no
longer the exponential and non-deterministic Me-
tropolis criterion, but the following one:

at the kth trial, s" is accepted instead of s if
S() = f(s) < O,

where 0, is the threshold of the kth trial, with
0, =0, 0, 260, and 0 =0 if K is the total
number of trials. This criterion avoids the com-
putation of an exponential and the call to a
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random number generator, what usually saves
much CPU time. One of the main difficulties of
this method is the determination of the appropri-
ate values for the thresholds 6;, though Althofer
and Koschnik [5] have related some convergence
properties of threshold accepting to those simu-
lated annealing. It is quite easy to see that these
thresholds can be seen as noises added to the
variation of f (i.e., according to the second way of
adding a noise described above).

One consequence of these generalizations is
that they provide also results on the convergence
of some noising schemes. More precisely, these
convergence results (see for instance [1] for refer-
ences about simulated annealing and [5] for
threshold accepting algorithms) show that there
exist noising schemes for which the noising meth-
ods surely converge towards an optimal solution,
at least when the number of iterations is infinite.
Notice also that Jacobson and Sullivan study in
[32] the convergence of the first kind of noising
(noises are added to the data) and give sufficient
conditions for a convergence towards an optimal
solution. This study is done through their ap-
proach called ‘“generalized hill climbing algo-
rithm”, of which the aim is to provide a unifying
framework to classify a large class of stochastic
and deterministic algorithms, including simulated
annealing, threshold accepting algorithms, genetic
algorithms, tabu search and the noising methods.

To come back to the noising methods and to
conclude about the probability distribution of the
noise, we may of course notice that it is always
possible to apply other probability distributions,
for instance, Gaussian ones. Moreover, the effi-
ciency of a distribution compared to the one of
another distribution depends on the problem to
solve: there is no absolutely best distribution.

2.5. Parameters of the noising methods

As for the other metaheuristics, several nu-
merical parameters must be tuned before running
a noising method. Of course, some of these pa-
rameters are linked.

o Number of trials. This parameter is directly
linked to the CPU time that the user can (or

wants to) spend to solve his/her problem. It is
one stop criterion: the method is over when this
number of trials is completed. Usually, the high-
er this number, the better the results. These trials
can be gathered into clusters characterized by the
fact that the parameters of the probability distri-
bution of the noise are constant inside each clus-
ter. It can be convenient to use the size NS of the
neighbourhood induced by the adopted g.c.t. as
the unit to express the total number of trials. For
instance, the neighbourhood-size induced by
Lin’s 2-opt for the TSP is n(n — 3)/2 if n denotes
the number of vertices of the studied graph,
while NS is equal to n for a binary string of n bits
with the complementation as the g.e.t.

e The noise-rate. As stated above, the noise-rate
decreases during the running of the method.
The extremal values rpa and rp, of the noise-
rate depend on the values of the data but it is al-
ways possible to choose ry;,, = 0. If so, the last
descent leads to a (at least) local minimum with
respect to the adopted g.e.t. But it is often pos-
sible to save CPU time by increasing ry,.

o The decreasing of the noise-rate. The decreasing
of the noise-rate in the experiments reported
here was usually arithmetical. In some experi-
ments (for instance [13,14] and [19]), a geometri-
cal decreasing was studied associated with a
logarithmic noise as well as an arithmetical
one associated with a uniform noise. The value
of the decreasing-rate is obviously linked to
the number N of trial-clusters (see above). For
instance, if the noise-rate r decreases arithmeti-
cally, it decreases by (rmax — Fmin)/N after each
trial-cluster.

Notice that the initial solution does not seem to be

an important parameter of the method. We may

initialize the process with a random solution, or a

solution found by another heuristic.

2.6. Automatic tuning of the parameters

As for any metaheuristic, it is not obvious to
know a priori which parameter setting should be
used. These parameters depend obviously on the
problem to deal with and on the CPU time that the
user wants to spend to solve his/her problem.
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Anyway, an automatic tuning of the parameters
of the noising methods has been designed in [19]
and applied in [17-19]. The aim is to get a noising
framework based on the second kind of noising
(the most general, that is the one in which the
variations of f are perturbed), but independent of
the problem to solve and of the probability dis-
tribution of the noises, and with only one param-
eter: the CPU time fixed by the user.

Broadly speaking, this automatic version is
made of a series of noising methods. The first one
is very short. Then, the CPU time of each noising
method of the series is the double of the CPU time
of the previous noising method (thus, the last
noising method of the series gets about half the
total CPU time chosen by the user). The objective
of each noising method of the series is double: of
course to look for a good solution, but also to
refine the tuning of the parameters provided by the
previous noising method of the series. Because of
this and of the doubling of CPU time, we may
notice from the experiments ([17-19]) that this
automatic tuning provide very good values for the
parameters, at least as good as the ones that we
can find by a fine manual tuning.

It has been tested out on four problems in
[17-19] with two probability distributions (a uni-
form law and a logarithmic one). In the eight cases,
the parameter-values and the solutions provided by
the automatic noising method can be considered as
very satisfying. For example, it is tested out in [17]
on 5790 instances of the linear ordering problem
(see Section 3.2): the automatic noising method
found an optimal solution every time but six,
which have been solved by a second application.

2.7. Variants

Independently of the different schemes that we
can get by choosing the combination of structural
or numerical parameters, it is possible to design
some other variants, not depending on the noising
methods in the sense that they can be applied to
other metaheuristics. We detail two of them below.

e The first one consists in alternating noised
phases with “unnoised”” descents. More precisely,
in order to stay closer to the genuine function, we

may apply a given number NT of noised trials,
then a descent with respect to the genuine function
(i.e., with a 0-noise) until a local minimum is
reached, then again NT noised trials, then, a de-
scent with respect to the genuine function, and so
on. For the first or third types of the noising
method (a noise is added to the data or a part of
the data is forgotten), we may alternate a noised
descent (i.e., a descent with respect to the noised
data; of course, new noises are computed before
applying this noised descent) and an unnoised one
(i.e., a descent with respect to the genuine data).
For the second type (a noise is added to the vari-
ations of f), it appears from our experiments that
a descent needs about 4 - NS trials (where NS is the
size of the neighbourhood); then, we apply suc-
cessively N7 =4 - NS noised trials, an unnoised
descent, and so on... For both cases, the process
runs as if the noise-rate followed the behaviour
depicted by Fig. 2 in which the length of all the
stages (the number of trials for a fixed noise-rate)
is about the same. This variant allows to check a
good number of local minima (with respect to the
genuine data) which could provide good solutions.

e The second variant consists in coming back to
the best computed solution periodically. Indeed,
because of the bad transformations randomly ac-
cepted, it may happen that we leave an interesting
part of the space of solutions for a less interesting
one. So one possible strategy is to periodically
restart the current solution with the best solution
found since the beginning (see Fig. 3). Of course, it

rate r A
Tmax _|
I I
N
| [ I |
Tmin = -l — T — |~ + - :_ —"-_l
| I I | | | |
l I I ! | ! | trials
0 | 1 1 | | -
beginning end

running of the method

Fig. 2. Evolution of the noise-rate in the first variant.
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starting
solution

final
solution

50

Fig. 3. Periodical restarts of the current solution with five restarts and 5 - NS trials between two restarts. The values besides the circles
give the value of f for the solutions associated with the circle. An arrow corresponds to NS trials; the white circles correspond to the
current solution after NS trials. The little black circles show the restart-moments; the dashed lines correspond to the restart jumps, if

any.

is not useful to restart the current solution too
often. In order not to introduce a new parameter,
the restart period was fixed as follows in [13]. Let
o? - NS be the total number of trials performed by
the method (where NS is the neighbourhood-size;
notice that o is not necessarily an integer); then,
the current solution was restarted with the best
computed solution after every cluster of about
o - NS trials (in other words, there are about o
restarts), what seemed to give a good frequency
(see also [16] for a study of the impact of the re-
start period).

By combining all these components, we may get
many different schemes of the noising methods
(including the simulated annealing method or the
threshold accepting algorithm, as mentioned
above). To give an example, we depict one of these
schemes in the Appendix A, which is the one that
we get by applying the second type of the noising
methods (a noise is added to the variations of f),
with a uniform noise drawn in [—r,+r] where r
decreases arithmetically from 7., down to r;, and
with the two above variants. Another scheme may
be found in [11].

3. Applications of the noising methods

As said above, the noising methods have been
applied to different combinatorial problems arising
in the following fields:

e the partitioning of a weighted graph into cli-
ques: [11,15,18,19,27,28,42];

e the travelling salesman problem: [2,13,16,
19,30,31];

e the 0-1 multidimensional knapsack problem:
[9,25,29];

o the linear ordering problem: [14,17,19];

e multi-criteria decision aid: [12];

e the covering problem and the packing problem
in coding theory: [7,20,21];

e the alignment of graphemes and phonemes in
linguistics: [43];

o the multi-resource generalized assignment prob-
lem: [3,6];

o the task allocation problem: [22];

o the prize-collecting Steiner tree problem: [10];

o the design of discrete manufacturing processes:
[33];

o scheduling problems: [4,35,37].

In order to show how the noising methods can be

applied from a practical point of view, we detail

four applications below.

3.1. Graph partitioning

The first results ([11]) obtained by a noising
method dealt with a NP-hard problem arising for
instance in clustering and classification: given a
complete non-oriented graph G = (X, E) weighted
by positive or negative integers, find a partition of
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X into subsets (of which the number is not fixed)
so that the sum of the weights of edges with their
two extremities in the same subset is minimum.

In [11], we applied the first kind of the noising
method: a noise is randomly added to the weights
of the edges, with a uniform distribution into
[—r, +r] and an arithmetical decrease of the noise-
rate r. We alternate noised descents with unnoised
ones. There is a periodical restart of the current
solution. The graphs studied in [11] have up to 150
vertices; the weights of the edges are integers be-
longing to {—1,1} or to [—Wmax, Wmax] With Wy
equal to 100 or to 1000. The g.e.t. consists in
transferring a vertex from the subset to which it
currently belongs to another one, which can be
empty if we want to create a new subset (if a so-
lution is coded by associating with each vertex the
number of the subset to which it belongs, then this
g.e.t. is a substitution). The examination of the
neighbourhood for the descents (the noised ones as
well as the unnoised ones) is systematic. The best
tuning of the parameters depends on the studied
graphs: the maximum rate-noise ry,, is chosen
between 0.8 X wya and 0.95 x wya and the mini-
mum rate-noise 7y, 1S chosen between 0.15 X Wy«
and 0.5 X wpa anyway, 0.8 X wy,x for rp. and
0.4 X wpax for ry, always gave good results. Of
course, the total number of trials depends on the
CPU time that the user wishes to spend in order to
solve his/her problem. For the frequency of the
restart, if o denotes the number of pairs (noised
descent, unnoised descent) that we apply between
two restarts and f§ the number of restarts (so the
total number of noised descents as well as unno-
ised ones is equal to «.f), then a good tuning of o
and f was to choose o between ff and 2.

We compared this scheme with the result got
by simulated annealing with a classic pattern. The
exploration of the neighbourhood is a random
one, with the same g.e.t. as for the noising
method. The initial temperature is computed by
the method proposed in [34] with an initial ac-
ceptance ratio of 50%. The decrease of tempera-
ture is geometric with a ratio of 0.925. The
number of proposed e.t.s is proportional to
(where n is the number of vertices) with a pro-
portionality coefficient varying from 2 to 15. The
number of temperature changes is fixed, varying

from 11 to 15. Of course, these parameters were
tuned in order to be the best possible with respect
to the amount of CPU time that we wanted to
spend to solve our problem.

These values for the noising method and for
simulated annealing are chosen so that it is possi-
ble to give about the same amount of CPU time to
both methods. The conclusions of the experiments
are that, for a same given CPU time (from about
100 to 1400 seconds a SUN workstation), the
noising method performed slightly better than
simulated annealing: the average and the worst
values of the objective function f over 20 trials for
each graph were always lower (sometimes with a
relatively great difference) for the noising method
than for simulated annealing; for the best value, it
is often the same if the CPU time is great enough,
otherwise, the noising method gave better results.
Another way to compare the efficiencies of these
methods is to compare the CPU time necessary to
find the same average value of /. Then, it appeared
that simulated annealing was much longer than the
noising method: to reach the same value of f,
simulated annealing had to run 1.7 to 3.3 times
longer than the noising method. This was partially
due to the fact that the noising method can benefit
from a systematic exploration of the neighbour-
hood (see [11]).

3.2. Linear ordering problem

Given a set II of m linear orders P, P, ..., P,
defined on the same set X of “candidates”, the
linear ordering problem consists in finding a linear
order minimizing the remoteness f;(w) from IT
over the set {w} of linear orders defined on X. To
define this remoteness, it is usual to consider the
symmetric difference distance J defined by

O(R1,Ry) =|{(x,y) € X*: [(xR,y) and not (xR,y)]
or [ not (xRyy) and (xR,y)]} |

for any binary relations R; and R, defined on X.
This quantity measures the number of disagree-
ments between R; and R,. Then, we set, for any
linear order w defined on X:
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m

fra(w) =8P, w).

k=1

This quantity f;(w) measures the total number of
disagreements between the linear order o and the
set I1 of preferences. The linear ordering problem
is NP-hard.

There are two noising methods studied in [14].
The first one (N1) is called the “basic noising
method” and the second one (N2) the “annealed
noising method” because the noise distribution (a
logarithmic noise) follows the usual scheme of
simulated annecaling. Some features are common
to N1 and N2. First, the same shifting g.e.t. is
applied; such a g.e.t. depends on two parameters
and the size of the induced neighbourhood is
NS=|X|.(|X|-1). The exploration of the
neighbourhood is semi-exhaustive: one parameter
of the g.e.t. varies cyclically and, for any fixed
value of it, the best value of the second one is
looked for. Second, the noise is added to the
variation of the function to minimize. Third, the
number of applied e.t.s is proportional to the size
of the neighbourhood and is equal to 3000 - NS.
Last, there is no restart and unnoised descents are
not alternated with noised ones.

The main differences between N1 and N2 relies
on the way of managing the noise. In N1, the noise
is uniform and the noise-rate decreases arithmeti-
cally from 40 down to 0, each decreasing occuring
after NS e.t.s are tried. In N2, the noise is loga-
rithmic and the noise-rate decreases 40 times geo-
metrically with a decreasing rate equal to 0.925
and from an initial value equal to 80.

We applied these two noising methods to
problems with up to | X |= 240 candidates. We
compared N1 and N2 to other methods as simu-
lated annealing, and we hybridized them with a
genetic algorithm. From our experiments, it ap-
pears that N1 and N2 found good solutions much
quicker than a classic simulated annealing (SA):
SA required 40,000 - NS trials to get results com-
parable with those provided by N1 or N2 with
only 3000 - NS trials . With the same amount of
trials, N1 seemed to give slightly better results than
N2. It is worth noticing that, for SA, N1 and N2,
the hybridization of these methods with a genetic
algorithm improves them, at least if enough re-

sources (the number of trials) are given to them
(see [14] for detalils).

We applied also the automatic tuning of Sec-
tion 2.6 to this problem in [17] and in [19], together
with a branch and bound method to find an exact
solution in [17]. This self-tuned noising method is
based on N1. As said above, the parameters do not
depend on the user, but are constant or computed
(for rmax and for the number of trials) from the
features of the problem that the user wants to
solve. The restart and descent variants are applied:
a restart occurs after about o - NS trials if the total
number of trials is o> - NS and a descent is applied
after 20 - NS trials. With this tuning, the noising
method found an exact solution in more than 98%
of the cases. More precisely, we applied it on 5790
instances with different characteristics and with a
number of candidates varying from 15 to 100: in
only six cases (that we solved exactly by a second
application), it did not find an optimal solution at
first time but an approximate solution very close to
an optimal one. As the noising method is sto-
chastic, applying it twice to problems with a size
and features similar to the ones that we studied
should give an exact solution almost surely.

3.3. Travelling salesman problem

The travelling salesman problem (TSP) is well-
known: find a minimum-weighted Hamiltonian
cycle of a complete weighted graph. In [13,16,19],
we paid attention to two types of TSPs. In the first
one, the weights of the edges are randomly gen-
erated; in the second one, we deal with Euclidean
TSP’s in which the vertices are (randomly or not)
distributed in the plane and the valuation of the
edge {i,/} is the Euclidean distance between i and
Jj- These two problems are NP-hard. It is usual to
adopt Lin’s 2-opt ([36]) as the g.e.t. for the TSP
(this g.e.t. can be considered as an inversion). This
g.e.t. becomes an e.t. by the choice of two vertices
which are not adjacent in the current Hamiltonian
cycle, and so it induces a neighbourhood with
NS = n(n — 3)/2, if n denotes the number of ver-
tices. For the Euclidean TSP, we divide the plane
into square regions so that each region contains
some vertices (about 3 or 4) as in [8] and the
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application of Lin’s 2-opt is restricted to vertices
belonging to a same region or to two adjacent
regions; so NS is quite less than in the general case,
what allows to save CPU time by reducing the
number of tried e.t.s.

The study developed in [16] deals with different
ways of tuning the parameters and with the effects
of these tunings on the results that we get. This
study contributes to understand better the effects
of the different parameters and variants, and
helped us also in designing the automatic version
of the noising methods ([19]).

In [13], we studied different ways of mixing
components of simulated annealing and of the
noising methods. Thus, we designed 10 methods,
including six variants of simulated annealing and
three kinds of noising methods: N, NRD and RN.
In N, the noise is randomly chosen with a uniform
distribution and is added to the variations of the
objective function, the exploration of the neigh-
bourhood is systematic, the noise decreases arith-
metically from 7y, to ryy, after NS trials. The
method called NRD is like N, but with the restart
variant and the descent one (unnoised descents are
alternated with noised ones). The only difference
between N and RN is that there is a random ex-
ploration of the neighbourhood in RN instead of
the systematic one of N.

Among our experiments, we reported in [13] the
results provided by N, NRD and RN applied 50
times to two TSP’s with 100 vertices and integer
weights randomly chosen in [1, 100] and to four
problems coming from [41] with a number of
vertices varying from 76 to 152; for these prob-
lems, we chose rma = 10, rmin = 5; different values
were tested for the number of trials, from 100 - NS
to 10000 - NS. We applied them also to two Eu-
clidean TSP’s: one on 1000 vertices randomly
distributed in  the unit square, with
Fmax = 0.04, roin = 0 and 1000 - NS trials, one on
2500 vertices regularly located on the crosses of a
grid, with 7y, = 0.03, 7, = 0 and still 1000 - NS
trials. The comparison of the ten methods applied
to these TSP’s and to others gives the following
conclusions.

o The rule acceptance used in the noising methods
seems to be more efficient than the one used in
simulated annealing when the number of trials

is rather small, but less efficient for greater val-
ues.

e The restart and descent variants improve the
methods quite a lot, especially when applied to-
gether and involve faster computations.

e A systematic exploration of the neighbourhood
brings a slight improvement while reducing the
CPU time by two.

e The two best methods (in these experiments)
were NRD and an “adaptable” simulated an-
nealing in which the current temperature may
increase or decrease, according to the number
of e.t.s adopted between two temperature-
changes (if this number is not high enough, the
temperature increases).

3.4. Coding theory

The following problem arises from coding the-
ory. Let ¢ and n be two positive integers with
g = 2. Let Z, denote the set {0,1,...,¢ — 1} and
let Z be the set of all n-tuples defined over Z,. A
set C C Z of n-tuples is called a g-ary (n,M,d)-
code if | C |= M and if d is the smallest number of
positions in which two distinct elements of C differ
(this corresponds with the Hamming distance).
One of the most basic problems of coding theory is
to find the largest code of given length (n) and
given minimum distance (d). The largest value of
M such that there exists a g-ary (n,M,d)-code is
denoted by 4,(n,d). The values of 4,(n,d) have
been studied extensively (by simulated annealing,
genetic algorithms, or other methods) and exact
values or sharp bounds are known for many pairs
(n,d).

To apply a noising method to the computation
of A4(n,d), Bogdanova ([7]) defines the quantities
A;(1<i<d—1)foraset C C Z; with | C |= M by:

A= | () € € such that d(x.3) = i} |

then, she sets f(C) = Zf;ll A;. The aim is then to
find a set C with | C |=M and f(C) = 0. In this
case, A4(n,d) is greater than or equal to M. Then, a
new set C’ is considered with | C' |= M + 1 and the
previous process is applied again.
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The scheme used in [7] follows the one pro-
posed in [11]: the noise is added to the data, not to
the variations of f. To do this, Bogdanova gives a
random value k(v) € [l — 7,1 + r] to each vector v
belonging to Zj, where r is the noise-rate; the dis-
tribution of k is uniform. The noised function
Jroisea 18 defined by (with the same notations as
above):

1 !
.fnoised(c) = W Z Z

=1 (xp)eC?d(x,y)=i

[K(x) + k(y)]-

Notice that, when the noise-rate r is equal to 0,
then, k(v) = 1 for any v and so f and fyojsed COIN-
cide. The g.e.t. is a substitution consisting in
changing one position of one element of the cur-
rent set C. The noise-rate decreases arithmetically
from 1 down to 0. An unnoised descent is applied
after each noised descent. By means of this noising
method, Bogdanova succeeded to break several
lower bounds for ¢ = 4 (see [7] for details and for
the new records).

4. Conclusions

It would be unwise to conclude that the noising
methods constitute a panacea in the field of com-
binatorial optimization! If we detailed some suc-
cessful applications above, we can also quote two
experiments for which we failed to find better re-
sults than the ones reported in the literature. The
first one deals with a problem of coding theory
close to the one described in Section 3.4: how
many disjoint spheres with a given radius is it
possible to select in {0, 1}" for a given dimension n
(the ternary version of this problem is also known
as “the football team” problem)? We got some of
the known lower bounds but we did not succeed to
break records (we got new ones in [21], but these
new records appeared simultaneously). The second
one deals with the computation of some Ramsey
numbers: given two integers ¢ and i, the Ramsey
number R(c,i) is the minimum integer so that any
graph on R(c,i) vertices contains at least a clique

on ¢ vertices or an independent set of i vertices.
The computation of these numbers is difficult, even
for small values of i and ¢. We applied a noising
method to the computation of R(c,i) for some
values of ¢ and i, but without succeeding to break
records. Maybe these failures come from the fact
that these problems are more “structural” than
“numerical”’ ones.

Nonetheless, even if the noising methods do not
constitute a panacea, we claim that they deserves
interest because they provide, as well as (and
sometimes better than) other methods like simu-
lated annealing, a way of solving hard problems
with a usually “good” solution within a ‘“‘reason-
able” CPU time. The examples developed above
show that we can sometimes find better results and
more quickly than a classic simulated annealing,
especially if we try to make these methods col-
laborate by an appropriate hybridization rather
than considering them as rivals. We hope that
other researchers will try to apply the noising
methods, alone or hybridized with other heuristics,
to other problems; our aim will be reached if this
review can stimulate them to do so and can help
them in adapting the noising methods to their
problems.

Appendix A

The following scheme of the noising method is
the one that we get by applying the second type of
the noising method (a noise is added to the vari-
ations of f), with a uniform noise drawn in
[—r, +7] where r decreases arithmetically from r,x
down to 7y, for some exploration of the neigh-
bourhood and with the two variants described in
Section 2.7: an unnoised descent is applied after
4 - NS noised trials, where NS denotes the size of
the neighbourhood, and we restart the current
solution after o-NS noised trials, if the total
number of noised trials is o? - NS (here, « is as-
sumed to be an integer). Another scheme may be
found in [11]. Comments are given between aster-
isked parentheses.
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Parameters
Fmax, 'min: reals
total_nb_trials: integer

nb_trials_at_fixed_rate: integer

Constant
NS: integer

Variables
s,s" . of type “solution”
best_sol: of type “solution”
trial_meter: integer
rate: real
noise: real
decrease: real
restart: integer
Begin

(* give the initial and final noise-rates *)

(* gives the total number of noised elementary *)

(* transformations that should be applied *)

(* gives the number of noised elementary *)

(* transformations that should be tried with a fixed noise-rate *)

(* NS is the size of the neighbourhood *)
(* induced by the generic elementary transformation *)

(* s 1s the current solution and s’, one of its neighbours *)

(* best_sol is the best solution found since the beginning *)

(* counts the number of “noised” trials which have been applied *)
(* gives the current value of the noise-rate *)

(* gives the value of a noise to be added to the variation of f* *)
(* denotes the value by which rate decrease *)

(* gives the frequency of the restart of the current solution *)

draw the initial current solution s randomly

best_sol «— s

decrease «— (Fuax — Tmin)/ [(total nb_trials /nb_trials_at_fixed rate) — 1]

restart — /total _nb_trials x NS

rate < Fmax
trial_meter «— 0

while trial_meter < total _nb_trials, do

begin

trial _meter «— trial_meter + 1
let s’ be the next neighbour of s

(* “next” with respect to the adopted *)
(* exploration of the neighbourhood *)

let noise be a random real number uniformly drawn into [—rate, rate]

if £(s") — f(s) + noise < 0, then s «— '

if trial_meter = 0 (modulo 4 - NS), then apply an “unnoised” descent from s
if f(s) < f(bestsol), then best_sol «— s

if trial_meter = 0 (modulo restart), then s < best_sol

if trial_meter = 0 (modulo nb_trials_at_fixed_rate), then rate «— rate — decrease

end of “while”
end.
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