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Cryptology – F03 – Note 11

Lecture, April 15

We continued with chapter 7, skipping sections 7.5 and 7.7. The description
of undeniable signatures will followed that handout given in class.

Lecture, April 29

We will finish undeniable signatures, covering the denial protocol, and begin
on protocols. There are handouts for this; it is not in the textbook. Read
sections 11.1.3 and 11.1.4 in Goldwasser and Bellare’s lecture notes. We will
also start on section 11.2.

Discussion section, April 24

We discussed the programming assignment, including the meaning of the
confidence level in the primality test, how to choose a generator (or at least
a generator of a large subgroup), how k should be chosen, and which methods
(subroutines) should know what. We did not get as far as covering problem
3 (problem 4.12 in the textbook), so it will be covered on May 1.

Lecture, May 6

We will continue with zero-knowledge from the notes.
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Assignment due Thursday, May 15, 8:30 AM

Note that this is part of your exam project, so it must be approved in order
for you to take the exam in June, and you may not work with others. If it is
late, it will not be accepted.

Let p = 4k + 3 be a prime, and let g and h be quadratic residues modulo
p. Assume that h is in the subgroup generated by g and that the Prover
knows an x such that gx = h (mod p). Suppose that p, g, and h are given
as input to a Prover and Verifier. Consider the interactive protocol in which
the following is repeated log2 p times:

Prover Verifier

Choose a random
k ∈ {1, ..., p−1

2
}.

Let z = h · g2k (mod p).
z -

Choose a random
b ∈ {0, 1}.

b�

Let r = 2k + b · x (mod p− 1).
r -

Check that r is even,
z = grh1−b (mod p),
p (mod 4) = 3,

and g
p−1

2 = 1 (mod p).
If not, reject and halt.

(Actually, the last two checks only need to be done once and could be done
before the first round of the protocol. Don’t let their placement here confuse
you.)

a. Prove that the above protocol is an interactive proof system showing that
h = g2y (mod p) for some integer y.

b. Suppose that h = g2y (mod p) for some integer y. What is the probability
distribution of the values (z, r) sent by a Prover following the protocol?
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c. Prove that the above protocol is perfect zero-knowledge.

d. Suppose p = 4k + 3. Note that any quadratic residue g modulo p has
odd order. Use this fact to show that if h is in the subgroup generated by a
quadratic residue g, then it is always possible to write h as h = g2y (mod p)
for some integer y. (Thus, the above protocol is an alternative zero-knowledge
proof of subgroup membership for this special case.)

e. Suppose p = 4k+3, g 6= 1 is a quadratic residue modulo p, and q = p−1
2

=
2k + 1 is a prime. Then, there is a more efficient secure way, than using the
above protocol, to convince the Verifier that h = gy (mod p) for some integer
y. What is it? (Hint: no Prover is necessary.)

Problems for Thursday, May 8

1. Give a protocol for digital signatures in which the verification (which
can be shown to the judge) does not reveal to the judge the contents
of the document which was signed.

2. Some applications are sensitive to replay attacks, where an adversary
takes a copy of an original signed message and sends it again later.
(For example, it should not be possible to repeat a request to transfer
money from one bank account to another.) Design a protocol (using
signatures) to prevent replay attacks.

3. According to Ivan Damg̊ard, the essence of SSL (authentication be-
tween a server S and a client C) is as follows:

(a) C sends a hello message containing a nonce (a random challenge)
nC .

(b) S sends a nonce nS and its certificate Cert(S) (issued by a certi-
fication authority and containing the public key KS of S.)

(c) C verifies Cert(S) and chooses a pre-master secret pms at random.
C sends E(KS, pms), its certificate Cert(C) to S, and its signature
sigC on the concatenation of nC , nS, and E(KS, pms).

(d) S sends C a MAC on all messages sent so far in this protocol,
using pms as the secret key.

(e) C verifies the MAC. IF OK, it send S a MAC on all messages sent
so far in this protocol.
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(f) Use a shared function to compute keys for authentication and
encryption from nS, nC , and pms.

In this protocol, how does S authenticate itself? How does C authen-
ticate itself. Why do the keys depend on nS and nC , instead of just
pms? Is it important that C actually send a MAC at the end, or would
OK be enough?

4. Let n be an integer with unknown factorization n = pq, where p and q
are prime, and let x0, x1 ∈ ZZ∗n be such that at least one of x0 and x1 is
a quadratic residue modulo n. Assume that both x0 and x1 have Jacobi
symbol +1 modulo n. (Assume that it is xb and u2 ≡ xb (mod n)).
Suppose that x0, x1, and n are given as input to a Prover and Verifier.
Consider the interactive protocol in which the following is repeated
log2 n times:

Prover Verifier

Choose random i ∈ {0, 1} and
random vb, v1−b ∈ ZZ∗n.
Compute yb = v2

b (mod n) and
y1−b = v2

1−b(x
i
1−b)

−1 (mod n).
y0, y1-

Choose a random
c ∈ {1, 0}.

c�

Compute zb = ui⊕cvb (mod n),
z1−b = v1−b. z0, z1-

Check that either
(z2

0 ≡ y0 (mod n) and
z2

1 ≡ xc1y1 (mod n)) or
(z2

0 ≡ x0y0 (mod n) and
z2

1 ≡ (x1)1−cy1 (mod n)).
If not, reject and halt.
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Note that ⊕ is addition modulo 2.

a. Prove that the above protocol is an interactive proof system showing
that at least one of x0 and x1 is a quadratic residue modulo n.

b. Suppose that x1−b is also a quadratic residue. What is the distribu-
tion of the values y0, y1, z0, z1 sent by a Prover following the protocol?

c. Suppose that x1−b is a quadratic nonresidue. What is the distribu-
tion of the values y0, y1, z0, z1 sent by a Prover following the protocol?

d. Prove that the above protocol is perfect zero-knowledge.

5. Throughout this problem, suppose it is known that n = p · q, where p
and q are distinct primes, though the factorization of n is unknown to
the Verifier. Let x, y ∈ ZZ∗n both have Jacobi symbol +1.

a. Prove that x · y (mod n) is a quadratic residue modulo n if and only
if either

(a) x and y are both quadratic residues, or

(b) x and y are both quadratic nonresidues.

b. Prove that x3 · y5 (mod n) is a quadratic residue modulo n if and
only if either

(a) x and y are both quadratic residues, or

(b) x and y are both quadratic nonresidues.

c. Give a perfect zero-knowledge proof showing that x and y satisfy
one of the following two conditions modulo n:

(a) x and y are both quadratic residues, or

(b) x and y are both quadratic nonresidues.
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