Expectations

Example: What is the expected value of the first successful Bernoulli trial?

Answer:

$$
\sum_{i=1}^{\infty} iq^{i-1}p = \sum_{\substack{i=1 \ \infty}}^{\infty} iq^{i-1} - \sum_{i=1}^{\infty} iq^{i}
$$

=
$$
\sum_{j=0}^{\infty} (j+1)q^{j} - \sum_{i=1}^{\infty} iq^{i}
$$
 $(j = i - 1)$
=
$$
1 + \sum_{\substack{j=1 \ \infty}}^{\infty} (j+1-j)q^{j}
$$

=
$$
1 + \sum_{\substack{j=1 \ \infty}}^{\infty} q^{j} = 1 + (\sum_{j=0}^{\infty} q^{j}) - 1
$$

=
$$
\frac{1}{\frac{1}{p}} = \frac{1}{\frac{1}{p}}
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Expectations

Example: What is the expected value of the first successful Bernoulli trial?

Answer:

$$
\sum_{i=1}^{\infty} iq^{i-1}p = \sum_{\substack{i=1 \ \infty}}^{\infty} iq^{i-1} - \sum_{i=1}^{\infty} iq^{i}
$$

=
$$
\sum_{j=0}^{\infty} (j+1)q^{j} - \sum_{i=1}^{\infty} iq^{i}
$$
 $(j = i - 1)$
=
$$
1 + \sum_{\substack{j=1 \ \infty}}^{\infty} (j+1-j)q^{j}
$$

=
$$
1 + \sum_{\substack{j=1 \ \infty}}^{\infty} q^{j} = 1 + (\sum_{j=0}^{\infty} q^{j}) - 1
$$

=
$$
\frac{1}{\frac{1}{p}} = \frac{1}{\frac{1}{p}}
$$

With a fair die, the expected number of thr[ow](#page-0-0)s before a 1 is $6.$ $= 990$

Linearity of Expectations

A linear function has the form

 $f(X_1, X_2, ..., X_n) = a_0 + a_1X_1 + a_2X_2 + ... + a_nX_n$

KORK STRAIN A BY A GRAY

where $a_i \in \mathbb{R}$ for $0 \le i \le n$.

Linearity of Expectations

A linear function has the form

$$
f(X_1, X_2, ..., X_n) = a_0 + a_1X_1 + a_2X_2 + ... + a_nX_n
$$

KORKA REPARATION ADD

where $a_i \in \mathbb{R}$ for $0 \le i \le n$.

Thm. Let f be a linear function, S be a sample space, and $X_1, X_2, ..., X_n$ be random variables defined on S. Then, $E[f(X_1, X_2, ..., X_n)] = f(E[X_1], E[X_2], ..., E[X_n]).$

Linearity of Expectations

Pf. Let $f(X_1,...,X_n) = a_0 + a_1X_1 + ... + a_nX_n$ where $a_i \in \mathbb{R}$ for $0 < i < n$. Then. $E[f(X_1, ..., X_n)] = \sum$ s∈S $p(s) f(X_1(s), ..., X_n(s))$ $=\sum p(s)(a_0 + a_1 X_1(s) + ... + a_n X_n(s))$ s∈S $=$ \sum s∈S $\sqrt{ }$ $p(s)a_0+\sum_{}^n$ $i=1$ $p(s)a_iX_i(s)$ \setminus $= a_0 + \sum_{n=1}^{n}$ $i=1$ $\sqrt{\nabla}$ s∈S $p(s)a_iX_i(s)$ \setminus $= a_0 + \sum_{n=1}^{n}$ $i=1$ $\sqrt{ }$ a_i s∈S $p(s)X_i(s)$ \setminus $= f(E[X_1], E[X_2], ..., E[X_n]).$

KEL KARIK KEL KEL KARIK

Linear Search Algorithm

```
procedure linear search(x, a_1, a_2, ..., a_n)i \leftarrow 1while (i \leq n and x \neq a_i) i \leftarrow i + 1{ Either i = n + 1 or x = a_i}
```
KORKA REPARATION ADD

```
if i \leq n then location \leftarrow ielse location \leftarrow 0
return location
```
Linear Search Algorithm

```
procedure linear search(x, a_1, a_2, ..., a_n)i \leftarrow 1while (i \leq n and x \neq a_i) i \leftarrow i + 1{ Either i = n + 1 or x = a_i}
```

```
if i \leq n then location \leftarrow ielse location \leftarrow 0
return location
```
Worst case: *n* comparisons of elements $(2n + 1$ comparisions).

KORKA REPARATION ADD

Insertion Sort Algorithm

procedure InsertionSort(List):

{ Input: List is a list }

{ Output: List, with same entries, but in nondecreasing order }

KORKA REPARATION ADD

 $N := 2$ while $(N \leq$ length(List) Pivot $:=$ Nth entry $j := N-1$ while ($i > 0$ and *i*th entry $>$ Pivot) move *i*th entry to loc. $i + 1$ $j := j - 1$ place Pivot in $j + 1$ st loc. $N := N + 1$

Insertion Sort Algorithm

procedure InsertionSort(List):

{ Input: List is a list }

{ Output: List, with same entries, but in nondecreasing order }

 $N := 2$ while $(N <$ length(List) Pivot $:=$ Nth entry $j := N-1$ while ($i > 0$ and *j*th entry $>$ Pivot) move *i*th entry to loc. $i + 1$ $j := j - 1$ place Pivot in $j + 1$ st loc. $N := N + 1$

$$
\text{Worst case: } \textstyle\sum_{i=2}^n (i-1) = \frac{n(n-1)}{2} \text{ comparisons of elements.}
$$

Expectation, Variance, Standard Deviation

If two random variables X and Y are independent, then $E[XY] = E[X] \cdot E[Y]$.

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Expectation, Variance, Standard Deviation

If two random variables X and Y are independent, then $E[XY] = E[X] \cdot E[Y]$.

The **variance** of a random variable is $V[X] = E[(X - E[X])^2]$.

 $V[X] = E[X^2 - 2XE[X] + E^2[X]].$ By the linearity of expectations, this is $E[X^2] - 2E[XE[X]] + E[E^2[X]].$ Since $E[X]$ is a real number, this is $E[X^2] - 2E^2[X] + E^2[X]$. Thus, $V[X]$ is also $E[X^2] - E^2[X]$.

KORKA REPARATION ADD

Expectation, Variance, Standard Deviation

If two random variables X and Y are independent, then $E[XY] = E[X] \cdot E[Y]$.

The **variance** of a random variable is $V[X] = E[(X - E[X])^2]$.

$$
V[X] = E[X^2 - 2XE[X] + E^2[X]].
$$

By the linearity of expectations, this is

$$
E[X^2] - 2E[XE[X]] + E[E^2[X]].
$$

Since $E[X]$ is a real number, this is $E[X^2] - 2E^2[X] + E^2[X].$
Thus, $V[X]$ is also $E[X^2] - E^2[X].$

If X and Y are independent random variables, then $V[X + Y] =$ $V[X] + V[Y]$. If $X_1, X_2, ..., X_n$ are pairwise independent random variables, then $V[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} V[X_i].$

The standard deviation of a random variable is the positive square root of the variance.**ADD REAR AND A BY A GOOD**

Variance

The variance of a geometric distribution can be shown to $\it q/p^2$ (recall that the expectation is $1/p$).

Variance

The variance of a geometric distribution can be shown to $\it q/p^2$ (recall that the expectation is $1/p$).

Consider Bernoulli trials: X_i .

How many successes in the *ith trial*?

Must be either 0 or 1, so $E[X_i^2] = E[X_i] = p$.

Variance

The variance of a geometric distribution can be shown to $\it q/p^2$ (recall that the expectation is $1/p$).

Consider Bernoulli trials: X_i .

How many successes in the *ith trial*?

Must be either 0 or 1, so $E[X_i^2] = E[X_i] = p$.

The variance of the binomial distribution — $V[X] = V[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} V[X_i]$

since the X_i are pairwise independent.

$$
V[X_i] = E[X_i^2] - E^2[X_i] = p - p^2 = pq.
$$

Thus, for the binomial distribution, $V[X] = \sum_{i=1}^n pq = npq.$

KORKAR KERKER EL VOLO

Thm. [Chebyshev's Inequality] Let X be a random variable on sample space S, with probability function p, and $r > 0$. Then

 $p(|X(s) - E[X]| \geq r) \leq V[X]/r^2$

A DIA K PIA A BIA A BIA A Q A CA

Thm. [Chebyshev's Inequality] Let X be a random variable on sample space S, with probability function p, and $r > 0$. Then

$$
p(|X(s)-E[X]| \geq r) \leq V[X]/r^2
$$

KORK STRAIN ABY COMPARI

$$
\mathsf{Pf. Let}\ A = \Big\{s\in S\ \Big|\ |X(s)-E(X)|\geq r\Big\}.
$$

To show (for event A): $p(A) \le V(X)/r^2$.

Thm. [Chebyshev's Inequality] Let X be a random variable on sample space S, with probability function p, and $r > 0$. Then

$$
p(|X(s)-E[X]| \geq r) \leq V[X]/r^2
$$

$$
\mathsf{Pf. \, \, Let} \, A = \bigg\{ s \in S \, \bigg\vert \, |X(s) - E(X)| \geq r \bigg\}.
$$

To show (for event A): $p(A) \le V(X)/r^2$.

$$
V(X) = \sum_{x \in S} (X(s) - E[X])^{2} p(s)
$$

= $\sum_{s \in A} (X(s) - E[X])^{2} p(s) + \sum_{s \notin A} (X(s) - E[X])^{2} p(s)$

KORK STRAIN ABY COMPARI

Thm. [Chebyshev's Inequality] Let X be a random variable on sample space S, with probability function p, and $r > 0$. Then

$$
p(|X(s)-E[X]| \geq r) \leq V[X]/r^2
$$

$$
\mathsf{Pf. \, \, Let} \, A = \bigg\{ s \in S \, \bigg\vert \, |X(s) - E(X)| \geq r \bigg\}.
$$

To show (for event A): $p(A) \le V(X)/r^2$.

$$
V(X) = \sum_{x \in S} (X(s) - E[X])^{2} p(s)
$$

= $\sum_{s \in A} (X(s) - E[X])^{2} p(s) + \sum_{s \notin A} (X(s) - E[X])^{2} p(s)$

KORK STRAIN ABY COMPARI

$$
\triangleright \sum_{s \notin A} (X(s) - E[X])^2 p(s) \geq 0.
$$

Thm. [Chebyshev's Inequality] Let X be a random variable on sample space S, with probability function p, and $r > 0$. Then

$$
p(|X(s)-E[X]| \geq r) \leq V[X]/r^2
$$

$$
\mathsf{Pf. \, \, Let} \, A = \bigg\{ s \in S \, \bigg\vert \, |X(s) - E(X)| \geq r \bigg\}.
$$

To show (for event A): $p(A) \le V(X)/r^2$.

$$
V(X) = \sum_{x \in S} (X(s) - E[X])^{2} p(s)
$$

= $\sum_{s \in A} (X(s) - E[X])^{2} p(s) + \sum_{s \notin A} (X(s) - E[X])^{2} p(s)$

KORK STRAIN ABY COMPARI

$$
\sum_{s \notin A} (X(s) - E[X])^2 p(s) \geq 0.
$$

For $s \in A$, $(X(s) - E(X))^2 \geq r^2$.

Thm. [Chebyshev's Inequality] Let X be a random variable on sample space S, with probability function p, and $r > 0$. Then

$$
p(|X(s)-E[X]| \geq r) \leq V[X]/r^2
$$

$$
\mathsf{Pf. \, \, Let} \, A = \bigg\{ s \in S \, \bigg\vert \, |X(s) - E(X)| \geq r \bigg\}.
$$

To show (for event A): $p(A) \le V(X)/r^2$.

$$
V(X) = \sum_{x \in S} (X(s) - E[X])^{2} p(s)
$$

= $\sum_{s \in A} (X(s) - E[X])^{2} p(s) + \sum_{s \notin A} (X(s) - E[X])^{2} p(s)$

►
$$
\sum_{s \notin A} (X(s) - E[X])^2 p(s) \ge 0
$$
.
\n► For $s \in A$, $(X(s) - E(X))^2 \ge r^2$.
\n► $\sum_{s \in A} (X(s) - E[X])^2 p(s) \ge \sum_{s \in A} r^2 p(s)$.

Thm. [Chebyshev's Inequality] Let X be a random variable on sample space S, with probability function p, and $r > 0$. Then

$$
p(|X(s)-E[X]| \geq r) \leq V[X]/r^2
$$

$$
\mathsf{Pf. \, \, Let} \, A = \bigg\{ s \in S \, \bigg\vert \, |X(s) - E(X)| \geq r \bigg\}.
$$

To show (for event A): $p(A) \le V(X)/r^2$.

$$
V(X) = \sum_{x \in S} (X(s) - E[X])^{2} p(s)
$$

= $\sum_{s \in A} (X(s) - E[X])^{2} p(s) + \sum_{s \notin A} (X(s) - E[X])^{2} p(s)$

KORK EX KEY KEY YOUR

$$
\sum_{s \notin A} (X(s) - E[X])^2 p(s) \ge 0.
$$

\n
$$
\Rightarrow \text{For } s \in A, (X(s) - E(X))^2 \ge r^2.
$$

\n
$$
\sum_{s \in A} (X(s) - E[X])^2 p(s) \ge \sum_{s \in A} r^2 p(s).
$$

\n
$$
\Rightarrow V(X) \ge \sum_{s \in A} r^2 p(s).
$$

Thm. [Chebyshev's Inequality] Let X be a random variable on sample space S, with probability function p, and $r > 0$. Then

$$
p(|X(s)-E[X]| \geq r) \leq V[X]/r^2
$$

$$
\mathsf{Pf. \, \, Let \,} A = \bigg\{ s \in S \bigg| \, |X(s) - E(X)| \geq r \bigg\}.
$$

To show (for event A): $p(A) \le V(X)/r^2$.

$$
V(X) = \sum_{x \in S} (X(s) - E[X])^{2} p(s)
$$

= $\sum_{s \in A} (X(s) - E[X])^{2} p(s) + \sum_{s \notin A} (X(s) - E[X])^{2} p(s)$

$$
\sum_{s \notin A} (X(s) - E[X])^2 p(s) \ge 0.
$$

\nFor $s \in A$, $(X(s) - E(X))^2 \ge r^2$.
\n
$$
\sum_{s \in A} (X(s) - E[X])^2 p(s) \ge \sum_{s \in A} r^2 p(s).
$$

\n
$$
\sum_{s \in A} (X(s) - E[X])^2 p(s) \ge \sum_{s \in A} r^2 p(s).
$$

\n
$$
\sum_{s \in A} p(s) \le V(X)/r^2.
$$