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Abstract. In graph coloring problems, the goal is to assign a positive
integer color to each vertex of an input graph such that adjacent vertices
do not receive the same color assignment. For classic graph coloring, the
goal is to minimize the maximum color used, and for the sum coloring
problem, the goal is to minimize the sum of colors assigned to all input
vertices. In the offline variant, the entire graph is presented at once, and
in online problems, one vertex is presented for coloring at each time, and
the only information is the identity of its neighbors among previously
known vertices. In batched graph coloring, vertices are presented in k
batches, for a fixed integer k ≥ 2, such that the vertices of a batch are pre-
sented as a set, and must be colored before the vertices of the next batch
are presented. This last model is an intermediate model, which bridges
between the two extreme scenarios of the online and offline models. We
provide several results, including a general result for sum coloring and
results for the classic graph coloring problem on restricted graph classes:
We show tight bounds for any graph class containing trees as a subclass
(e.g., forests, bipartite graphs, planar graphs, and perfect graphs), and
a surprising result for interval graphs and k = 2, where the value of the
(strict and asymptotic) competitive ratio depends on whether the graph
is presented with its interval representation or not.

1 Introduction

We study three different graph coloring problems in a model where the input is
given in batches. In this model of computation an adversary reveals the input
graph one batch at a time. Each batch is a subset of the vertex set together with
its edges to the vertices revealed in the current batch or in previous batches.
After a batch is revealed the algorithm is asked to color the vertices of this batch
with colors which are positive integers, the coloring must be valid or proper, i.e.,
neighbors are colored using distinct colors, and this coloring cannot be modified
later.

The batch scenario is somewhere between online and offline. In an offline
problem, there is only one batch, while for an online problem, the requests arrive
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one at a time and have to be handled as they arrive without any knowledge of
future events, so each request is a separate batch. Many applications might fall
between these two extremes of online and offline. For example, a situation where
there are two (or more) deadlines, an early one with a lower price and a later
one with a higher price can lead to batches.

When considering a combinatorial problem using batches, we assume that the
requests arrive grouped into a constant number k of batches. Each batch must be
handled without any knowledge of the requests in future batches. As with online
problems, we do not consider the execution times of the algorithms used within
one batch; the focus is on the performance ratios attainable. Therefore, our goal
is to quantify the extent to which the performance of the solution deteriorates
due to the lack of information regarding the requests of future batches. We also
investigate how much advance knowledge of the number of batches can help.

The quality of the algorithms is evaluated using competitive analysis. Let
A(σ) denote the cost of the solution returned by algorithm A on request sequence
σ, and let OPT(σ) denote the cost of an optimal (offline) solution. Note that
for standard coloring problems, OPT(G) = χ(G), where χ(G) is the chromatic
number of the graph G. An online coloring algorithm A is ρ-competitive if there
exists a constant b such that, for all finite request sequences σ, A(σ) ≤ ρ ·
OPT(σ)+b. The competitive ratio of algorithm A is inf{ρ | A is ρ-competitive}.
If the inequality holds with b = 0, the algorithm is strictly ρ-competitive and the
strict competitive ratio is inf{ρ | A is strictly ρ-competitive}.

The First-Fit algorithm for coloring a graph traverses the list of vertices given
in an arbitrary order or in the order they are presented, and assigns each vertex
the minimal color not assigned to its neighbors that appear before it in the list
of vertices.

Other combinatorial problems have been studied previously using batches.
The study of bin packing with batches was motivated by the property that all
known lower bound instances have the form that items are presented in batches.
The case of two batches was first considered in [9], an algorithm for this case
was presented in [6], and better lower bounds were found in [2]. A study of the
more general case of k batches was done in [7], and recently, a new lower bound
on the competitive ratio of bin packing with three batches was presented in [1].
The scheduling problem of minimizing makespan on identical machines where
jobs are presented using two batches was considered in [20].

Graph classes containing trees. The first coloring problem we consider using
batches is that of coloring graph classes containing trees as a subclass (e.g.,
forests, bipartite graphs, planar graphs, perfect graphs, and graphs in general),
minimizing the number of colors used. Offline, finding a proper coloring of bi-
partite graphs is elementary and only (at most) two colors are needed. However,
there is no online algorithm with a constant competitive ratio, even for trees.
Gyárfás and Lehel [10] show that for any online tree coloring algorithm A and
any n ≥ 1, there is a tree on n vertices for which A uses at least blog nc + 1
colors. The lower bound is matched exactly by First-Fit [11], and hence, the
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optimal competitive ratio on trees is Θ(log n). For general graphs, Halldórsson
and Szegedy [13] have shown that the competitive ratio is Ω(n/ log n).

We show that any algorithm for coloring trees in k batches uses at least 2k
colors in the worst case, even if the number of batches is known in advance. This
gives a lower bound of k on the competitive ratio of any algorithm coloring trees
in k batches. The lower bound is tight, since (on any graph, not only trees), a
k-competitive algorithm can be obtained by coloring each batch optimally with
colors not used in previous batches. Thus, for graph classes containing trees as
a subclass, k is the optimal competitive ratio.

Coloring interval graphs in two batches. Next we consider coloring interval
graphs in two batches, minimizing the number of colors used. An interval graph
is a graph which can be defined as follows: The vertices represent intervals on
the real line, and two vertices are adjacent if and only if their intervals over-
lap (have a nonempty intersection). If the maximum clique size of an interval
graph is ω, it can be colored optimally using ω colors by using First-Fit on the
interval representation of the graph, with the intervals sorted by nondecreasing
left endpoints. For the online version of the problem, Kierstead and Trotter [15]
provided an algorithm which uses at most 3ω − 2 colors and proved a matching
lower bound for any online algorithm.

The algorithm presented in [15] does not depend on the interval representa-
tion of the graph, but the lower bound does, so in the online case the optimal
competitive ratio is the same for these two representations (see [14, 18] for the
current best results regarding the strict competitive ratio of First-Fit for coloring
interval graphs). In contrast, when there are two batches, there is a difference.
We show tight upper and lower bounds of 2 for the case when the interval repre-
sentation is unknown and 3/2 when it is known, respectively. Our results apply
to both the asymptotic and the strict competitive ratio.

Note that when the interval representation of the graph is used, the batches
consist of intervals on the real line (it is not necessary to give the edges explicitly).

Sum coloring. The sum coloring problem (also called chromatic sum) was intro-
duced in [17] (see [16] for a survey of results on this problem). The problem is
to give a proper coloring to the vertices of a graph, where the colors are positive
integers, so as to minimize the sum of these colors over all vertices (that is, if the
coloring is defined by a function C, the objective is to minimize

∑
v∈V C(v)).

Bar-Noy et al. [3] study the problem, motivated by the following application:
Consider a scheduling problem on an infinite capacity batched machine where
all jobs have unit processing time, but some jobs cannot be run simultaneously
due to conflicts for resources. If the conflicts are given by a graph where the jobs
are vertices and an edge exists between two vertices, if the corresponding jobs
cannot be executed simultaneously (and thus each batch of jobs corresponds to
an independent set of this graph), the value s of the optimal sum coloring of the
graph gives the sum of the completion times of all jobs in an optimal schedule.
Dividing by the number of jobs gives the average response time. The problem
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when restricted to interval graphs is also motivated by VLSI routing [19]. The
first problem seems more likely to come in batches than the second.

The sum coloring problem is NP-hard for general graphs [17] and cannot be
approximated within n1−ε for any ε > 0 unless ZPP = NP [3]. Interestingly,
there is a linear time algorithm for trees, even though there is no constant upper
bound on the number of different colors needed for the minimum sum coloring
of trees [17]. For online algorithms, there is a lower bound of Ω(n/ log2 n) for
general graphs with n vertices [12].

We show tight upper and lower bounds of k on the competitive ratio when
there are k batches and k is known in advance to the algorithm. The competitive
ratio is higher if k is unknown in advance to the algorithm. We do not give a
closed form expression for the competitive ratio in this case, but give tight upper
and lower bounds on the order of growth of the competitive ratio and the strict
competitive ratio. For any nondecreasing function f , with f(1) ≥ 1, the optimal
competitive ratio for k batches is O(f(k)) if the series

∑∞
i=1

1
f(i) converges, and

it is Ω(f(k)) if the series diverges. Thus, for example, it is O(k log k(log log k)2)
and Ω(k log k log log k).

Restricting to trees, First-Fit is strictly 2-competitive for the online problem.
Thus, First-Fit gives a (strict) competitive ratio of 2 regardless of the number of
batches. See for example [4] for results on the strict competitive ratio of First-Fit
for other graph classes.

Omitted proofs and details appear in the full paper [5].

2 Graph Classes Containing Trees

In this section, we study the problem of coloring trees in k batches. The results
hold for any graph class that contains trees as a special case, including bipartite
graphs, planar graphs, perfect graphs, and the class of all graphs. If we want the
algorithm to be polynomial time, then we are restricted to graph classes where
optimal offline coloring is possible in polynomial time (e.g., perfect graphs [8]).

The construction proving the following lemma resembles that of the lower
bound of Ω(log n) for the competitive ratio for online coloring of trees [10].

Lemma 1. For any integer k ≥ 1, any algorithm for k-batch coloring of trees
can be forced to use at least 2k colors, even if k is known in advance.

The following lemma holds for any graph, not only trees.

Lemma 2. There is a strictly k-competitive algorithm for k-batch coloring, even
if k is not known in advance.

Theorem 1 below follows directly from Lemmas 1 and 2.

Theorem 1. For any graph class containing trees as a special case, the optimal
(strict) competitive ratio for k-batch coloring is k, regardless of whether or not
k is known in advance.
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3 Interval Coloring in Two Batches

Since not all trees are interval graphs, the lower bound from the previous section
does not apply here. For the case of interval graphs we show the surprising result
that while coloring in two batches has a tight bound of 2, the problem becomes
easier if we assume that the vertices of the graph are revealed together with
their interval representation (and this interval representation of vertices of the
first batch cannot be modified in the second batch). The standard results for
online coloring of interval graphs do not make this distinction: The lower bound
is obtained for the (a priori easier) case where the interval representation of a
vertex is revealed to the algorithm when the vertex is revealed, while the upper
bound holds even if such a representation is not revealed (the online algorithm
only computes a maximum clique size containing the new vertex and applies
the First-Fit algorithm on a subset of the vertices). Throughout this section,
our lower bounds are with respect to the asymptotic competitive ratio while our
upper bounds are for the strict competitive ratio, and thus the results are tight
for both measures.

Unknown interval representation. We start with a study of the case where the
algorithm is guarantied that the resulting graph (at the end of every batch) will
be an interval graph, but the interval representation of the vertices of the first
batch is not revealed to the algorithm (and may depend on the actions of the
algorithm). We show that in this case 2 is the best competitive ratio that can
be achieved by an online algorithm.

Theorem 2. For the problem of 2-batch coloring of interval graphs with un-
known interval representation, the optimal (strict) competitive ratio is 2.

Proof. The upper bound follows from Lemma 2. Each of the two induced sub-
graphs is an interval graph, and it can be colored optimally in polynomial time
even if the interval representation is not given.

Next, we show a matching lower bound. For a given q ∈ N, let N1 =
(
4q
q

)
+ 1

and N2 =
(
4q
2q

)
+ 1. In the first batch, the adversary gives N1 + N2 pairwise

nonoverlapping cliques: N1 cliques of size q and N2 cliques of size 2q.
Assume that an algorithm uses at most 4q colors for the first batch. By the

pigeon hole principle, there are two cliques of size q that are colored with the
same set C1 of colors. The vertices of these two cliques will correspond to the
intervals [5, 6] and [9, 10], respectively. Similarly, there are two cliques of size 2q
that are colored with the same set C2 of colors. For one of these cliques, q vertices
will correspond to the interval [0, 1] and the remaining q vertices will correspond
to the interval [0, 3]. If any of these 2q vertices are colored with colors from C1,
they will correspond to the interval [0, 1]. We let C′2 denote the set of colors used
on the vertices corresponding to the interval [0, 3]. Note that C1 ∩ C′2 = ∅, and
hence, |C1 ∪ C′2| = 2q. For the other of these two cliques, the q vertices colored
with C′2 will correspond to the interval [12, 15] and the remaining q vertices will
correspond to [14, 15]. All other intervals are placed to the right of the point 15
so that they do not overlap with any of the four cliques just described.
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The second batch consists of q vertices corresponding to the interval [2, 8] and
q vertices corresponding to the interval [7, 13]. All of these 2q intervals overlap
with each other and with intervals of all colors in C1 ∪ C′2. Thus, the algorithm
uses at least 4q colors.

No clique is larger than 2q vertices, so OPT uses 2q colors. Since q can
be arbitrarily large, no deterministic online algorithm can be better than 2-
competitive, even when considering the asymptotic competitive ratio. ut

Known interval representation. We now assume that the vertices are revealed to
the algorithm together with their interval representation. For this case, we show
an improved competitive ratio of 3

2 . The proof of the following lower bound is a
special case of the lower bound proof of Kierstead and Trotter [15].

Lemma 3. For the problem of 2-batch coloring of interval graphs with known
interval representation, no algorithm can achieve a competitive ratio strictly
smaller than 3

2 .

For the matching upper bound, we give a strictly 3
2 -competitive algorithm,

called TwoBatches, using Algorithm FB to color the first batch of intervals
and Algorithm SB to color the second batch. Intervals can be open, closed, or
semi-closed. Let ω denote the maximum clique size in the full graph consisting of
intervals from both batches. For any interval I, let color(I) denote the color as-
signed to I by TwoBatches. Similarly, for a set I of intervals, color(I) denotes
the set of colors used to color the intervals in I.

Each endpoint of a first batch interval I is called an event point, and this
event point is associated with I. If there is a point that is an endpoint of several
intervals, we have multiple copies of this point as event points each of which
is associated with a different interval. We define a total order, T , on the event
points. If p < p′, then p appears before p′ in T . For the case p = p′, there are
several cases; see the full paper [5] for details.

First batch. It is well-known that one can color an interval graph with a max-
imum clique size of ω using ω colors, by maintaining a set of available colors,
and traversing the event points according to the total order T : Each time a left
endpoint is considered, we color its interval with a color in the set of available
colors (removing it from this set); each time a right endpoint is considered, its
interval’s color is returned to the set of available colors. One often considers
the First-Fit rule of using the minimum color in the set of available colors as a
tie-breaking rule when the set of available colors contains more than one color.
However, in order to establish the improved bound of 3

2 on the strict competi-
tive ratio (or even for the competitive ratio) of the algorithm for two batches,
we need to use a different tie-breaking rule, the one defined by using a stack.

Algorithm FB processes the event points in the order given by T , using a
stack ordering for the colors. When a right endpoint is processed, we say that
the color of the associated interval is released and available until it is used again.
When processing a left endpoint, the associated interval is colored with the most
recently released available color (or a new color, if necessary).
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For ease of presentation, we insert 2ω dummy intervals into the first batch:
one clique of size ω before all input intervals and one clique of size ω after all input
intervals. Since these dummy cliques do not overlap with any other intervals,
each will be colored with the colors 1, 2, . . . , ω, and they will not influence the
behavior of Algorithm FB on the rest of the first-batch intervals.

In the following, Maximal cliques always refer only to first-batch intervals.
For each maximal clique, we choose a point, called a clique point, contained in all
intervals of the clique. If a clique point p appears to the right of another clique
point q, we say that the clique corresponding to p appears to the right of the
clique corresponding to q, and vice versa.

For each maximal clique, I, we order the intervals of the clique by left and
right endpoints, respectively, resulting in two orderings, LI(·) and RI(·). The
further an endpoint is from the clique point of I, the earlier the interval appears
in the ordering. More precisely, for each interval I ∈ I, LI(I) = i, if the left
endpoint of I appears as the ith in T among the endpoints associated with
intervals in I. Similarly, RI(I) = j, if the right endpoint of I appears as the jth
last in T among the endpoints associated with intervals in I. As an example,
consider the clique I consisting of the three intervals a = [1, 6], b = [2, 4], and
c = [3, 5]. For this clique, we have LI(a) = 1, LI(b) = 2, LI(c) = 3 and
RI(a) = 1, RI(b) = 3, RI(c) = 2.

Lemma 4. Consider a maximal clique, I`, of size m and an interval I` ∈ I`
such that RI`(I`) = h. Let Ih` = {I ∈ I` | RI`(I) < h} be the h− 1 intervals in
I` with the rightmost right endpoints. Let Ir be the first maximal clique of size
at least h to the right of I` and let Ir ∈ Ir be such that LIr (Ir) = h. Finally,
let p` be the right endpoint of I`, let pr be the left endpoint of Ir, and consider
the set I ′ of first-batch intervals containing a point p with p` < p < pr or an
endpoint p with p` <T p <T pr. Then, color(I ′) ⊆ color(Ih` ) .

Second batch. We now describe the algorithm, Algorithm SB, given in pseudo-
code below, for coloring the second batch intervals.

A chain is a set of nonoverlapping second batch intervals. The algorithm
starts with partitioning the second-batch intervals into ω chains (some of which
may be empty). This is clearly possible, since the graph is ω-colorable.

The second batch intervals are colored in iterations, two chains per iteration.
The algorithm keeps a counter, i, which is incremented once in each iteration,
and maintains the set Batch2-Colored of second batch intervals that the
algorithm has already colored. In each iteration, a set of nonoverlapping first-
batch intervals is processed. The algorithm maintains the invariant that, at the
beginning of each iteration, any maximal first-batch clique of size h contains
exactly min{h, ω − i} unprocessed intervals.

A first-batch maximal clique of size at least ω − i + 1 as well as its clique
point is said to be active. The part of the real line between two neighboring active
clique points is called a region. Throughout the execution of Algorithm SB, the
number of regions is nondecreasing, and whenever a region is split, the chains
of the region are also split by a simple projection onto each region and each
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resulting region will contain its boundary active clique points (in particular, this
means that active clique points may belong to two regions). In each iteration,
each region and its chains are treated separately.

The algorithm maintains the invariant that no uncolored second batch in-
terval overlaps with more than one region. This is the key property, allowing
the algorithm to consider one region at a time in a given iteration of the algo-
rithm. First-batch intervals overlapping with more than one region will be cut
into more intervals, with a cutting point at each active clique point contained in
the interval. Thus, by cutting the intervals of an active clique of size h, the clique
is replaced by two cliques of size h in neighboring regions. When a first-batch
interval is cut into parts, the different parts of the interval may be processed in
different iterations, but no new event points are introduced.

In the ith iteration, one chain in each region is colored with the color of a
first-batch interval in the region being processed in this iteration, and another
chain of the region will be colored with the color ω + i, which has not been
used in the region before. For any point p, let dp be the number of second batch
intervals containing p. We say that p is covered by a set S of intervals, if there
are min{dp, i} second batch intervals in S containing p.

Next, we define a set P of representative points, such that each interval
between two neighboring clique points is represented by one point; see the full
paper [5] for details. For a region R, we denote by PR the set of representative
points contained in region R (that is, PR = R ∩ P).

We use the following loop invariant for each region to establish that the
algorithm TwoBatches is correct and strictly 3/2-competitive. The proof of
the invariant I is based on induction on the value of i.

Invariant I:

(I1) All points p are covered by the set Batch2-Colored.
(I2) No color used for an unprocessed first-batch interval contained in a region

R has been used for a second batch interval intersecting region R so far.
(I3) Each active clique has exactly ω − i unprocessed intervals.
(I4) For each region R, ChainR has at most ω − 2i chains.

We use the invariant I to prove that for any input σ, TwoBatches pro-
duces a proper coloring using at most

⌊
3
2OPT(σ)

⌋
colors (see the full paper [5]).

Combining this result with Lemma 3 shows that the optimal (strict) competitive
ratio for the problem is 3

2 :

Theorem 3. TwoBatches has a strict competitive ratio of 3
2 .

4 Sum Coloring of Graphs in Multiple Batches

We study two cases separately: the case where the number of batches is known
to the algorithm from the beginning, and the case where it is not. Once again,
our lower bounds are for the competitive ratio and our upper bounds are for the
strict competitive ratio.
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Algorithm SB: Coloring the second batch intervals.

1: Mark all first-batch intervals as unprocessed
2: Create an optimal coloring of the second-batch intervals, using a set C of ω colors
3: R← (−∞,∞) // Initially, there is only one region
4: ChainsR ← ∅
5: PR ← the set of representative points in region R
6: for each color c ∈ C do
7: ChainsR ← ChainsR ∪ {{I | I is a second batch interval with color c}}
8: Batch2-Colored← ∅ // Set of colored second batch intervals
9: i← 0

10: while i < bω/2c do // Invariant I
11: // Color two chains:
12: i← i + 1
13: Split all regions (incl. the assoc. chains and sets of repr. points) at all active

clique points
14: for each region R containing at least one nonempty chain do
15: (Chain1,Chain2)← CreateChains(R) // See Algorithm CreateChains
16: // Color intervals in Chain1 and Chain2 using a first batch color and a new

color:
17: I` ← the unprocessed first-batch interval of the earliest event point in R
18: Ir ← the unprocessed first-batch interval of the latest event point in R
19: Mark I` and Ir as processed
20: Give all intervals in Chain1 the color of I`
21: Give all intervals in Chain2 the color ω + i
22: Batch2-Colored← Batch2-Colored ∪Chain1 ∪Chain2

23: ChainR ← ChainR \ {Chain1,Chain2}
24: // If ω is odd, each region may have one chain left to color:
25: for each region R where ChainsR contains a nonempty chain Chain do
26: I ← the unprocessed first-batch interval with the earliest event point in R
27: Give the intervals of Chain the color of I

Number of batches known in advance. We start our study of sum coloring by
examining the case where the algorithm knows the number of batches k in ad-
vance. Recall that we do not require that algorithms used within one batch be
polynomial time.

Lemma 6. There is a strictly k-competitive algorithm for sum coloring in k
batches, if k is known in advance.

Proof. For each batch, the algorithm, k-BatchColor, applies an optimal pro-
cedure, Color, to compute an optimal sum coloring for the subgraph induced
by the set of vertices of batch i, separately from previous batches. In order to
construct the solution of the input graph, k-BatchColor applies the following
transformation: For every vertex v of batch i, if Color colors v with color c,
then k-BatchColor colors v using color f(i, c) = k · (c−1)+ i. This function f
satisfies f(i, c) ≡ i (mod k), so if f(i, c) = f(i′, c′), for some 1 ≤ i, i′ ≤ k, then
i = i′. Moreover, if f(i, c) = f(i, c′), then k(c − c′) = 0, and therefore c = c′.
Thus, vertices of different batches have different colors, and two vertices of the



10 J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, A. Levin

Algorithm CreateChains(R)

1: Chain1 ← a chain in ChainsR containing the leftmost left endpoint
2: Chain2 ← any other chain from ChainsR
3: while some point in PR is not covered by Batch2-Colored ∪Chain1 ∪Chain2

do
4: p← the leftmost point in PR not covered by Batch2-Colored∪Chain1∪Chain2

5: Chain3 ← a chain from ChainsR containing p
6: if for all points q < p in PR, q is contained in Chain3 or in both Chain1 and

Chain2 then
7: Chain2 ← Chain3 // Chain2 now refers to the chain in ChainsR that Chain3

refers to
8: else
9: q ← the rightmost point in PR left of p violating the condition

10: Chain ← one of Chain1 or Chain2 not containing q // Chain now refers to
a chain in ChainsR

11: // Do a crossover of Chain and Chain3 at the point q, modifying Chain and
Chain3 in ChainsR:

12: Tail← {I ∈ Chain | I starts to the right of q}
13: Tail3 ← {I ∈ Chain3 | I starts to the right of q}
14: Chain← (Chain \Tail) ∪Tail3
15: Chain3 ← (Chain3 \Tail3) ∪Tail
16: return (Chain1,Chain2)

same batch have the same color after the transformation if and only if they had
the same color in the solution returned by Color. As any proper coloring of the
graph provides proper colorings for the k induced subgraphs, the total cost of
the k outputs of Color does not exceed the cost of an optimal coloring of the
entire graph. For any color c and batch i, f(i, c) ≤ k · c. Thus, the cost of the
output is at most k times the total cost of the k solutions returned by Color
(for the k vertex disjoint induced subgraphs). ut

We prove a matching lower bound for this case, which holds even for the
asymptotic competitive ratio (see the full paper [5]). Combining that result and
Lemma 6 gives the following result:

Theorem 4. For sum coloring in k batches, with k known in advance, the op-
timal (strict) competitive ratio is k.

Theorem 5. For sum coloring of trees in k batches, First-Fit is strictly 2-
competitive, and this is the best possible competitive ratio, even if k is known
in advance.

Number of batches unknown in advance. Next, we consider the case where the
number of batches k is not known in advance. Thus, to obtain a given competi-
tive ratio, this ratio must be obtained after each batch. Note that the algorithm
described in the proof of Lemma 6 cannot be used in this case. While the algo-
rithm is not well defined if k is unknown in advance to the algorithm, it may



Batch Coloring of Graphs 11

seem that modifying the value of k by doubling would result in a competitive
ratio of O(k), but no such algorithm exists. We prove that for any positive non-
decreasing sequence f(i), which is defined for integer values of i (where f(i) ≥ 1
for i ≥ 1), no algorithm with competitive ratio O(f(k)) can be given if the series
Sf =

∑∞
i=1

1
f(i) is divergent. On the other hand, we show that if this series is

convergent, then such an algorithm can be given. This shows, in particular, that
the best possible competitive ratio is O(k log k(log log k)2) (since the series for
this function converges according to the Cauchy condensation test), and it is
Ω(k log k log log k) (since the series for this function diverges according to the

Cauchy condensation test). In fact it is O(k log k log log k · · · (log(x) k)2) and

Ω(k log k log log k · · · log(x) k), for any positive integer x.

Consider a sequence f(i) for which Sf is convergent, and let cf be its limit.
We present an algorithm, BatchColorf , for this variant of sum coloring. Ini-
tially, all colors are declared available. When coloring the ith batch, its induced
subgraph is first colored using an optimal procedure, Color. Let ti denote the
maximum color used by Color for batch i. For each j = 1, 2, . . . , ti in increasing
order, vertices that Color gives color j will be colored using the largest avail-
able color among the colors 1, 2, . . . , bj · cf · f(i)c. Then, this color is declared
taken. This color is now unavailable for vertices of future batches and for vertices
of the current batch that were assigned a color larger than j by Color. If this
process is successful (there always exists an available color), then we say that
batch i is feasible.

Assuming that all batches are feasible, using arguments similar to those
used for Lemma 6, we obtain an upper bound on the competitive ratio of
BatchColorf as follows. Since a color used by Color in a particular batch
is assigned to an available color by BatchColorf , if all batches are feasible,
each pair, (i, j), where i is a batch number and j is a color assigned by Color
in batch i, is given a different color. Since Color produces a proper coloring,
BatchColorf does too. The function f is nondecreasing, so the color assigned
to a given vertex by BatchColorf is at most cf · f(k) times the color assigned
by Color.

Lemma 8. Consider sum coloring in k batches, where the value of k is not
known in advance. If for all 1 ≤ i ≤ k, batch i is feasible, then the competitive
ratio of BatchColorf is at most cf · f(k).

Lemma 9. All batches for the algorithm BatchColorf are feasible.

By Lemmas 8 and 9, we obtain:

Theorem 6. Consider sum coloring in at most k batches and let f be any non-
decreasing function with f(i) ≥ 1 for all i ≥ 1, whose series Sf converges to cf .
Then, the algorithm BatchColorf is (cf · f(k))-competitive, even if the value
k is not known in advance.

Now, we provide the lower bound.
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Theorem 7. Consider sum coloring in k batches, where the value of k is not
known in advance. Let f(i) be a nondecreasing sequence with f(i) ≥ 1 for all
i ≥ 1, whose series Sf is divergent. Then, there is no constant c such that a
competitive ratio of at most c · f(k) can be obtained for all k ≥ 1.

Proof. Assume for the sake of contradiction that there exists a constant c > 1
and an algorithm A, such that A is (c · f(k))-competitive, for any number k ≥ 1

of batches. Let C = max{2c, 10}. Let k be such that
∑k

i=1 1/f(i) > 11C (where
k must exist as the series Sf is divergent). Fix a large integer M , such that
M > 130 · C2 · f(k)2. We say that a color a is small if a ≤ 10CM .

We now describe an adversarial input. Batch i of the input consists of M i−1

cliques of size 3bM/f(i)c. There are no edges between vertices in different cliques
of the same batch. A vertex that A colors with a small color is called a cheap
vertex. For each batch i, if there is at least one clique containing at least M/f(i)
cheap vertices, then one such clique is chosen, and the cheap vertices of this
clique are called special vertices. In each batch, all vertices are connected to all
special vertices of previous batches and to no other vertices in previous batches.
Thus, no colors used for special vertices can be used in later batches, and there
is at most one special vertex for each small color.

The input will contain at most k batches. If, after some batch i < k, the sum
of colors used by A is larger than c · f(i) times the optimal sum of colors, there
will be no more batches. Otherwise, all k batches are given. Thus, if there are
fewer than k batches, the theorem trivially follows. Below, we consider the case
where there are exactly k batches.

We first give an upper bound on the optimal sum of colors for the first i
batches, for 1 ≤ i ≤ k.

Claim 1. For every value of i (such that 1 ≤ i ≤ k), the optimal sum of colors
for the first i batches is at most 19M i+1/(f(i))2.

We now show that, by the assumption that A is (c · f(i))-competitive on
i batches, 1 ≤ i ≤ k, each batch i must have a clique with at least M/f(i)
cheap vertices. Assume for the sake of contradiction that some batch i does not
contain a clique with at least M/f(i) cheap vertices. Then, each clique in the
batch contains at most bM/f(i)c cheap vertices and hence at least 2bM/f(i)c
vertices with colors larger than 10CM . Thus, the sum of colors used for this batch
is more than M i−1 · 2bM/f(i)c · 10CM > 10CM i+1/f(i) ≥ 20cM i+1/f(i). By
Claim 1, this gives a ratio of more than

20cM i+1/f(i)

19M i+1/(f(i))2
> c · f(i) .

Thus, the total number of special vertices is at least
∑k

i=1M/f(i) > 11CM ,
contradicting the fact that there is at most one special vertex for each of the
small colors. ut
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