
On-Line Problems with Restrited InputA dissertation submitted in partial ful�llment of the requirementsfor the degree of Dotor of Philosophy in Computer SieneLene Monrad FavrholdtDepartment of Mathematis and Computer SieneUniversity of Southern DenmarkMay 1, 2002

Contents
1 Introdution 12 On-Line Problems 32.1 Paging . 32.2 The k-Server Problem . 42.3 Metrial Task Systems . 42.4 Sheduling . 52.5 Bin Paking . 72.6 Dual Bin Paking . 82.7 Variable-Sized Bin Paking . 82.8 The Seat Reservation Problem . 82.9 Edge Coloring . 92.10 Edge Coloring with a Fixed Number of Colors 92.11 Dial a Ride . 93 Quality Measures 113.1 Competitive Analysis . 113.2 Limitations of Competitive Analysis . 133.3 Re�nements of Competitive Analysis . 133.3.1 Resoure Augmentation . 143.3.2 Aommodating Funtion . 153.3.3 Aess Graphs . 163.3.4 Loose Competitive Ratio . 173.3.5 Statistial Adversary . 183.3.6 Di�use Adversary . 183.3.7 Random Order . 193.3.8 Reasonable Load . 203.3.9 Comparative Ratio . 203.3.10 The Max/Max Ratio . 203.3.11 Lookahead . 213.3.12 Total Aess Time . 224 Paging with Loality of Referene 234.1 The Model . 234.2 Algorithms . 264.3 Results . 27i

ii CONTENTS4.4 The Max-Model . 284.4.1 A Lower Bound for Deterministi Algorithms 284.4.2 LRU is Optimal . 294.4.3 FIFO is Not Quite Optimal . 294.4.4 Marking Algorithms . 314.4.5 LFD . 324.5 The Average-Model . 324.5.1 A Lower Bound for Deterministi Algorithms 334.5.2 Upper Bounds . 354.5.3 LRU and FIFO are Optimal . 364.5.4 The Worst Marking Algorithm . 374.5.5 LFD . 394.6 Experiments . 425 Edge Coloring with a Fixed Number of Colors 455.1 Algorithms . 455.2 Results . 455.3 Graphs . 465.4 Basis . 465.5 k-Colorable Graphs . 475.5.1 A Performane Guarantee for Fair Algorithms 475.5.2 Next-Fit is Worst Possible . 485.5.3 First-Fit is a Little Better . 485.5.4 An Impossibility Result for Deterministi Algorithms 505.6 General Graphs . 525.6.1 A Performane Guarantee for Fair Algorithms 525.6.2 Next-Fit is Worst Possible . 545.6.3 First-Fit is Not Muh Better . 545.6.4 An Impossibility Result for Fair Deterministi Algorithms 555.6.5 A General Impossibility Result . 566 Dual Bin Paking in Variable-Sized Bins 596.1 Algorithms . 596.2 Results . 606.3 A Tight Performane Guarantee . 606.4 Impossibility Results . 606.5 Worst-Fit and Largest-Fit . 636.6 Smallest-Bins-First Algorithms . 647 Sheduling on Two Related Mahines 677.1 Non-Preemptive Sheduling . 677.1.1 Previous Results . 677.1.2 Our Results . 687.1.3 Impossibility Results . 697.1.4 The New Algorithms . 707.1.5 Performane Guarantees . 717.2 Preemptive Sheduling . 73

CONTENTS iii7.2.1 Preliminaries . 747.2.2 Algorithms for q � 2 . 747.2.3 Algorithms for q > 2 . 757.2.4 General Impossibility Results . 778 Conlusion 79A Resumé 89B Papers 91B.1 Paging with Loality of Referene . 92B.2 Edge Coloring with a Fixed Number of Colors 119B.3 On-Line Maximizing the Number of Items Paked in Variable-Sized Bins 135B.4 Optimal Non-Preemptive Semi-Online Sheduling on Two Related Mahines . . 143B.5 Optimal Preemptive Semi-Online Sheduling on Two Related Mahines 160

Chapter 1IntrodutionOn-Line Problems. Many real-life problems are on-line, i.e., information is revealed insmaller piees and it is neessary to take ation on eah piee of information without knowingthe rest. Hene, on-line algorithms di�er from o�-line algorithms in that they make deisionson an inomplete basis. On-line problems ome in two variants, maximization problems wherethe aim is to maximize bene�t and minimization problems where the aim is to minimize ost.Chapter 2 gives a short survey of on-line problems relevant to this thesis.Measuring On-Line Algorithms. The standard measure for the quality of an on-line al-gorithm is the ompetitive ratio, whih is, roughly speaking, the ratio of the performane (i.e.,the ost/bene�t) of the on-line algorithm to an optimal o�-line algorithm, i.e., an algorithmthat knows the whole input in advane and has all the time it needs to ompute an optimalsolution. The ompetitive ratio is de�ned formally in Setion 3.1.The strength and the weakness of the ompetitive ratio is that it is a very general measure.Sine it is so general and sine it is a worst ase measure, it annot be expeted to give verydetailed information. Indeed, for some problems it fails to re�et reality in that it givesresults that are very pessimisti ompared to empirial results and/or it does not distinguishalgorithms that are known to perform very di�erently in pratie.This has motivated many researhers to look for more speialized measures. Many of thesean be seen as re�nements of the ompetitive ratio. Setion 3.3 gives a short survey of suhspeialized measures. The diretion taken in this thesis is to exploit knowledge about theinput, sine very often it is overly pessimisti to assume that nothing an be predited aboutit. Clearly, if something is known about the input, taking this into aount yields a morepreise analysis. Furthermore, studying speial ases with restrited input an sometimesserve as a stepping stone to the more general (and probably harder) analysis.On-Line Problems Studied in this Thesis. Chapters 4, 5, 6, and 7 are based on thepapers [4, 49, 43, 42, 44℄ inluded in Appendix B. The aim has been to give intuition andoverview rather than desribing all tehnial details, sine these an be found in the papers.In Chapter 4 we study the paging problem. It is well-known that input sequenes tothe paging problem exhibit loality of referene, i.e., depending on whih pages have beenrequested lately, the next page requested is likely to belong to a relatively small set of pages.Our way of modeling loality of referene is inspired by Denning's working set model. The1

2 CHAPTER 1. INTRODUCTIONmodel is very simple, and it enables us to use the fault rate as the quality measure. This is amore natural measure than the ompetitive ratio, and our results seem to be muh loser toreality than those obtained for the ompetitive ratio.In Chapter 5 we study a version of the edge oloring problem, where a limited number ofolors are available, and the aim is to olor as many edges as possible. Edges arrive one byone, and eah edge must be olored or rejeted without knowledge about future edges. Thisproblem has not been studied before. We study the general ase as well as the ase, where thenumber of olors available are su�ient for an optimal o�-line algorithm to olor all edges ofthe graph.In Chapter 6 we study dual bin paking in variable sized bins. That is, a �xed numberof bins, possibly of unequal sizes, are given, and the goal is to maximize the number of itemspaked in the bins. We study a very natural lass of algorithms, namely those that neverrejet an item unless it does not �t in any bin. Sine, on general sequenes, no suh algorithman pak a onstant fration of the items in the worst ase, we restrit the input sequenes tothose that an be paked ompletely by an optimal o�-line algorithm.Finally, in Chapter 7 we study a simple sheduling problem. The input is a sequene of jobsto be sheduled on two mahines with possibly di�erent speeds. The goal is to minimize thetime it takes to omplete all jobs. We study preemptive sheduling as well as non-preemptivesheduling. In preemptive sheduling it is allowed to break a job in smaller piees and run thepiees in disjoint time intervals, possibly on di�erent mahines. We give optimal algorithmsfor the speial ase, where the job sizes are non-inreasing.For the general ase, optimal algorithms have already been identi�ed. However, these havenot been generalized to optimal algorithms for any number of mahines. For non-preemptivesheduling, algorithms with a onstant ompetitive ratio have been devised. For preemptivesheduling, nothing is known so far exept for the ase of non-dereasing speed ratios.Danish Summary. A Danish summary an be found in Appendix A.Notation. For any algorithm A and any input sequene �, A(�) denotes the ost/bene�t ofrunning A on �. Similarly, OPT(�) denotes the optimal solution to �, i.e., the ost/bene�t ofrunning an optimal o�-line algorithm on �.Hk denotes the kth harmoni number, i.e., Hk =Pki=1 1i � ln(k + 1).

Chapter 2On-Line ProblemsThe on-line problems investigated in this thesis are Paging with Loality of Referene, EdgeColoring with a Fixed Number of Colors, Dual Bin Paking in Variable-Sized Bins, andSheduling on Two Related Mahines to Minimize Makespan, see Chapters 4, 5, 6, and 7.In this setion we de�ne these problems and a few other on-line problems that are relevant tothis thesis and give a brief desription of previous results. For a more thorough desription,see [54℄, where many of these problems are surveyed.When talking about performane guarantees for algorithms for minimization (maximiza-tion) problems, we mean upper (lower) bounds on the ompetitive ratio. Similarly, impossi-bility results are lower (upper) bounds on the ompetitive ratio.2.1 PagingIn the paging problem, we are dealing with two levels of memory that an store pages of equalsizes. There is a large, slow memory and a smaller, fast memory, often alled the ahe. Theahe an hold k pages. The input is a sequene of requests to pages of the slow memory.Whenever a page is requested that is urrently not in the ahe, it must be brought from theslow memory to the ahe at a ost of 1. This is alled a page fault. To make room for thenew page, a page must be evited from the ahe. The page to be evited must be hosenwithout any knowledge of future requests.Some well-studied paging algorithms are the following.LRU (Least Reently Used) On a page fault, LRU evits the page that has not beenrequested for the longest time.FIFO (First In First Out) On a page fault, FIFO evits the page that has been in ahefor the longest time.Marking Algorithms This is a whole lass of algorithms that work in phases. Eah phaseontains requests to exatly k distint pages, and the �rst page of a phase is not requestedin the previous phase. Thus, phases are maximal in the sense that if a phase is extendedto �the right�, it will ontain more than k distint pages.Eah time a page is requested, it is marked (unless it is already marked). Only unmarkedpages are evited. At the end of a phase, all pages in the ahe are marked. The marks3

4 CHAPTER 2. ON-LINE PROBLEMSare all erased, and a page an be evited to make room for the �rst page requested inthe next phase.A popular randomized marking algorithm is the algorithm MarkR that hooses theunmarked page to be evited uniformly at random.Note that LRU is a marking algorithm and FIFO is not. A rather primitive marking algorithmis the algorithm FWF (Flush When Full). When a phase ends, it simply evits all pages fromthe ahe.For the paging problem, the results of ompetitive analysis are very negative ompared towhat is observed in pratie. Any deterministi on-line paging algorithm has a ompetitiveratio of at least k [95℄, the size of the ahe, and any randomized algorithm has a ompetitiveratio of at least Hk [51℄.Several deterministi algorithms are k-ompetitive, i.e., they have optimal ompetitiveratio. These inlude FIFO and any marking algorithm [73℄. This does not re�et reality well,sine empirial results show that LRU is better than FIFO. Moreover, it seems unnatural thatan algorithm as primitive as FWF is optimal.The randomized marking algorithmMarkR is 2Hk-ompetitive [51℄ (the exat ompetitiveratio of MarkR is 2Hk � 1 [1℄). There are more ompliated randomized paging algorithmsthat ahieve the optimal ompetitive ratio of Hk [85, 1℄.2.2 The k-Server ProblemThe k-server problem is a generalization of the paging problem and was proposed in [83℄. Ametri spae and k servers are given. The servers are plaed on points in the metri spae.The input is a sequene of requests to points in the metri spae. Eah request must be servedby moving a server to the requested point (unless a server is already plaed on that point).Eah request must be served without knowledge of future requests. The ost to be minimizedis the total distane traveled by the k servers.The paging problem is a speial ase of the k-server problem, sine it an be modelled bya uniform metri spae with one point for eah page in the slow memory and one server foreah slot in the fast memory. Fething a page to the fast memory orresponds to putting aserver on the orresponding point.The work funtion algorithm is (2k � 1)-ompetitive in any metri spae [78℄. Sine thek-server problem is a generalization of the paging problem, learly k is a lower bound on theompetitive ratio for the problem. It has been onjetured that the ompetitive ratio of theproblem is k [83℄.2.3 Metrial Task SystemsThis problem was formulated in [21℄. Again, we have a metri spae, but only one server. Thepoints of the metri spae are alled states. Let N denote the number of states. The input isa sequene of tasks. A task is haraterized by an N -ary vetor giving the ost of serviingthe task in eah state. Eah task must be served without any knowledge of future tasks. Foreah task, the server is moved to a new state (or stays where it is) at a ost orresponding tothe distane between the old and the new state. The task is then proessed in the new stateat a ost given by the ost vetor of the task.

2.4. SCHEDULING 5Metrial task systems generalize many on-line problems. To see that the k-server problemis a speial ase, onsider a metri spae onstruted from a given k-server problem in thefollowing way. The metri spae has exatly one point for eah subset of the k-server metrispae of size k. It an be assumed without loss of generality that the k servers always oupy kdistint points. Thus, the points of the new metri spae orrespond to the possible plaementsof the k servers. The distane between two points in the new metri spae is the minimum ostof moving the servers from the on�guration orresponding to one point to the on�gurationorresponding to the other point.The work funtion algorithm has an optimal ompetitive ratio of 2N � 1 [21℄. Sine theproblem is very general, there are several important speial ases for whih this does not yielda good ratio. For instane, for the paging problem it gives a ratio of 2�Mk �� 1, ifM is the sizeof the slow memory.2.4 ShedulingIn the basi sheduling problem, m mahines/proessors are given and the input is a sequeneof jobs, eah haraterized by its size (running time). The goal is to shedule eah job on amahine, suh that the time it takes to omplete all jobs is minimized. This time is alledthe makespan. In the on-line version, eah job must be sheduled without any knowledge offuture jobs.This basi problem has many appliations and has been studied in several papers [3, 7, 12,30, 31, 41, 45, 48, 55, 59, 60, 94, 92, 99℄. Let m be the number of mahines. The algorithm ListSheduling shedules eah job on a urrently least loaded mahine. This algorithm was studiedin [60℄ for the o�-line problem, but sine it shedules eah job without exploiting any knowledgeof the future jobs, it also works for the on-line problem. It was shown to have a ompetitiveratio of 2� 1m (though it was not alled the ompetitive ratio). For m = 2 and m = 3, this isbest possible for deterministi algorithms [48℄. For m � 2, the algorithm M2 desribed in [3℄is 1:923-ompetitive. For m � 13, this is better than 2 � 1m . If m � 64, the algorithm MRpresented in [55℄ is even better. Its ompetitive ratio tends to 1 +p(1 + ln 2)=2 < 1:9201 asm tends to in�nity. For m � 4, the ompetitive ratio of any deterministi algorithm is at least1:707 [48℄, and for m � 80, it is more than 1:853 [59℄.On two mahines, the optimal ompetitive ratio for randomized algorithms is 43 [12℄.There are many variations on the basi sheduling problem. For instane, the mahinesmay have di�erent speeds. In this ase, List Sheduling is de�ned suh that it shedules eahjob on a mahine where it will �nish earliest possible. In the ase of idential mahines, thetwo de�nitions are equivalent. If eah mahine has a ertain speed, independent of the jobs,the mahines are said to be uniformly related.For deterministi algorithms, the ase of m = 2 is losed; in this ase List Sheduling isoptimal. Let q be the speed ratio, i.e., assume that one mahine is q times faster than theother. The ompetitive ratio is 1 + qq+1 for q � � and 1 + 1q for q � � (� � 1:618 is thegolden ratio). Thus, the highest (worst) ompetitive ratio is � and is attained at q = �. Theperformane guarantees as well as the overall impossibility result (the maximum ompetitiveratio of �) are given in [31℄, the other impossibility results are given in [45℄. The latter paperalso shows the following. For q � 2, the impossibility results are true even for randomizedalgorithms. For q < 2, there are randomized algorithms with a better ompetitive ratio thanthat of List Sheduling.

6 CHAPTER 2. ON-LINE PROBLEMSNon-PreemptiveIdential Relatedm = 2 Deterministi C = 1:5 (LS) C = (1 + qq+1 ; q � �1 + 1q ; q � � (LS)Randomized C = 1:333 : : : C � 1:53m!1 Deterministi C � 1:920 (MR) C 2 O(1)m � 80 C � 1:853 C 2 O(1)PreemptiveIdential Relatedm = 2 C = 1:333 : : : C = 1 + qq2+q+1 � 1:333 : : :m > 2 C = mmmm�(m�1)m ! ee�1 � 1:582Table 2.1: Known bounds on the ompetitive ratio CFor general m, there are simple algorithms with onstant ompetitive ratios [7℄, but theexat overall ompetitive ratio has not been determined.It may be allowed to preempt jobs, i.e., it may be allowed to split a job in smaller pieesand run the piees in disjoint time intervals, possibly on di�erent mahines. This variant ofsheduling is alled preemptive sheduling.The ompetitive ratio of preemptive sheduling on m idential mahines is mmmm�(m�1)m .That is, any algorithm, deterministi or randomized, has ompetitive ratio at least mmmm�(m�1)m[30, 94℄, and there exists a deterministi algorithm with this ompetitive ratio [30, 92℄. Thisratio tends to ee�1 � 1:582 as m tends to in�nity.For preemptive sheduling on two related mahines with speed ratio q, the ompetitiveratio is 1 + qq2+q+1 [45, 99℄, for deterministi algorithms as well as randomized. This funtionattains its maximum value of 43 when q = 1.For the general ase of more mahines, nothing is known so far. However, [41℄ gives theoptimal ompetitive ratio as a funtion of all the speeds in the ase where the speed ratios arenon-dereasing (that is, if the speeds are s1 � s2 � : : : � sm, then s1s2 � s2s3 � : : : � sm�1sm).The results are summarized in Table 2.1.Note that while some of the non-preemptive variants of the sheduling problem desribedhere have randomized algorithms with a better ompetitive ratio than the optimal ompetitiveratio for deterministi algorithms, this is not the ase for the preemptive variants. Indeed,it has been proven that the ompetitive ratios of the best deterministi algorithms are alsobest possible for randomized algorithms. This is rather natural, sine the strategy of the bestdeterministi algorithms is to maintain ertain relative levels of the mahines (the level of amahine is the time it needs to omplete the jobs assigned to it so far). For non-preemptivesheduling randomization helps �spread out� the jobs over the mahines. For preemptivesheduling, this an be done more preisely without randomization.

2.5. BIN PACKING 72.5 Bin PakingThe lassial bin paking problem is the following. The input is a sequene of items of sizesbetween 0 and 1. The items must be paked in unit sized bins suh that the sum of sizes ofthe items paked in eah bin is at most 1. In the on-line version, eah item must be pakedwithout any knowledge of future items. The goal is to pak the items in as few bins as possible.Thus, this problem is a minimization problem.In [101℄ a lower bound of 1:5 for any deterministi bin paking algorithm is proven using asequene with items of three di�erent sizes. In [82℄ items of 5 di�erent sizes are used to provea better lower bound of approximately 1:536. [98℄ gives a tight analysis of the onstrutionfrom [82℄ yielding a lower bound of approximately 1.540. In [28℄ it is argued that these lowerbounds are true for randomized algorithms too.In [91℄ the best known algorithm, Harmoni++, is given and proven to be 1.58889-ompetitive. It is also proven that the algorithm Harmoni+1 of [90℄ that was previouslythought to be the best algorithm is at best 1:59217-ompetitive.Some simpler, lassial algorithms are First-Fit and Best-Fit. First-Fit orders the binsaording to the order in whih they were opened. Eah time an item arrives, First-Fit putsit in the �rst bin in whih it �ts. If it does not �t in any bin, a new bin is opened. Best-Fitputs the item in the bin in whih it leaves the least empty spae. If it does not �t in any bin,Best-Fit opens a new bin. The ompetitive ratio of First-Fit and Best-Fit is 1.7. The upperbound for First-Fit was proven in [57℄, and the lower bound was shown in [70℄.An even simpler algorithm is Next-Fit. Next-Fit paks eah item in the last opened bin ifit �ts there. Otherwise, it opens a new bin and puts the item there. Next-Fit has ompetitiveratio 2 [68, 69℄.First-Fit and Best-Fit belong to the lass of algorithms alled Any-Fit algorithms. AnAny-Fit algorithm never paks an item in an empty bin, if the item �ts in a non-empty bin.[69℄ shows that suh an algorithm has a ompetitive ratio between 1.7 and 2. Only a smallfurther restrition is needed to obtain an upper bound mathing the lower bound of 1.7. Letthe level of a bin denote the total size of the items paked in the bin. An Almost-Any-Fitalgorithm is an Any-Fit algorithm that never paks an item in a non-empty bin with lowestlevel, unless there are other bins with the same level, or the bin is the only non-empty bin inwhih the item �ts. Any Almost-Any-Fit algorithm has a ompetitive ratio of 1.7 [69℄.The lower bound for Any-Fit algorithms shows that, to beat First-Fit and Best-Fit, it issometimes neessary to open a new bin even though the urrent item �ts in an already openbin. On the other hand, for pratial appliations it may be desirable to sometimes lose abin even though it is not �lled ompletely. A bin is said to be open, if it ontains at least oneitem, and it may still reeive more items. A bin is said to be losed, if it ontains at leastone item, and it will not be onsidered when paking future items. A bin paking algorithmis said to use bounded spae, if the maximum number of open bins at any time is bounded bysome onstant.[80℄ proves that the bounded-spae algorithm Harmoni has a ompetitive ratio thatapproahes 1.691 as the number of open bins inreases, and that this is the best possibleompetitive ratio of a bounded-spae on-line bin paking algorithm.11The preise �gure is h1 =P1i=1 1ui�1 , where u1 = 2 and ui+1 = ui(ui � 1) + 1, i � 1.

8 CHAPTER 2. ON-LINE PROBLEMS2.6 Dual Bin PakingThe dual bin paking problem is a maximization problem. Again, the input is a sequene ofitems of sizes between 0 and 1. A �xed number of unit sized bins is given, and the aim isto pak as many items in the bins as possible. In [27℄ this problem is reported to have beennamed Dual Bin Paking in [81℄.A fair algorithm for this problem is an algorithm that never rejets an item unless it doesnot �t in any bin. If the items an be arbitrarily small, no fair algorithm an be ompeti-tive [25℄.[25℄ onsiders the ase where all input sequenes an be paked ompletely by an optimalo�-line algorithm. In this ase, any fair algorithm has a ompetitive ratio of at least 12 , andFirst-Fit and Best-Fit have a ompetitive ratio of at least 58 [25℄. Furthermore, First-Fit'sompetitive ratio is at most 58 [8℄, if the number of bins an be arbitrarily large. [8℄ also givesa general upper bound of 0:809 for fair deterministi algorithms, when there an be arbitrarilymany bins, and an upper bound of 67 for unfair algorithms. Furthermore, an unfair algorithmis devised that has a ompetitive ratio that tends to 23 when the number of bins goes to in�nity.Note that the name dual bin paking is also sometimes used to refer to bin overing. Inthis problem, a bin is overed if the items paked in it have a total size of at least 1, and thegoal is to over as many bins as possible.2.7 Variable-Sized Bin PakingThe lassial bin paking problem as well as the dual bin paking problem an be generalizedsuh that there are more than just one bin size. The set of bin sizes is given as a part of theproblem.For the lassial bin paking problem with variable-sized bins, there is an unlimited numberof bins of eah given size. The goal is to minimize the total size of the bins used. For thisproblem, [34℄ designs an on-line algorithm Variable Harmoni based on Harmoni. LikeHarmoni it uses bounded spae. The ompetitive ratio of this algorithm is the same as theompetitive ratio of Harmoni for idential bins. For some ombinations of bin sizes, theompetitive ratio is even better. If there are only two sizes, 1 and 0.7, the ompetitive ratio ofthe problem is at most 1.4, whih is smaller than the optimal ompetitive ratio for identialbins. Hene, in this ase, the on-line algorithm �bene�ts more� from having two sizes of binsto hoose from than the o�-line algorithm it is measured against.In Chapter 6 we investigate dual bin paking with variable-sized bins.2.8 The Seat Reservation ProblemThis problem was introdued in [24℄. A train has n 2 N seats and travels from station 1 tostation k 2 N. The input to the problem is a sequene of requests onsisting of a start andan end station. Eah request must be assigned a seat without any knowledge of the rest ofthe sequene. Two requests an be assigned the same seat if the start station of one requestis the same as or later than the end station of the other request. Requests have to be treatedin a fair manner, i.e., if a request an be assigned a seat, it must be assigned a seat. In thisase, we say that the request is aepted. Otherwise, it is rejeted.

2.9. EDGE COLORING 9There are two versions of the problem. Either the pro�t of aepting a request is propor-tional to the length between its start and end station, or all requests have unit pro�t. For theproportional prie problem, any deterministi on-line algorithm has a ompetitive ratio pro-portional to the inverse of the number of stations, even in the ase where the input sequenesare restrited to those that an be fully aommodated by an optimal o�-line algorithm [24℄.Thus, depending on the number of stations, the ompetitive ratio an be arbitrarily bad.For the unit prie problem, the situation is the same in the general ase, where we have norestrition on the input sequenes. For sequenes that an be fully aommodated by an op-timal o�-line algorithm, any deterministi algorithm has a ompetitive ratio of at least 12 [24℄,and if the ratio of the number of stations to the number of seats an be arbitrarily large, nodeterministi algorithm has a ompetitive ratio larger than 12 [10℄.2.9 Edge ColoringThe lassial edge oloring problem is to olor the edges of a graph using as few olors aspossible, under the onstraint that no two adjaent edges may reeive the same olor. In theon-line version, edges arrive one by one and eah edge must be olored before the next edgeis seen.For any graph, let � be the maximum vertex degree. In [11℄ it is shown that the optimalompetitive ratio of 2�� 1 is ahieved by the algorithm that numbers the olors and olorseah edge with the olor of lowest possible number. (This is the algorithm alled First-Fit inChapter 5.)2.10 Edge Coloring with a Fixed Number of ColorsAs far as we know, this variant of the edge oloring problem has not been studied earlier. Alimited number of olors are available, and the aim is to olor as many edges as possible, againunder the onstraint that no two adjaent edges may reeive the same olor. In the on-lineversion, eah edge must be either olored or rejeted before the next edge is seen.This modi�ation of the edge oloring problem is analogous to the modi�ation of thevertex oloring problem made in [24℄ when de�ning the seat reservation problem. Assigningseats to requests is equivalent to assigning olors to the verties of an interval graph.2.11 Dial a RideThe dial a ride problem is about transporting objets from one point in a metri spae M toanother. There is one server available for this. For every pair of points in M , there is a pathof a given length. A request onsists of a release time, a startpoint, and an endpoint. Therelease time is the time when the request beomes known to the on-line algorithm. To servea request, the server must travel from the startpoint to the endpoint. One an objet hasbeen piked up at its startpoint, it annot be left anywhere else than at its destination point.Thus, if serving one request has been begun, it must be ompleted before any other requestan be served. The server starts at a speial point, the origin, and has to end in this pointafter serving all requests.

10 CHAPTER 2. ON-LINE PROBLEMSThe dial a ride problem di�ers from the other on-line problems desribed here in that newrequests an be released while some of the already released requests have not yet been servedand more requests an be released at the same time.There are several possible objet funtions for this problem. If the goal is to minimizethe total ompletion time, whih is the time when all requests have been served and theserver is bak in the origin, there exist ompetitive algorithms [6℄. The algorithms IGNOREand REPLAN are both 52 -ompetitive. An algorithm alled SMARTSTART is 2-ompetitive,whih is best possible for deterministi algorithms. This algorithm is sometimes �deliberately�idle, i.e., it hooses to do nothing for a while even though there are unserved requests.If the goal is to minimize the average time from a request is released until it has beenserved, no on-line algorithm is ompetitive [62℄. This objetive is alled the average �ow time.

Chapter 3Quality MeasuresBy the quality of an on-line algorithm, we mean the quality of the output of the algorithm. Thetime omplexity of an on-line algorithm is rarely disussed. One might argue that espeiallyfor on-line algorithms, time omplexity is an important issue. On the other hand, most on-linealgorithms studied in the literature are fairly e�ient.When evaluating the quality of algorithms, two main approahes ome to mind, worstase and average ase analysis. Worst ase analysis has the disadvantage that there mightbe a few rather ontrived input sequenes giving a performane muh worse than the typialsequenes. In this sense, average ase analysis seems more reasonable. However, this requiresa statistial model of the input. Realisti models an be di�ult to devise. Furthermore, theanalysis tends to be more hallenging than worst ase analysis.3.1 Competitive AnalysisThe quality measure that has beome the standard measure for on-line algorithms is a worstase measure. However, for many problems the worst ase performane as an absolute measuredoes not make sense. For instane, the worst ase fault rate of any deterministi pagingalgorithm is 1. Competitive analysis solves this problem by measuring the performane of theon-line algorithm relative to an optimal o�-line algorithm, i.e., an algorithm that knows thewhole input sequene from the beginning and has all the time it needs to ompute the optimalsolution. For many on-line problems, the o�-line version is NP-hard. Thus, sometimes, e�ienton-line algorithms are measured against an o�-line algorithm that annot even be polynomial,unless NP=P.The ompetitive ratio was used already in [95℄, and in [73℄ it was named the ompetitiveratio. The ompetitive ratio for deterministi algorithms is formally de�ned in the followingway.De�nition 3.1 For any � 1, an on-line algorithm A for a minimization problem is -ompetitive, if there exists a onstant b suh thatA(�) � �OPT(�) + b; for any input sequene �;The ompetitive ratio of A is C = inff j A is -ompetitiveg:11

12 CHAPTER 3. QUALITY MEASURESDe�nition 3.2 For any � 1, an on-line algorithm A for a maximization problem is -ompetitive, if there exists a onstant b suh thatA(�) � �OPT(�) + b; for any input sequene �:The ompetitive ratio of A is C = supf j A is -ompetitiveg:If the inequality holds with b = 0, the algorithm is said to be stritly -ompetitive.If C is independent of the input sequene, the algorithm is said to be ompetitive.The ompetitive ratio of an on-line problem is the ompetitive ratio of the best possibleon-line algorithm for the problem. For larity, this is sometimes referred to as the optimalompetitive ratio. Let C be the ompetitive ratio of some on-line problem. Any algorithmwith a ompetitive ratio 2 O(C) is said to be strongly ompetitive.Note that some authors de�ne -ompetitiveness for maximization problems as OPT(�) ��A(�)+b, for any input sequene �. In this way, a good ompetitive ratio is a low ratio for bothmaximization and minimization problems. However, the de�nition hosen here is onsistentwith most literature on approximation algorithms. To avoid onfusion, we will often usethe terms performane guarantee and impossibility result instead of the more ommon termsupper bound and lower bound.Competitive analysis is often interpreted as a game between the on-line algorithm and anadversary who hooses the input sequene and serves it using an optimal o�-line algorithm.When analyzing randomized algorithms, one must deide on an adversary type. In [15℄three types of adversaries for randomized algorithms are de�ned.The most ommonly used adversary is the oblivious adversary. This adversary onstrutsthe input sequene knowing the de�nition of the algorithm but without knowing the outomeof the random hoies made by the algorithm. This adversary is the only adversary onsideredin this thesis.A more powerful adversary is the adaptive on-line adversary. This adversary may de�neeah request based on the on-line algorithm's answer to all previous requests, but it must servethe request without knowing the random hoies made by the on-line algorithm as answer tofuture requests. This adversary is at least as strong as the oblivious adversary, sine it isallowed to de�ne the whole sequene in advane and ompute an optimal solution beforegiving the sequene.The third adversary, is the adaptive o�-line adversary. This adversary may de�ne eahrequest based on the on-line algorithm's answer to all previous requests and it serves eahrequest knowing the whole sequene. This adversary is the most powerful of the three. In-deed, against this adversary, no randomized algorithm for a given problem an have a betterompetitive ratio than the best deterministi algorithm for the problem [15℄.When analyzing randomized algorithms, we address the expeted bene�t/ost E[A(�)℄ ofthe algorithm.De�nition 3.3 For any � 1, a randomized on-line algorithm A for a minimization problemis -ompetitive, if there exists a onstant b suh thatE[A(�)℄ � �OPT(�) + b; for any input sequene �:The ompetitive ratio of A is C = inff j A is -ompetitiveg:

3.2. LIMITATIONS OF COMPETITIVE ANALYSIS 13De�nition 3.4 For any � 1, an on-line algorithm A for a maximization problem is -ompetitive, if there exists a onstant b suh thatE[A(�)℄ � �OPT(�) + b; for any input sequene �:The ompetitive ratio of A is C = supf j A is -ompetitiveg:3.2 Limitations of Competitive AnalysisFor some on-line problems, ompetitive analysis yields very pessimisti results. Furthermore,it sometimes fails to distinguish algorithms that are known to perform very di�erently inpratie. Some examples of this were given Chapter 2. Motivated by this, many researhershave proposed re�nements to ompetitive analysis (see the next setion).[14℄ proves some ounterintuitive properties of the ompetitive ratio. For instane, on-linealgorithms for the k-server problem must remember the past to be onstant ompetitive, butknowing a �nite part of the future does not help:� To be onstant ompetitive, any on-line algorithm for the k-server problem must deidehow to serve eah request based not only on the urrent request but also on what hashappened in the past. Depending on the distanes of the metri spae, the amount ofmemory needed an be arbitrarily large.This is ounterintuitive, sine in standard ompetitive analysis, we do not assume thatfuture requests depend in any way on past requests.� For the k-server problem, lookahead does not help. That is, knowing the next ` requestsat eah point in time does not improve the ompetitive ratio, for any �nite `.This is ounterintuitive, sine what makes the o�-line algorithm so muh more powerfulthan any on-line algorithm is merely the fat that it knows the future.The paper also gives an example showing that minimizing the amortized ost, i.e., the totalost divided by the number of requests, an be in on�it with minimizing the ompetitiveratio.3.3 Re�nements of Competitive AnalysisThe previous setion desribed some of the drawbaks of ompetitive analysis. This setion de-sribes a number of re�nements of ompetitive analysis. Some are atually not re�nements butrather alternatives to ompetitive analysis. Others are re�nements of the problem de�nition.Most re�nements to ompetitive analysis fall into one of three ategories.� The set of input sequenes is restrited in some way and/or the algorithm is givensome information about the input sequene, re�eting that the future is not alwaysompletely unpreditable. Examples (that will be de�ned later in this setion) are theaommodating funtion, aess graphs, reasonable load, and lookahead.To some extent, the loose ompetitive ratio also belongs here. Using the loose ompet-itive ratio, sequenes with insigni�ant ost are ignored. Similarly, sequenes that arebad only for spei� values of the problem parameters are ��ltered out�.

14 CHAPTER 3. QUALITY MEASURESIn a broader sense, restriting the input set an be interpreted as putting a probabilitydistribution on the input set. Examples are the statistial adversary and the di�useadversary. It an also be argued that the random order ompetitive ratio belongs here.Random order ompetitive analysis orresponds to assuming that, for any multiset ofrequests, any permutation is equally likely.� The on-line algorithm is given more resoures than the o�-line algorithm it is measuredagainst (resoure augmentation).� The on-line algorithm is ompared to an algorithm (or lass of algorithms) less powerfulthan the optimal o�-line algorithm (the omparative ratio).The rest of this setion desribes a number of re�nements of ompetitive analysis. Manyof these are also desribed in [65℄ and [53℄. Depending on the problem and the aspets one�nds important, di�erent measures may be appropriate.3.3.1 Resoure AugmentationThe idea of resoure augmentation is to obtain more optimisti ratios than the standardompetitive ratio by measuring the on-line algorithm relative to an optimal o�-line algorithmwith fewer resoures than the on-line algorithm.The use of resoure augmentation in the analysis of on-line algorithms was �rst introduedin [95℄, where it is shown, that the ompetitive ratio of LRU and FIFO is onstant, if the on-line algorithm has a ahe that is a onstant fator larger than that of the o�-line algorithm.If h is the size of the o�-line ahe, the ompetitive ratio of LRU and FIFO is kk�h+1 . Thus, ifthe o�-line ahe has size k(1� 1), the ompetitive ratio of LRU and FIFO is smaller than .After some years, the onept of resoure augmentation was studied again; [9, 16, 26,40, 71, 72, 79, 88℄ study resoure augmentation for various sheduling problems. [76℄ studiesresoure augmentation for the k-server problem, and [35, 46℄ study resoure augmentation forthe bin paking problem. In [88℄ the onept was named resoure augmentation.In [71℄, some sheduling problems with one proessor are analyzed using resoure augmen-tation. It is assumed that the on-line proessor has speed 1 + ", " > 0, whereas the o�-lineproessor has speed 1. The ompetitive ratio in this ase is denoted the "-weak ompetitiveratio.The paper onsiders some preemptive sheduling problems for whih no on-line algorithmis ompetitive. One suh problem is the following. A sequene of jobs are to be sheduled onone proessor. Eah job has a release time and a length. Eah job beomes known only at therelease time, and its length is unknown until it has been run to ompletion. The problem isto minimize the average time from a job is released until it has been ompleted.Any deterministi on-line algorithm for the problem has a ompetitive ratio of
(n1=3) andany randomized on-line algorithm has a ompetitive ratio of
(log n), where n is the numberof jobs in the input sequene [87℄, in other words, no on-line algorithm for this problem isompetitive. However, there is a deterministi on-line algorithm, Balane, that has an "-weak ompetitive ratio of at most 1 + 1" . Thus, a onstant inrease in speed yields a onstantompetitive ratio. The same an be ahieved, giving the on-line algorithm a proessor withspeed 1 and a proessor with speed ". On the other hand, the algorithm Round Robin has an"-weak ompetitive ratio of
(n1�").Thus, the motivation for analyzing the "-weak ompetitive ratio is that

3.3. REFINEMENTS OF COMPETITIVE ANALYSIS 15� it is a more optimisti measure than the standard ompetitive ratio� it tells us how muh more performane we get if we inrease the speed of the proessor� it helps distinguish di�erent on-line algorithms.The �rst item is further elaborated. If OPT1(�)OPT1+"(�) is bounded for all input sequenes �, abounded "-weak ompetitive ratio will imply a bounded ompetitive ratio, sineOPT1(�)OPT1+"(�) � A1+"(�)OPT1(�) = A1+"(�)OPT1+"(�) :Thus, if we onsider an input sequene �abnormal�, if the optimal o�-line performane dereasesdramatially, when the speed is dereased slightly, the "-weak ompetitive ratio gives us a hintabout the ompetitive ratio on �normal� sequenes.In [16℄, the upper bound on the "-weak ompetitive ratio of Balane is improved to21+" . Thus, if Balane has a mahine that is more than twie as fast as that of the o�-linealgorithm, Balane performs better than the optimal o�-line algorithm.3.3.2 Aommodating FuntionLike resoure augmentation, the aommodating funtion applies to any problem with somelimited resoure. The aommodating funtion is indeed losely related to resoure augmenta-tion. However, whereas resoure augmentation is assuming that the on-line algorithm has moreresoures than the o�-line algorithm, the aommodating funtion is omputed by assuminga restrited set of input sequenes.The �rst step towards de�ning the aommodating funtion was taken in [24℄, where theseat reservation problem is studied. The situation, where the tiket pries are proportionalto the distane traveled, as well as the situation where the tikets have a unit prie, arestudied. For both problems, any deterministi algorithm has a ompetitive ratio of �(1k),where k is the number of stations. Thus, for a large number of stations, the ompetitive ratiois very small. However, if the input sequenes are restrited to those that an be ompletelyaommodated by an optimal o�-line algorithm, any deterministi algorithm for the unitprie problem is 12 -ompetitive. Suh sequenes are alled aommodating sequenes1. Thisrestrition on the set of input sequenes seems to be a realisti assumption, sine it is likelythat the management, based on data from earlier years, are able to predit how many ars itwill take to aommodate all passengers, if the requests are all known in advane (the seatreservation problem is equivalent to vertex oloring an interval graph, whih an be donee�iently). However, this number of ars may not su�e, when the requests are to be servedon-line (if the number of stations is large ompared to the number of seats, the ompetitiveratio of any deterministi algorithm is lose to 12 [10℄). Thus, it seems desirable to have morears than needed by an optimal o�-line algorithm. For other problems it may be more realistito assume that the resoures supplied are not even su�ient for an optimal o�-line algorithm.This motivates the de�nition of �-sequenes.Assume that the amount n of resoures are available (n ould be the number of seats inthe train or the number of bins in the dual bin paking problem). For any � > 0, an inputsequene is said to be an �-sequene, if an optimal o�-line algorithm does not bene�t from1In [24℄ the ompetitive ratio on aommodating sequenes was alled the aommodating ratio. In laterpapers this was hanged for onsisteny with ommon pratie in the �eld

16 CHAPTER 3. QUALITY MEASUREShaving more than the amount �n of resoures. More formally, for any input sequene �,and any amount m of resoures, let OPTm(�) denote the bene�t/ost of an optimal o�-linealgorithm on the sequene � when the amount m of resoures is given. An input sequene � isan �-sequene, if OPTn0(�) = OPT�n(�) for any n0 � �n. Thus, aommodating sequenesare 1-sequenes.Let A be an on-line algorithm for a maximization problem. The aommodating funtionis de�ned as AA(�) = supf j A is -ompetitive on �-sequenesg:For minimization problems, the aommodating funtion is de�ned analogously:AA(�) = inff j A is -ompetitive on �-sequenesg:For any �normal� on-line problem, the ompetitive ratio (with no restrition on the set ofinput sequenes) equals lim�!1A(�).When hoosing an on-line algorithm for dual bin paking it an be ruial to know some-thing about the input sequenes. If the input sequenes are all aommodating, First-Fit is58 -ompetitive [25℄, but in the general ase, the ompetitive ratio of First-Fit is �(s), wheres is the size of the smallest item in the sequene. An algorithm alled Log has a ompetitiveratio of �(1log 1=s) in both ases [22℄. Thus, if the sequenes are known to be aommodating,First-Fit is the best hoie, but if the sequenes are not likely to be �-sequenes for any small�, Log may be the best hoie.For � < 1, the aommodating funtion is losely related to resoure augmentation. As-sume that the amount n of resoures is available. If the input sequenes are all �-sequenes and� < 1, the performane of an optimal o�-line algorithm would be the same even if the amountof resoures were dereased to �n. This means that any performane guarantee proven in theresoure augmentation setting is valid for the aommodating funtion with � < 1. The on-trapositive of this observation gives that impossibility results for the aommodating funtionwith � < 1 arry over to the resoure augmentation setting.The opposite is not true. In [23℄ some examples are given where analyzing the aommo-dating funtion gives results that are muh more optimisti than those obtained with resoureaugmentation. The ompetitive ratio of First-Fit for the seat reservation problem does nothange signi�antly when the on-line algorithm is given more seats than the o�-line algo-rithm. Even if the on-line algorithm has 1� times as many seats as the o�-line algorithm, theompetitive ratio of First-Fit is at most 1+�(��2=n)(k�1) . This fration tends to 0 as k tends toin�nity. On the other hand, the aommodating funtion of First-Fit is at least 1 � 2�b1=�when � � 1. Similarly, the ompetitive ratio of First-Fit for dual bin paking is at least 3+2�8�on �-sequenes with � � 1, but for general sequenes, the ompetitive ratio of First-Fit isat most s� , even if the on-line algorithm has 1� times as many bins as the o�-line algorithm.Again, s is the size of the smallest item in the sequeneFor those results from resoure augmentation that are also valid for the aommodatingfuntion, the aommodating funtion adds an extra, very natural interpretation.3.3.3 Aess GraphsFor the paging problem, the impliit assumption in standard ompetitive analysis that anysequene of requests may our is partiularly unrealisti. Most programs exhibit loality ofreferene. When a page is referened, it is more likely to be referened in the near future

3.3. REFINEMENTS OF COMPETITIVE ANALYSIS 17(temporal loality), and pages near it in memory are more likely to be referened in thenear future (spatial loality). Loality of referene is the explanation why LRU works well inpratie. Indeed, two-level memory is only useful if request sequenes are not arbitrary.In [19℄ a model of loality of referene is introdued. The struture of the program isrepresented by a graph that ontains a vertex for eah page that may be referened. Whena page p is referened, the next request must be to p or to one of the pages orresponding tothe neighbors of p in the graph. Aess graphs may be direted or undireted. Here, we onlydisuss undireted aess graphs, sine is it su�ient to give a good illustration of the ideas.In the aess graph model, LRU is better than FIFO; on any aess graph, the ompetitiveratio of LRU is at least as good as that of FIFO [33℄, and there are graphs where the ompetitiveratio of LRU is muh better than that of FIFO. For instane it is not di�ult to see that, ifthe aess graph is a line of k + 1 verties, the ompetitive ratio of FIFO is at least k+12 (infat this is a lower bound on the ompetitive ratio of FIFO on any aess graph with at leastk + 1 verties [19℄) and the ompetitive ratio of LRU is 1. In general, if the aess graph is atree, LRU is an optimal deterministi on-line paging algorithm [19℄.However, it is lear that there are aess graphs for whih LRU is not optimal. An exampleis a ring graph on k + 1 verties. [19℄ gives an algorithm alled FAR. Whenever a page mustbe evited, FAR hooses a page whose distane in the graph to the page just requested islargest possible. For the ring graph, this is learly a better strategy than the LRU strategy.[67℄ shows that FAR is strongly ompetitive for any aess graph.[50℄ gives a simple strongly ompetitive randomized algorithm.[52℄ gives paging algorithms that build the aess graph on the �y. This means that theaess graph need not be known in advane; the aess graph may even hange dynamially.The algorithms require only O(k log n) spae, where n is the size of the slow memory. Adeterministi and a randomized algorithm are given. Both are strongly ompetitive.The onept of aess graphs has been very suessful in the sense that it helps distinguishthe performane of di�erent algorithms. However, the results on the atual ompetitive ratiosare sometimes rather di�ult to interpret. Some of the results involve �nding a vine deom-position (see [18, p. 63℄) of the aess graph or the maximum number of leaves in any subtreewith k + 1 verties.[74℄ takes the idea of aess graphs one step further by introduing probabilities on theedges. Hene, the algorithm knows not only whih pages an be requested next, but also theprobability of eah of these pages to be requested next. In this model it is possible to use thefault rate as the measure instead of measuring the on-line algorithms relative to an o�-linealgorithm. The paper gives an algorithm that has a fault rate whih is within a onstantfator of the optimal on-line fault rate.3.3.4 Loose Competitive RatioThe loose ompetitive ratio is de�ned in [103℄ for the paging problem, but it should be ap-pliable to other problems as well. In [104℄ the de�nition is re�ned and generalized to �leahing. Here we desribe the onept as de�ned in [104℄ for the speial ase of paging, sineit illustrates the ideas.A paging algorithm A is ("; Æ)-loosely C-ompetitive, if for any request sequene � andany n 2 N, at least (1� Æ)n of the ahe sizes k 2 f1; 2; : : : ; ng satisfyA(�) � max fC �OPT(�); "j�jg :

18 CHAPTER 3. QUALITY MEASURESThus, the loose ompetitive ratio does not onsider those sequenes that we do not worryabout anyway, beause they have a low fault rate. Furthermore, sequenes that are only badfor a few ahe sizes are not onsidered, sine in real life, the sequenes are not generated bya ruel adversary that knows the exat hardware on�guration.[104℄ proves the following result, relevant for many deterministi algorithms. For any0 < "; Æ < 1, any kk�h+1 -ompetitive algorithm is ("; Æ)-loosely C-ompetitive, where C =e 1Æ bln 1". (As in Setion 3.3.1 on resoure augmentation, h is the size of the o�-line ahe.)Hene, for onstant " and Æ, these algorithms have onstant ompetitive ratios. The result iswidely appliable, sine FIFO as well as any marking algorithm is kk�h+1 -ompetitive.The following result is relevant for randomized algorithms. For any 0 < "; Æ < 1, anyO(ln kk�h+1)-ompetitive algorithm is ("; Æ)-loosely C-ompetitive, where C 2 O(1 + ln 1Æ +ln ln 1").[65℄ poses the following open problem. For many sheduling problems, adversary sequeneshave been tailormade for the spei� number of mahines available. (For instane the sequeneagainst List Sheduling on m idential mahines is m(m � 1) jobs of size 1 followed by onejob of size m.) Is it possible to obtain the same impossibility results for the loose ompetitiveratio?3.3.5 Statistial AdversaryThe statistial adversary introdued in [89℄ hooses the input sequene suh that it is onsistentwith some statistial assumptions. The idea is to measure the worst ase absolute performane.That is, in ontrast to ompetitive analysis, the performane is not measured relative toanother algorithm.As an example, a problem in investment theory is analyzed. The input to the problem isa sequene of stok pries, and it is assumed that the mean and standard deviation are given.The adversary sequene must be hosen among those sequenes with the assumed mean andstandard deviation. Furthermore, the pries are bounded from above and below.The statistial adversary is also studied in [32℄.Note that in [53℄ the term statistial adversary is used to denote the stohasti version ofthe rate � adversary de�ned in [20℄.3.3.6 Di�use AdversaryAssuming that the input sequenes are onsistent with some spei� probability distributionmay be as unrealisti as assuming that nothing is known about the input sequenes. As amiddle ground, [77℄ proposes to use a whole lass of distributions. The algorithm knows thelass of distributions, but it does not know whih distribution is piked by the adversary. Theompetitive ratio of an on-line algorithm against this adversary, alled the di�use adversary,is its worst ase expeted performane ratio, over the distributions in the lass. Formally, if� is the set of probability distributions, the performane ratio of algorithm A isC(�) = maxD2� ED[A(�)℄ED[OPT(�)℄ :If � ontains all possible distributions, the ratio beomes equal to the standard ompetitiveratio; the adversary simply piks a distribution ontaining only one worst ase sequene.

3.3. REFINEMENTS OF COMPETITIVE ANALYSIS 19In partiular, [77℄ onsiders the set of distributions �", where, in eah step, the probabilityof any page to be requested next is at most ", for some " > 0. They show that LRU is optimalagainst suh an adversary, but they give no losed form for the ompetitive ratio for k > 2.The lass �" of distributions is further investigated in [105℄, where the following is proven.The ompetitive ratio of any deterministi on-line algorithm isCdet � k�1Xi=1 1maxf"�1 � i; 1g :An upper bound is given for the lass of deterministi lazy marking algorithms. (A lazyalgorithm is an algorithm that only evits a page when it has to. Sometimes suh algorithmsare alled demand paging algorithms.) The bound isCm � 2 k�1Xi=1 1maxf"�1 � i; 1g + 2:For " � 1k+1 , the same is true for randomized algorithms.Note that for " = 1n ,k�1Xi=1 1maxf"�1 � i; 1g = (Hn�1 �Hn�k; n � kHn�1 + k � n; n � k:The upper bound result overs LRU, sine it is a lazy marking algorithm, but it does notover FIFO, sine it is not a marking algorithm, and it does not over FWF, sine it is notlazy. Indeed, for " � 1k+1 , the ompetitive ratio of FIFO and FWF is k, just as the standardompetitive ratio.For " � 1k+1 , the lower bound for deterministi algorithms is raised toPk�1i=1 1maxf"�1�i;1g+1, and the lower bound for randomized algorithms is Hk, the optimal ompetitive ratio againstthe standard oblivious adversary.Hene, for " � 1k+1 , the lass of randomized algorithms is no stronger than the lassof deterministi algorithms, and for " � 1k+1 , the optimal ompetitive ratio for randomizedalgorithms is the same as against the standard oblivious adversary. This is perhaps not sosurprising. To a great extend, the advantage of randomized algorithms is that the inputsequenes �look random� from the algorithms perspetive � there are no real worst asesequenes. Hene, if the input is fairly random (this is the ase if " is small), it seemsreasonable that randomized algorithms are not muh stronger than deterministi algorithms.On the other hand, if " is large, the adversary does not di�er muh from the standard adversary.3.3.7 Random OrderIn [75℄ the Best-Fit algorithm for bin paking is investigated. Normally, when analyzing binpaking algorithms, the performane is measured using the worst ase performane ratio, overall input sequenes. This yields the lower bound of 1.7 for both First-Fit and Best-Fit, whih israther pessimisti ompared to empirial results on Best-Fit's performane. The lower boundis due to input sequenes with items of very speial sizes where the items our in order of non-dereasing size. Most permutations of these input sequenes give ratios that are signi�antly

20 CHAPTER 3. QUALITY MEASURESbetter. This motivates studying the worst ase expeted performane ratio, over all multisetsof items, assuming that any permutation of the items is equally likely.This expeted performane ratio is shown to lie between approximately 1.08 and 1.5 forBest-Fit. Thus, using this performane measure, the performane guarantee for Best-Fit isa little better than the general lower bound on the ompetitive ratio of any bin pakingalgorithm.3.3.8 Reasonable LoadThe notion of reasonable load is very similar to the onept of the rate � adversary de�nedin [20℄ and further investigated in [5℄. It also has similarities to the aommodating funtion.[62℄ studies the on-line dial a ride problem with an in�nite number of requests. In this ase,the total ompletion time is meaningless. However, if we want to minimize the average �owtime, ompetitive analysis does not yield any information as to whih algorithm to hoose,sine the ompetitive ratio of any on-line algorithm for this problem is unbounded.This motivated the authors of [62℄ to put a restrition on the set of input sequenes. Sineall requests must be served, it seems reasonable to require that an optimal o�-line algorithmis able to do so, i.e., the number of released jobs not yet served does not grow unboundedly.For any � 2 N, a request sequene is �-reasonable, if any sequene of requests released withina time period of length T � � an be served in time at most T . A request sequene isreasonable, if there exists a �, suh that the sequene is �-reasonable.On �-reasonable request sequenes, the algorihm ignore, desribed in detail in [6℄, yieldsa maximal �ow time of at most 2�. On the other hand, there are reasonable request sequenesfor whih the average �ow time of the algorithm replan, also desribed in [6℄, is unbounded.Sine the o�-line version of the dial a ride problem is NP-hard, it seems desirable that thesequenes are �more� than reasonable. A sequene is (�; �)-reasonable, if requests releasedduring a period of time T � � an be served in time at most T=�. If the problem is solvedusing a �-approximation algorithm, the number of released jobs not yet served will not growunboundedly, if the sequene is (�; �)-reasonable, for some bounded �.Note the similarity between (�; �)-reasonable sequenes and 1� -sequenes as de�ned inSetion 3.3.2.3.3.9 Comparative RatioMotivated by the fat that lookahead annot improve the ompetitive ratio of an on-line pagingalgorithm, [77℄ introdues the omparative ratio. Rather than evaluating the performane ofsingle algorithms, the purpose is to ompare the power of lasses of algorithms having aessto di�erent amounts of information. For instane it is shown that omparing on-line pagingalgorithms, i.e., algorithms that know only the urrent page requested, to algorithms thatknow the urrent request and the following `� 1 requests gives a ratio of minfk; `g.3.3.10 The Max/Max RatioThe Max/Max ratio is introdued in [14℄. Like the ompetitive ratio, it is a worst ase measureand it measures the on-line performane relative to the optimal o�-line performane. However,whereas the ompetitive ratio measures the performane on eah input sequene relative tothe performane of an optimal o�-line algorithm on that same sequene, the Max/Max ratioompares the performane on eah input sequene � to the worst ase performane of an

3.3. REFINEMENTS OF COMPETITIVE ANALYSIS 21optimal o�-line algorithm on all sequenes of the same length as �. More preisely, theMax/Max ratio is the ratio of the worst ase ost of the on-line algorithm on sequenes oflength ` to the optimal o�-line ost on sequenes of length `, as ` goes to in�nity.The example problem is the k-server problem with a bounded metri spae. For this prob-lem the Max/Max ratio is the worst ase amortized ost of the on-line algorithm normalizedby the amortized optimal o�-line ost. This means that the Max/Max ratio of two on-linealgorithms an be ompared without referring to an optimal o�-line algorithm � the ratio oftheir Max/Max ratios is simply the ratio of their worst ase performanes.The paper gives an on-line memoryless k-server algorithm that, for any k and any boundedmetri spae G, has a Max/Max ratio of at most 2k.2 Moreover, the ratio is within a fator oftwo of the best possible on-line algorithm. This is in ontrast to the ompetitive ratio whih,depending on the distanes in the metri spae, an be arbitrarily large, for any memorylessalgorithm for the k-server problem. It is also shown that lookahead does help. Spei�ally, itis shown that if the algorithm knows not only the urrent request but also the following `� 1requests, the Max/Max ratio is n�1` , if n� k � ` � n� 1 and n is the number of points in themetri spae. If ` < n� k, a lookahead of size ` does not improve the Max/Max ratio.Moreover, it is shown that the best possible Max/Max ratio depends on the metri spae.For the uniform metri spae with n points, the Max/Max ratio is n�1n�k . Thus, for the uniformmetri spae with k+1 points, the Max/Max ratio is k. On the other hand, there exist metrispaes with arbitrarily many points for whih the Max/Max ratio is 1. This is in ontrast tothe ompetitive ratio, sine any deterministi k-server algorithm has a ompetitive ratio of atleast k in any metri spae with more than k points, and it has been onjetured that this isthe optimal ompetitive ratio [83℄.Thus, even though the de�nition of the Max/Max ratio is similar to the de�nition of theompetitive ratio, the Max/Max ratio seems to give more reasonable results for the k-serverproblem. Unfortunately, for the paging problem, the Max/Max ratio seems to give even lessinformation than the ompetitive ratio. If there is no restrition on the request sequenes,the fault rate of any algorithm (inluding the optimal o�-line algorithm) an be arbitrarilylose to one, depending only on the number of distint pages that an be requested. Thus,onsidering arbitrarily large numbers of distint pages, the Max/Max ratio of any algorithman be arbitrarily lose to 1. Moreover, for problems like sheduling to minimize makespan(or the k-server problem with an unbounded metri spae) where a bound on the length ofthe input sequene does not yield a bound on the ost, the Max/Max ratio does not diretlyapply.3.3.11 LookaheadAs mentioned in Setion 3.2, lookahead annot improve the ompetitive ratio of k-serveralgorithms. This is true for any metri spae, and hene it annot improve the ompetititiveratio of paging algorithms. As a response to this, some stronger versions of lookahead havebeen studied.[2℄ introdues the notion of strong lookahead. Strong lookahead ` means that the algorithmknows the minimal pre�x of the remaining sequene that ontains requests to ` distint pages.2The memoryless algorithm requires some preproessing onsisting in solving an NP-hard problem (theMinmax radius k-lustering problem). However, a 2-approximation algorithm exists [17℄. Using this algorithmin the preproessing step yields a Max/Max ratio of at most 4k.

22 CHAPTER 3. QUALITY MEASURESA version of LRU, generalized to take advantage of lookahead, is studied. When a pagemust be evited, the least reently used page that is not among the pages in the lookaheadis hosen. If suh a page does not exist, the page that is requested farthest in the future isevited. With a lookahead of size `, we all this version of the algorithm LRU(`).The ompetitive ratio of LRU(`) is k� `, when ` � k� 2, and this is best possible amongdeterministi paging algorithms.Often, in real appliations, requests arrive in bloks. If the sequene is partioned in blokssuh that eah blok is a minimal sequene with ` distint pages, and the algorithm seesone blok at a time, LRU(`) is (k � ` + 1)-ompetitive and a variant of MarkR is (2Hk�`)-ompetitive, when ` � k � 2.3.3.12 Total Aess TimeSometimes the problem desription itself an be re�ned to obtain more realisti results. Thisis the ase for the paging problem. One reason that ompetitive analysis yields very unrealistiresults for the paging problem is that arbitrarily long sequenes exist for whih the o�-linealgorithm has no faults at all. Hene, in [97℄ it is assumed that it takes time 1 to aess a pagein the fast memory, while fething a page from the slow memory takes time p � 1. With thisde�nition of the problem, it is shown that lookahead an give improved ompetitive ratios.Sine LRU(`) (as de�ned in Setion 3.3.11) is di�ult to analyze, a simpler version isstudied. Instead of using the full lookahead, only those pages in the lookahead ontained inthe urrent marking phase are onsidered. We all this version LRU(`; k).The following results are obtained on the re�ned version of the paging problem.� Su�ient (�nite) lookahead yields algorithms with onstant ompetitive ratios. Spei�-ally, LRU(kp; k) is 2-ompetitive.� On sequenes with a signi�ant loality of referene, any marking algorithm has a on-stant ompetitive ratio. More preisely, for any input sequene, let L be the averagelength of a phase. If L � ak, then the ompetitive ratio of any marking algorithm isless than 1 + pa .In ontrast, LFU(`) (Least Frequently Used) has a ompetitive ratio of more than p onsequenes with muh more loality of referene than what is needed for LRU(`) to be2-ompetitive.

Chapter 4Paging with Loality of RefereneThe most natural quality measure for paging algorithms seems to be the fault rate, i.e., thenumber of faults divided by the number of requests. However, if no restrition is put on theset of input sequenes, the worst ase fault rate of any deterministi on-line paging algorithmis 1, sine in the worst ase, eah request is to a page that is urrently not in the ahe. If theslow memory is muh larger than the ahe, even the worst ase fault rate of any randomizedon-line algorithm will be lose to 1. Modeling loality of referene is one way of restritingthe input sequenes. In [4℄ we study a very simple model of loality of referene.4.1 The ModelIn modeling loality of referene we go bak to the working set onept by Denning [37, 38℄ thatis also used in standard text books on operating systems [36, 96℄ to desribe the phenomenonof loality. The set of pages that a proess is urrently using is alled the working set. Fixing apoint in a request sequene and determining the working set size in a window of size n startingat this point in the sequene, one obtains a funtion of n whose general behavior is depitedin Figure 4.1. The funtion is inreasing and onave. Denning [37℄ shows that this is in fata mathematial onsequene of the working set model, assuming statistial regularities loallyin a request sequene.We assume that an appliation is haraterized by a onave funtion f . The appliationgenerates request sequenes that are onsistent with f . We will investigate two models. Inthe Max-Model a request sequene is onsistent with f if the maximum number of distintpages referened in a window of size n is at most f(n), for any n 2 N. In the Average-Model
Window Size

Program SizeWorking SetSize
Figure 4.1: Working set size as a funtion of the window size.23

24 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCE

0

50

100

150

200

250

300

350

400

450

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

W
or

ki
ng

 S
et

 S
iz

e

Window Size

Maximum
Average

(a) VAX, PASCAL, 500 pages. 0

50

100

150

200

250

300

350

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

W
or

ki
ng

 S
et

 S
iz

e

Window Size

Maximum
Average

(b) VAX, SPIC, 385 pages.

0

20

40

60

80

100

120

140

160

180

200

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

W
or

ki
ng

 S
et

 S
iz

e

Window Size

Maximum
Average

() SPARC, GCC, 276 pages. 0

50

100

150

200

250

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

W
or

ki
ng

 S
et

 S
iz

e

Window Size

Maximum
Average

(d) SPARC, COMPRESS, 229 pages.Figure 4.2: Maximum and average size of the working set in windows of size up to 100;000 requests.Eah diagram's aption gives the arhiteture, the name of the trae, and the number of distint pagesrequested in the entire sequene.a request sequene is onsistent with f if the average number of distint pages referened ina window of size n is at most f(n), for any n 2 N.In our model the funtion f haraterizes the maximal/average working set size globally ina request sequene, whereas the original working set model onsiders working set sizes loally.The Max-Model is losely related to the original working set model. On the other hand, theAverage-Model permits a larger lass of request sequenes. It is interesting if an appliationhanges the working set ompletely at ertain times in a request sequene.We have performed experiments with traes from standard orpora, analyzing maxi-mum/average working set sizes in windows of size n, see Setion 4.6 for details. The resultfor four of these traes are depited in Figure 4.2. As illustrated by the �gure, the behaviorof the working set size proposed by Denning for a single window of inreasing size an also beobserved globally , taking the maximum/average working set size over all windows of a requestsequene; the urves have an overall onave behavior. We also observe that, for all windowsizes, the working set size is very small ompared to the window size. This suggests that themodel we propose here is indeed reasonable for studying paging algorithms.Naturally, the funtions are not only onave, they are also non-dereasing. Furthermore,

4.1. THE MODEL 25sine windows of size 1 ontain exatly one page, f(1) = 1.If windows of size n ontain at most m pages, then a window of size n + 1 an ontainat most m+ 1 pages. Thus, in the Max-Model, f is surjetive on the integers between 1 andits maximum value, i.e., for all natural numbers m between 1 and supff(n) j n 2 Ng, thereexists an n with f(n) = m.This is all aptured in the following de�nition (the �rst inequality in 2. says that thefuntion is onave, and the last inequality says that it is non-dereasing).De�nition 4.1 A funtion f : N ! R+ is onave� if1. f(1) = 12. 8n 2 N : f(n+ 1)� f(n) � f(n+ 2)� f(n+ 1) � 0.In the Max-Model, we additionally require that f be surjetive on the integers between 1 andits maximum value.Note that the requirement in the Max-Model that the funtion be surjetive on the integersbetween 1 and its maximum value implies that f(n+ 1)� f(n) � 1, for all n 2 N.For a given appliation, a good approximation of f is easy to determine. One only has tosan a su�iently long request sequene and ompute the maximum/average number of pagesin windows of size n, just as it was done to obtain the urves in Figure 4.2. Essentially, foreah trae, we an use any onave funtion f that is an upper bound on the observed datapoints, e.g., we an take the upper onvex hull of the points.For the Max-Model, there might be one small problem; the upper onvex hull might notbe surjetive on the integers between 1 and the maximum value. This an be �xed withouthanging the upper bound too muh. Note that the points of the upper onvex hull arepoints of the original urve. The oordinates of these points are natural numbers and they areonneted by straight line segments. The following two steps sketh how to obtain a onave�upper bound from the upper onvex hull.1. For eah line segment ` with a slope ab , if there is no m 2 N suh that ab = 1m , hoosem 2 N suh that 1m+1 < ab < 1m , and replae ` by two line segments with slopes 1m+1and 1m . Denote the lengths of the projetions of these two line segments on the x-axis by x1 and x2. These two lengths are the solutions to the linear equation systemx1(m+ 1) + x2m = b and x1 + x2 = a.2. For eah line segment that was replaed by two line segments in Step 1, let m be thenatural number hosen suh that the slope of ` lies between 1m+1 and 1m . If thereare other line segments of the upper onvex hull with slopes in the same interval, thesegments with slope 1m should be moved before all of the segments with slope 1m+1 .See Figure 4.3 for an example illustrating the two steps.In the analysis of the Max-Model, we need a de�nition of the inverse of a onave� funtion.De�nition 4.2 For any onave� funtion f , letM = supfbf(n) j n 2 Ng. De�ne f�1 : fm 2N j m �Mg ! N by f�1(m) = minfn 2 N j f(n) � mg:

26 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCE
-

6
1468
1012

1 4 7 10 15 22(a) The onave funtion and the upper boundafter Step 1. -
6

1468
1012

1 4 7 10 15 22(b) The onave funtion and the upper boundafter Step 2.Figure 4.3: In eah sub�gure, a onave funtion and an upper bound on the funtion is shown.In words, f�1(m) is the smallest possible size of a window ontaining m distint pages.Both in the Max- and the Average-Model, given a onave� funtion f , we will analyzethe performane of paging algorithms on request sequenes that are onsistent with f . Pra-titioners use the fault rate to evaluate the performane of paging algorithms. We will use thismeasure, too.De�nition 4.3 The fault rate of a paging algorithm A on an input sequene � isFA(�) = A(�)j�j :We are interested in the worst ase performane on all sequenes that are onsistent with f .De�nition 4.4 The fault rate of a paging algorithm A with respet to a onave� funtion fis FA(f) := inffr j 9n 2 N : 8�; � onsistent with f; j�j � n : FA(�) � rg:Throughout the analysis, we assume that the funtions onsidered are onave�. Moreover,we assume that the funtions have maximum values of at least k+1, sine otherwise the faultrate of any reasonable paging algorithm is 0.4.2 AlgorithmsThe on-line algorithms onsidered are all deterministi. They are: LRU, FIFO, and the lass ofdeterministi marking algorithms (see Setion 2.1 for the de�nitions). Furthermore, we studythe optimal o�-line algorithm LFD. On a fault, LFD evits the page whose next request isfarthest in the future. Sine LFD is an o�-line algorithm, it annot be used in pratie, butsine it is an optimal o�-line algorithm [13℄, it is interesting to analyze it. Note, however, thatthe fault rate of an on-line algorithm divided by the fault rate of LFD does not neessarilygive the ompetitive ratio of the on-line algorithm on sequenes onsistent with f .

4.3. RESULTS 27Max-Model Average-ModelAny on-line alg. � k�1f�1(k+1)�2 � f(k+1)�1kLRU = k�1f�1(k+1)�2 = f(k+1)�1kFIFO � k�1=kf�1(k+1)�1 , � kf�1(k+1)�1 = f(k+1)�1kMarking � kf�1(k+1)�1 � 43 f(k)kLFD � maxm2Nk+m�M n mf�1(k+m+1)�1o ; � 2 max1�m�kk+m�M n m+1f�1(k+m)o � 4M�4k4M�k f(k+1)k+1Table 4.1: Fault rates of the algorithms onsidered.4.3 ResultsWe investigate the Max-Model and the Average-Model in Setions 4.4 and 4.5, respetively.The results are summarized in Table 4.1. Reall that M is the maximum number of distintpages that an be requested in any sequene onsistent with f . In the Average-Model, theexat upper bound on marking algorithms is atually a little smaller than that shown in thetable. Similarly, the fault rate of LFD in the Average-Model is slightly larger than that shownin the table.In the Max-Model, LRU is optimal. FIFO is not quite optimal; the lower bound on thefault rate of FIFO is a little larger than the optimal fault rate for most onave� funtions.The upper bound on the fault rate of FIFO (whih is almost equal to the lower bound) isequal to the fault rate of the worst possible marking algorithm.In the Average-Model, both FIFO and LRU are optimal. A worst possible marking algo-rithm is about a fator of 43 from being optimal. As in the Max-Model, the fault rate of LFDdepends on the total number M of pages that may be requested. If M is approximately k,LFD has a fault rate lose to 0, as expeted. IfM is large ompared to k, the fault rate is loseto f(k+1)k+1 . Thus, at �rst, it might seem that for M � k, the fault rate of LFD is larger thanthat of LRU and FIFO, sine f(k+1)k+1 > f(k+1)�1k , if f(k + 1) > k + 1. However, for M � k,the funtion giving the lower bound for LFD has f(k + 1) � k + 1.Sine we onsider worst ase fault rate, the fault rates predited by the Max-Model as wellas those predited by the Average-Model are higher than those observed in pratie. However,in our experiments, the gap was onsiderably smaller than the gap between the �theoretial�ompetitive ratio and the �empirial� ompetitive ratio.Our experiments suggest that fault rates predited by the Max-Model are loser to realitythan those predited by the Average-Model (see Setion 4.6). Furthermore, the Max-Modeldistinguishes LRU and FIFO. On the other hand, only the Average-Model distinguishes FIFOfrom the lass of marking algorithms � in the Max-Model, the fault rate of FIFO annot bedistinguished from primitive algorithms like FWF.

28 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCE4.4 The Max-ModelIn this setion we study the Max-Model. Given a onave� funtion f , f(n) is an upper boundon the maximum number of distint pages enountered in any n onseutive requests of aninput sequene.The proofs of the results of the Max-Model are all rather simple. The upper bound proofsfor the on-line algorithms are similar to the orresponding proofs in ompetitive analysis. Theidea (for LFD too) is to divide the input sequenes into phases with a given number of faultsor a given number of distint pages and prove a lower bound on the length of a phase.The sequenes of all lower bound proofs for the on-line algorithms ontain exatly k + 1distint pages. All lower bound sequenes are onstruted in phases, eah onsisting of bloksof non-dereasing lengths. For all algorithms but FIFO, eah blok onsists of requests toonly one page. Sine we are dealing with deterministi algorithms, we an hoose the page ofa blok to be the one page that is not in ahe at the end of the previous phase.We will assume that f(2) = 2, beause if any window of size 2 has requests to less than 2distint pages, then the whole sequene has requests to only one page.In eah of the lower bound proofs and in the upper bound proof for LFD, we will need thefollowing simple proposition (Proposition 1 in [4℄).Proposition 4.5 For any onave� funtion f , f�1 is a stritly inreasing funtion satisfyingthat, for all 2 � m �M � 1,f�1(m+ 1)� f�1(m) � f�1(m)� f�1(m� 1):This is where we need that f is surjetive on all integers between 1 and M . Consider forinstane the linear funtion f(n) = 13 + 23n. For this funtion, f�1(1) = 1, f�1(2) = 3, andf�1(3) = 4. Thus, f�1(3) � f�1(2) < f�1(2) � f�1(1).4.4.1 A Lower Bound for Deterministi AlgorithmsTo prove the general lower bound of k�1f�1(k+1)�2 on the fault rate of deterministi pagingalgorithms, we onstrut an input sequene ontaining requests to k + 1 distint pages p1,p2,. . . , pk+1. The sequene is onstruted in phases eah onsisting of k � 1 bloks. The ithblok of a phase onsists of f�1(i+2)� f�1(i+1) requests to the page that was not in aheat the end of the previous blok. The de�nition of the blok lengths implies that the �rst ibloks of a phase have a total length ofiXj=1 f�1(i+ 2)� f�1(i+ 1) = f�1(i+ 2)� f�1(2) = f�1(i+ 2)� 2:In partiular, it implies that the length of a phase is f�1(k+1)�2. Sine the algorithm faultson the �rst request of eah blok, this gives the laimed fault rate.To omplete the proof, we must show that the onstruted sequene is onsistent with f .Thus, for any number n, 1 � n � k+1, we must show that any window ontaining n distintpages has a length of at least f�1(n). For 1 � n � 2, any window with n distint pageshas length at least f�1(n). By Proposition 4.5, the blok length is non-dereasing within aphase. Thus, to �nd a shortest possible window with n distint pages, 3 � n � k + 1, weshould searh at the beginning of phase. More spei�ally, we onsider the �rst n� 2 bloks

4.4. THE MAX-MODEL 29of a phase P , the �rst request of the (n� 1)st blok of P and the last request before P . Thissubsequene ontains at most n distint pages, and sine the �rst n�2 bloks of a phase havea total length of f�1(n)� 2, the subsequene has a length of f�1(n). Note that if n = k + 1,the �rst n� 1 bloks of P will onstitute all of P .4.4.2 LRU is OptimalTo prove that LRU is optimal, we partition any input sequene � onsistent with f into phases,suh that eah phase ontains exatly k�1 faults, and eah phase starts with a fault. Consideran arbitrary phase P . We argue that the subsequene of � starting at the last request beforeP and ending at the �rst request after P (inluding that request) ontains k+1 distint pages.This implies that P has a length of at least f�1(k + 1)� 2, whih gives the upper bound.Let p be the page referened by the last request before P . Phase P and the �rst requestafter P inlude k page faults. If these page faults are on distint pages di�erent from p, weare done. If not, then� one of the k faults is on p, or� two of the k faults are on the same page.Note that p is in ahe at the beginning of the phase. Thus, if one of the k faults is on p, p isevited at some point within P . At that point, p is the least reently used page in the ahe,whih means that k pages di�erent from p are requested within the phase. If the windowontains two faults on one page, the same argument applies.4.4.3 FIFO is Not Quite OptimalIn the proof of the upper bound for LRU, we used the fat that between any request to a pagep and a fault on p there are requests to at least k other pages. This is not neessarily thease for FIFO. However, between any pair of faults on a page p, there are faults on at least kother pages. Therefore, when we partition the input sequene into phases, we inlude k faultsin eah phase instead of only k � 1. As for LRU, eah phase starts with a fault. Thus, anywindow ontaining a whole phase and the �rst request of the next phase ontains k+1 faultson k + 1 distint pages. Hene, a phase has a length of at least f�1(k + 1) � 1, whih givesan upper bound on the fault rate of kf�1(k + 1)� 1 :To prove an almost mathing lower bound, we use a sequene onstruted of bloks, phases,and super phases. The sequene ontains requests to k+ 1 distint pages p0; p1; : : : ; pk. Eahblok onsists of a number of requests to p0 followed by one request to another page. Thepages pi, i 6= 0, are requested in yli order. Eah phase onsists of k � 1 bloks.Assume �rst that, f�1(4)� f�1(3) > f�1(3)� f�1(2). In this ase, the length of the �rstblok of a phase is f�1(3)� f�1(2) + 1 = f�1(3)� 1, and for 2 � i � k, the length of the ithblok of a phase is f�1(i + 2)� f�1(i+ 1). A super phase onsists of k phases. For k = 5, asuper phase might look as illustrated in Figure 4.4.FIFO faults on eah request to a page pi 6= p0, and eah time all k pages pi, 1 � i � k, havebeen requested, the next request to p0 is a fault. This gives a total of (k + 1)(k � 1) = k2 � 1faults per super phase.

30 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCEp0 p0 p0 p0 p0 p0 p0p0 p0 p0 p0 p0 p0 p0p0 p0 p0 p0 p0 p0 p0p0 p0 p0 p0 p0 p0 p0p0 p0 p0 p0 p0 p0 p0
p1 p2 p3 p4p5 p1 p2 p3p4 p5 p1 p2p3 p4 p5 p1p2 p3 p4 p5Figure 4.4: An example super phase, k = 5.For 2 � i � k � 1, the �rst i bloks of a phase have a total length off�1(3) � 1 + iXj=2 �f�1(j + 2)� f�1(j + 1)� = f�1(3) � 1 + f�1(i+ 2)� f�1(3)= f�1(i+ 2)� 1:Thus, the length of a phase is f�1(k+1)�1, and the length of a super phase is k(f�1(k+1)�1).This gives a fault rate of k2 � 1k�f�1(k + 1)� 1� = k � 1kf�1(k + 1)� 1 :To prove that this is a valid lower bound on the fault rate of FIFO, we must show thatthe onstruted sequene is onsistent with f . Sine we assume that f�1(4) � f�1(3) >f�1(3) � f�1(2), the seond blok of a phase is at least as long as the �rst blok of a phase.Thus, by Proposition 4.5, the blok lengths are non-dereasing within a phase. Therefore, ashortest possible window ontaining n distint pages, 3 � n � k + 1, an be found by takingthe �rst n � 2 bloks of a phase and the last request of the previous phase. Suh a windowhas a length of at least f�1(n)� 1 + 1 = f�1(n).This proves that, if f�1(4)� f�1(3) > f�1(3)� f�1(2), the fault rate of FIFO is at leastk�1=kf�1(k+1)�1 . This fault rate is larger than that of LRU, ifk � 1kf�1(k + 1)� 1 > k � 1f�1(k + 1)� 2 ;whih is equivalent to f�1(k+1) > k+2. Roughly speaking, this will be the ase for sequenesthat exhibit loality of referene within windows of length at least k + 3.For ompleteness, onsider also the ase f�1(4)� f�1(3) = f�1(3)� f�1(2). In this ase,the sequene just desribed is not onsistent with f . Let s = minfi � 4 j f�1(i+1)�f�1(i) >f�1(i) � f�1(i � 1)g. For 1 � i � minfs � 2; k � 1g, we let the ith blok of a phase havelength f�1(i + 2) � f�1(i + 1) + 1. For minfs � 2; k � 1g + 1 � i � k � 1, we let theith blok have length f�1(i + 2) � f�1(i + 1) as before. This results in a phase length of

4.4. THE MAX-MODEL 31f�1(k + 1)� 1 +minfs� 3; k � 2g = f�1(k + 1) +minfs� 4; k � 3g and a fault rate ofk � 1kf�1(k + 1) +minfs� 4; k � 3g :Assume that s � k. Then, the fault rate of FIFO is larger than that of LRU, ifk � 1kf�1(k + 1) + s� 4 > k � 1f�1(k + 1)� 2 :This is equivalent to f�1(k + 1) > (s � 2)k + 2. If s � k + 1 and f(3) = 3, then f(k + 1) =f(2) +Pki=2(f(i+ 1)� f(i)) = 2 +Pki=2 1 = k + 1, and the fault rate of any algorithm withrespet to f is 1. If s � k+ 1 and f�1(3) > 3, then the fault rate of FIFO is larger than thatof LRU, if k � 1kf�1(k + 1) + k � 3 > k � 1f�1(k + 1)� 2 ;whih is equivalent to f�1(k + 1) > k2 � k + 2. For large values of k, even this amount ofloality of referene does not seem unrealisti.4.4.4 Marking AlgorithmsTo prove an upper bound on the fault rate of any marking algorithm, we partition the inputsequene into phases orresponding to the marking phases. In eah phase, exatly k distintpages are requested, and eah page auses at most one fault. When all pages in the ahe aremarked, a new phase starts when a page not in ahe is requested. Thus, the �rst page of aphase is a page that was not requested in the previous phase. We onlude that a phase hasa length of at least f�1(k + 1)� 1. Sine eah phase ontains at most k faults, the fault rateis at most kf�1(k + 1)� 1 :To see that the upper bound is best possible, onsider the following lass of markingalgorithms. On the �rst fault within a phase, the page that was requested last in the previousphase is evited. Clearly, this lass ontains FWF.The lower bound sequene ontains k distint pages and is onstruted in phases, eahonsisting of k bloks. The ith blok of a phase onsists of f�1(i + 1) � f�1(i) requests tothe page that was not in ahe at the end of the previous blok. Thus, the algorithm faults ktimes per phase, and the length of a phase is Pki=1(f�1(i+ 1)� f�1(i)) = f�1(k + 1)� 1.To see that the sequene is onsistent with f , note that the page requested in the seondblok of a phase is the page that was requested in the last blok of the previous phase.Furthermore, by Proposition 4.5, the blok lengths are non-dereasing within a phase. Thus,a shortest possible window ontaining n distint pages an be found taking the �rst n � 1bloks of a phase (the �rst blok ontains only one page) and the �rst request of the nth blokof the phase (the �rst blok of the following phase, if n = k + 1). This shows that the lengthof a window ontaining requests to n distint pages is at leastn�1Xi=1 �f�1(i+ 1)� f�1(i)�+ 1 = (f�1(n)� 1) + 1 = f�1(n);whih proves the onsisteny with f .

32 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCE4.4.5 LFDTo prove an upper bound on the fault rate of LFD, we partition any input sequene intophases, suh that eah phase ontains requests to exatly k distint pages. For eah phase i,let mi be the number of new pages, i.e., pages that were not requested in phase i�1. Considerthe o�-line algorithm that evits only pages that are not requested in the next phase. Thisis possible, sine the ahe an hold k pages. This algorithm has at most mi faults in phasei, whih gives an upper bound on the average number of faults per phase of m = 1nPni=1mi,where n denotes the number of phases. Sine LFD has the best possible fault rate, this is anupper bound on the average number of faults of LFD.Any two onseutive phases i� 1 and i have a length of at least f�1(k+mi). This gives alower bound on the length of the sequene of approximately 12 Pni=1 f�1(k +mi), whih is atleast 12n � f�1�b 1nPni=1(k +mi)� (by Proposition 2 in the paper). Thus, the average phaselength is at least 12f�1�b 1nPni=2(k +mi)�. This gives an upper bound on the fault rate of2 mf�1 �b 1nPni=1(k +mi)� = 2 mf�1 (bk +m) � 2 max1�m�kk+m�M � m+ 1f�1(k +m)� :We now prove a lower bound that is essentially a fator of two away from the upper boundjust proven. Choose an m 2 N suh that mf�1(k+m+1)�1 is maximized, and let N = k+m. Weonstrut a sequene ontaining N distint pages in phases onsisting of N � 1 bloks eah.Eah blok ontains requests to only one page, and the N pages are requested in a yli order.The page requested in the last blok of a phase Pj is not requested in the following phasePj+1. Sine this page is in the ahe at the end of Pj , at most k� 1 of the pages requested inPj+1 are in ahe at the end of Pj . Thus, LFD has at least N � 1 � (k � 1) = N � k faultsin eah phase. The ith blok of a phase has a length of f�1(i + 2) � f�1(i + 1). Thus, thelength of a phase is f�1(N +1)� 1 = f�1(k+m+1)� 1. The argument that the sequene isonsistent with f is analogous to that of the proof of the general lower bound for deterministion-line algorithms. This gives a lower bound ofmaxm2Nk+m�M � mf�1(k +m+ 1)� 1� :4.5 The Average-ModelThe proofs of the results of the Average-Model tend to be more ompliated than those of theMax-Model. Only the upper bound for LRU is extremely simple to prove.All bounds on the fault rates of the Average Model are tight in some sense. The generallower bound for deterministi algorithms mathes the upper bound on the fault rate of LRUand FIFO with respet to any onave� funtion. For LFD, there exists a onave� funtion fsuh that the fault rate of LFD with respet to this f mathes the upper bound on the faultrate of LFD. As to the lass of marking algorithms, there is a marking algorithm M and aonave� funtion f suh that the fault rate ofM with respet to f mathes the general upperbound for marking algorithms.We need some additional notation. For any sequene � of page requests, �[i℄ denotes theith request r in � as well as the page requested by r, 1 � i � j�j. For 1 � i � j�j � `+ 1, let�`[i℄ be the subsequene (window) h�[i℄; �[i + 1℄; : : : ; �[i + ` � 1℄i. Let N`(i) be the number

4.5. THE AVERAGE-MODEL 33
-

6
1 k + 1 k +m+ 11k + 1� kmn(k + 1) +m� 1k + 1

Figure 4.5: A(`), an upper bound on Av(`).of distint pages in �`[i℄, and let N` = Pj�j�`+1i=1 N`(i). Let Av(`) be the average number ofdistint pages in windows of length `, i.e., Av(`) = N`j�j�`+1 .A sequene � onsistent with a given onave� funtion f has Av(`) � f(`), 1 � ` � j�j.4.5.1 A Lower Bound for Deterministi AlgorithmsTo prove the general lower bound of f(k+1)�1k , we onstrut an input sequene onsisting ofrequests to k+1 distint pages p1; p2; : : : ; pk+1. The sequene onsists of two parts. For somelarge integer n, the �rst part onsists of n(k + 1) requests that will all make the algorithmfault. To ensure that the sequene is onsistent with f , a seond part is added. For someinteger m dependent on n and f , this part onsists of m requests to only one page.Sine the algorithm faults on eah of the n(k + 1) �rst requests, the fault rate will be atleast n(k+1)n(k+1)+m . For any m suh that � is onsistent with f , this fration yields a valid lowerbound on the fault rate of any deterministi algorithm. To �nd a suh m, we should alulatethe average funtion for the sequene, or at least an upper bound on the average funtion.Among all sequenes of length n(k+ 1) ontaining k + 1 distint pages, the sequene � =hp1; p2; : : : ; pk+1in has the highest possible average number of distint pages, for eah possiblewindow length. Thus, the sequene we will investigate is � = hp1; p2; : : : ; pk+1inhpk+1im. Theaverage funtion Av for this sequene is an upper bound on the average funtion for anysequene onstruted as desribed.We will prove that the funtion A de�ned below is an upper bound on Av. The funtiononsists of three linear parts (see Figure 4.5):A(`) = 8>>>>><>>>>>:1 +�1� mn(k + 1) +m� 1� (`� 1); 1 � ` � k + 1k + 1� kmn(k + 1) +m� 1 + kn(k + 1) +m� 1�`� (k + 1)�; k + 1 � ` � k +m+ 1k + 1; k +m+ 1 � ` � j�jClearly, Av(1) = 1. Thus, to alulate an upper bound on Av(`) for 1 � ` � j�j, it su�es toalulate an upper bound on Av(`+ 1)�Av(`) for 1 � ` � j�j � 1.We �rst onsider small `. Assume 1 � ` � k. The sequene ontains j�j � `+ 1 windowsof length `. The �rst n(k+1)� `+ 1 of these windows ontain ` distint pages eah, the lastm� `+ 1 windows ontain only one page eah, and for eah i, 2 � i � `� 1, there is exatly

34 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCE
p1 pk pk+1 pk+1 pk+1n(k + 1)z }| { mz }| {
| {z }n(k + 1)� `� 1 | {z }`+ 1Figure 4.6: ` � k: The windows �`[1℄; : : : ; �`[n(k + 1)� `℄ will eah ontain one new page, when ` isinremented.
p1 p1 . . pk+1 pk+1 pk+1n(k + 1)z }| { mz }| {
| {z }(n� 1)(k + 1) | {z }k + 1Figure 4.7: k +1 � ` � k+m+1: The windows �`[1℄; : : : ; �`[(n� 1)(k +1) + 1℄ ontain k +1 pageseah. The windows �`[n(k + 1)℄; : : : ; �`[n(k + 1) � ` + 1℄ ontain one page eah. For 2 � i � k, thewindow �`[n(k + 1)� i+ 1℄ ontains i pages.one window ontaining exatly i distint pages. When extending the window length from ` to`+1, the �rst n(k+1)� ` windows will ontain one additional page. The number of distintpages in eah of the rest of the windows will remain unhanged (see Figure 4.6). Thus, if nis muh larger than k, Av(` + 1) � Av(`) is lose to n(k+1)n(k+1)+m : However, we will alulate anexat upper bound on Av(`+ 1)�Av(`).For 1 � ` � k, Av(` + 1) � Av(`) is a slightly dereasing funtion of `, sine in eah step,one window less has its number of distint pages inreased. Thus, for 1 � ` � k,Av(`+ 1)�Av(`) � Av(2)�Av(1) = (n(k + 1)� 1) � 2 +m � 1n(k + 1) +m� 1 � 1= 1� mn(k + 1) +m� 1 :For k + 1 � ` � k + m, Av(`) is still an inreasing funtion. This an be seen in thefollowing way. When ` is inremented, the number of windows with only one page dereasesby one, whereas the number of windows with k + 1 distint pages stays the same (and foreah i, 2 � i � k, the number of windows with exatly i pages remains one). See Figure 4.7.(When the window length reahes k + 1 +m, all windows have k + 1 distint pages.)As ` inreases, the number of windows of length ` dereases. Hene, the drop in the

4.5. THE AVERAGE-MODEL 35number of windows with requests to only one page means more and more. In other words,between k + 1 and k +m+ 1, Av(`) grows faster and faster. Thus, the straight line between(k + 1; k + 1� kmn(k+1)+m�1) and (k +m+ 1; k + 1) is an upper bound on Av in this interval.This line has a slope ofk + 1� �k + 1� kmn(k+1)+m�1�k +m+ 1� (k + 1) = kn(k + 1) +m� 1 :What remains to be done is to determine m suh that the sequene � is onsistent witha given onave� funtion f . Sine A is an upper bound on Av, � is onsistent with f , ifA(`) � f(`), for all `, 1 � ` � j�j. Sine f is onave�, it is su�ient to prove1. A(1) � f(1)2. A(k + 1) � f(k + 1)3. A(k +m+ 1) � f(k +m+ 1).1. follows immediately from A(1) = 1 = f(1).2. is equivalent to k + 1� kmn(k + 1) +m� 1 � f(k + 1);whih in turn is equivalent tom � k + 1� f(k + 1)f(k + 1)� 1 �n(k + 1)� 1�:Thus, we let m = k + 1� f(k + 1)f(k + 1)� 1 n(k + 1):If f(k + 1) = k + 1, any deterministi paging algorithm has a fault rate of 1 = f(k+1)�1k .If f(k + 1) < k + 1, m grows linearly with n. Thus, there exists an n0 2 N suh that, forall n � n0, k +m + 1 � f�1(k + 1). Sine A(k +m + 1) = k + 1, this shows that n an behosen suh that 3. is ful�lled.We obtain a lower bound on the fault rate of any deterministi paging algorithm ofn(k + 1)n(k + 1) +m = 11 + k+1�f(k+1)f(k+1)�1 = f(k + 1)� 1k :4.5.2 Upper BoundsSo far we have foused on windows, e.g., ounting the number of distint pages within windowsof a given length or windows ontaining k faults. In the upper bound proofs of the Average-Model we will instead fous on pages. Assume that the input sequene ontains requests ton distint pages p1; p2; : : : ; pn. For 1 � i � n, let w`(i) be the number of windows of length `ontaining a request to pi. Then, N` = Pni=1w`(i). We will say that pi ontributes w`(i) toN`.

36 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCE�0: pi i+ k
Figure 4.8: For eah position j suh that N 0k+1(j) < Nk+1(j), the page requested just after thewindow �0k+1[j℄ is di�erent from eah page requested inside the window.4.5.3 LRU and FIFO are OptimalIn the Average Model, both LRU and FIFO are optimal. For LRU, this an be seen in thefollowing way. Whenever a page p is requested, the next k requests annot inur a fault onp. Thus, eah fault on p is ontained in k + 1 windows of length k + 1 ontaining no otherfaults on p. Furthermore, eah request to p that does not inur a fault is the �rst request ofa window of length k + 1 ontaining no fault on p. This shows that (exept for the �rst andlast k requests) eah fault ontributes k + 1 to Nk+1 and eah request that does not inur afault ontributes at least 1 to Nk+1. This gives approximatelyNk+1 � (k + 1) � LRU(�) + �j�j � LRU(�)� = k � LRU(�) + j�j;and Av(k + 1) � k � LRU(�) + j�jj�j = k � FLRU(�) + 1:Sine � is onsistent with f ,f(k + 1) � Av(k + 1) � k � FLRU(�) + 1:Solving for the fault rate, we obtain an upper on the fault rate of LRU mathing the generallower bound.When it omes to FIFO, we annot say that there are at least k requests between eahpair of requests to a given page p. We an only say that, between two faults on p, there areat least k requests. Let the term free request denote a request that is not a fault. We must�nd an alternative way to prove that free requests ontribute to Nk+1.Assume that we remove all free requests from the sequene and then we put them bakinto the sequene one by one. We show that for eah request put bak into the sequene,Nk+1 inreases by at least one. This is illustrated in Figure 4.8: A request to a page p isinserted just before the (i+k)th request of the sequene �, for some i. The resulting sequeneis denoted �0.We study windows of length k+1 in � and �0. For eah j � i�1, �k+1[j℄ = �0k+1[j℄ and foreah j � i+k, �k+1[j℄ = �0k+1[j+1℄, so we need only onsider the windows �k+1[i℄; : : : ; �k+1[i+k � 1℄ and �0k+1[i℄; : : : ; �0k+1[i+ k℄. To prove N 0k+1 � Nk+1 + 1, it su�es to provei+kXj=i N 0k+1(j) � 1 + i+k�1Xj=i Nk+1(j) :Let i � j � i + k � 1. The window �0k+1[j℄ ontains the requests of �k[j℄ and the newrequest to p. Therefore, Nk+1(j) and N 0k+1(j) an di�er by at most one. Let n be the number

4.5. THE AVERAGE-MODEL 37of positions j for whih Nk+1(j) > N 0k+1(j). We just need that N 0k+1(i + k) � n + 1. IfNk+1(j) > N 0k+1(j), the last page �[j + k℄ requested in �k+1[j℄ ontributes to Nk+1(j) andp does not ontribute to N 0k+1(j). This means that �[j + k℄ is di�erent from eah page in�k[j℄ and from p. Assume that the windows shown in Figure 4.8 are those windows of �0ontaining fewer distint pages than the orresponding windows in �. For eah suh window,the request immediately after the window is di�erent from eah request inside the window.Thus, the shaded requests are all to distint pages di�erent from p. This means that thewindow �0k+1[i + k℄ ontains at least n+ 1 distint pages, namely p and those shaded in the�gure. This ompletes the proof that eah free request ontributes at least one to Nk+1.4.5.4 The Worst Marking AlgorithmWe already know that there exists at least one optimal marking algorithm, namely LRU.There exists, however, a marking algorithm M and a onave� funtion f suh that the faultrate of M with respet to f is approximately 43 that of LRU. More preisely, the fault rate isFM = 8><>: 4k3k + 2 f(k)k ; k even4k3k + 2� 1=k f(k)k ; k odd.As we shall see, this is the worst possible fault rate of any marking algorithm with respet toany onave� funtion.Lower boundConsider the sequene UpDownnh = hp1; p2; : : : ; ph�1; ph; ph�1; : : : ; p2in, h; n 2 N. Suh asequene will also be used for proving the lower bound on the fault rate of LFD. A subse-quene hp1; p2; : : : ; ph�1; ph; ph�1; : : : ; p2i is alled a phase. When n goes to in�nity the averagenumber of distint pages in windows of length ` goes toAv1h (`) = 8>>>><>>>>:`� (`� 1)24(h � 1) ; 1 � ` � 2h� 3; ` odd,`� (`� 1)2 � 14(h � 1) ; 2 � ` � 2h� 3; ` even,h; ` � 2h� 2:For the windows starting in one of the �rst n� 1 phases of UpDownnh, the average numberof distint pages in a window of length ` is Av1h (`). The sum of the number of distint pagesin all windows of length ` ontained in the last UpDownnh phase is at most 2(h� 1)h. Thus,Av(`) � 2(h � 1)(n� 1)Av1h (`) + 2(h� 1)hn � 2(h� 1)� `+ 1� 2(h � 1)(n� 1)Av1h (`) + 2(h� 1)h2(h� 1)(n� 1)= Av1h (`) + hn� 1 :

38 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCE� �� �Figure 4.9: A phase ontaining k = 10 requests and the �rst and last window assoiated with thephase.Let " = hn�1 . Then, it is lear that the funtionf(`) = 8><>:1; ` = 1Av1h (`) + "; 2 � ` � 2h� 3;h; ` � 2h � 2is an upper bound on Av(`), but this funtion is not onave�, sine f(2)�f(1) = 2+"�1 > 1.Therefore, we use the tighter upper boundf(`) = (minf`;Av1h (`) + "g; 1 � ` � 2h� 3;h; ` � 2h� 2:Consider now the marking algorithm M that uses the LIFO rule on the unmarked pages.That is, when a page must be evited, M hooses the unmarked page that has been in theahe for the shortest time. M will fault on eah request of UpDownnk+1. Thus,FM(�) = 1 = kf(k) � f(k)k = kAv1k+1(k) + k+1n�1 � f(k)k= 8>>><>>>: 4k3k + 2� 1k + 4 k+1n�1 � f(k)k ; k odd,4k3k + 2 + 4 k+1n�1 � f(k)k ; k even.Note that the proof of the lower bound is also valid for FWF.Upper BoundThe lower bound is best possible as an be seen by the following. Eah phase ontains requeststo exatly k distint pages. We will ount how many windows of length k eah of these pagesis ontained in.Assume �rst that k is even. Consider a phase P ontaining the requests �[i℄; : : : ; �[j℄. Toensure that nothing is ounted twie, we will onsider only the windows �`[i� k2+1℄; : : : ; �`[j�k2 + 1℄. Figure 4.9 illustrates whih windows are onsidered; the �rst and the last window areshown. Note that the seond and the last request of the phase are ontained in k2 + 1 of thewindows onsidered. The third and the seond to last request of the phase are ontained ink2 + 2 of the windows onsidered, and so on. The (k2 + 1)st request is ontained in k of thepages onsidered. The �rst page p requested in the phase is not requested in the previous

4.5. THE AVERAGE-MODEL 39� �� �Figure 4.10: A phase ontaining k = 9 requests and the �rst and last window assoiated with thephase.phase, so this page is ontained in k windows ontaining no other requests to p. Thus, thetotal ontribution from a phase is at least2 � k=2Xi=1 �k2 + i� = 34k2 + 12k:This is at least 34k + 12 per fault, sine eah phase ontains at most k faults. Thus, Nk+1 �(34k + 12)M(�), andf(k) � Av(k) � (34k + 12)M(�)j�j = �34k + 12�FM(�) :Hene, FM � f(k)34k + 12 = 4k3k + 2 f(k)k :Assume now that k is odd (see Figure 4.10). The �rst request ontributes to k windows oflength k. The seond and the seond to last request ontribute to k�12 + 2 eah. The k+12 threquest ontributes to k windows. The last request ontributes to k+12 windows. Thus, eahphase ontributes 2k + k + 12 + k�12Xi=2 k � 12 + i = 34k2 + 12k � 14 :Doing the same alulations as in the ase of k even, we arrive atFM � 4k3k + 2� 1k f(k)k :4.5.5 LFDIn this setion we prove an upper bound on the fault rate of LFD of approximately 4M�4k4M�k f(k+1)k+1and give a onave� funtion with respet to whih the fault rate of LFD exatly mathes theupper bound.Upper BoundConsider any request sequene � onsistent with some onave� funtion f . Again we willanalyze the ontribution from faults and free requests to Nk+1. Like in the ase of LRU andFIFO, no page generates more than one fault within a window of length k+1, and hene eah

40 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCEfault ontributes k + 1 to Nk+1. Determining the ontribution from free requests is a littlemore ompliated, and we postpone that a little.We partition the sequene into phases P 1; P 2; : : : ; P n. The phase P 1 starts with the �rstrequest in the sequene and, for 2 � i � n, phase P i starts with the �rst fault on a page thatwas evited in phase P i�1. Thus, within a phase, there is at most one fault on eah page,and the k pages that are in fast memory at the beginning of a phase do not generate a faultwithin the phase. Hene, eah phase ontains at most M � k faults.For 1 � i � n, let F i be the number of faults in phase P i, and let N ik+1 be the ontributionto Nk+1 from requests in P i. Let W be a lower bound on the ontribution to Nk+1 from freerequests within one phase.Then, N ik+1F i � (k + 1)F i +WF i � (k + 1)(M � k) +WM � k :Solving for F i yields F i � M � k(k + 1)(M � k) +W �N ik+1; andLFD(�) = nXi=1 F i � M � k(k + 1)(M � k) +W n�2Xi=2 N ik+1 = M � k(k + 1)(M � k) +W �Nk+1:Thus, FLFD(�) � M � k(k + 1)(M � k) +W �Av(k + 1) � M � k(k + 1)(M � k) +W � f(k + 1) :To �nish the proof we must determine a lower bound W on the ontribution to Nk+1 fromthe free requests of one phase.First observe that any phase P i must ontain free requests to at least k� 1 distint pages.This an be seen in the following way. Let p be the �rst page requested in phase P i+1, and letsi+1 be the index of this request. Then p is evited at some point during phase P i. Assumethat this happens as a result of a request with index q. Sine p is the page to be evited,the k � 1 other pages p1; : : : ; pk�1 in the ahe are requested at some point between �[q℄ and�[si+1℄. Eah of these requests must be free, beause otherwise P i would ontain a fault on apage that had been evited earlier in the phase and this would ontradit the de�nition of aphase.For 1 � j � k� 1, let rj be the �rst request to pj after �[q℄, and let W (rj) be the numberof windows ontaining rj, no fault on pj , and no request to pj ontained in P i�1. ThenW =Pk�1j=1 W (rj) is a lower bound on the ontribution to N ik+1.It is lear that the �rst k requests after rj are not faults on pj. Thus, when alulatingW (rj), we only need to worry about requests to pj that are to the left of rj . Let dj be thedistane between rj and the last request to pj to the left of rj , i.e., if hrj is the index of rj andhlj is the index of the last request to pj before rj, then dj = hrj � hlj . W (rj) = minfk+1; djg.Note that hlj � q < hrj , and let dlj = q � hlj and drj = hrj � q, see Figure 4.11. Then,k�1Xj=1 dj = k�1Xj=1 dlj + k�1Xj=1 drj � 2 k�1Xj=1 j:

4.5. THE AVERAGE-MODEL 41pjhlj q pjhrj psi+1z }| {dlj z }| {drj| {z }djFigure 4.11: �[hlj ℄: Last request to pj before �[q℄. �[q℄: Causes p to be evited. �[hrj ℄: First requestto pj after �[q℄. �[si+1℄: First fault on p after �[q℄ � phase P i+1 begins.Let S be the set of requests suh that dj � k + 1, and let m = jSj. Then,W = k�1Xj=1W (rj) � (k � 1�m)(k + 1) + Xrj2S dj� k2 � 1�m(k + 1) + 2 mXj=1 j = k2 � 1 +m2 � km:This lower bound on W is minimized, when m = k2 , if k is even, and when m = k�12 , if k isodd. Inserting these values, we getW � 8><>:34k2 � 34 = 34(k � 1)(k + 1); k odd;34k2 � 1 = 34(k � 1)(k + 1)� 14 ; k even;and FLFD(f) � 8>>><>>>: 4M � 4k4M � k � 3 f(k + 1)k + 1 ; k odd4M � 4k4M � k � 3� 1k+1 f(k + 1)k + 1 ; k even:Lower BoundFor some n 2 N, onsider the sequene UpDownnM as de�ned in Setion 4.5.4. This sequeneis onsistent with the onave� funtionf(`) = (minf`; Av1M (`) + Mn�1g; 1 � ` � 2M � 3;M; ` � 2M � 2:For n su�iently large and k odd,f(k + 1) = Av1M (`) + Mn� 1 = k + 1� k2 � 14M � 4 + Mn� 1= 4(M � 1)(k + 1)4(M � 1) � (k � 1)(k + 1)4(M � 1) + Mn� 1 = (4M � k � 3 + ")(k + 1)4(M � 1) ;

42 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCEwhere " = 4(M�1)k+1 Mn�1 . Similarly, for k even and n su�iently large,f(k + 1) = k + 1� k24(M � 1) + Mn� 1= 4(M � 1)(k + 1)4(M � 1) � (k � 1)(k + 1) + 14(M � 1) + Mn� 1= (4M � k � 3� 1k+1 + ")(k + 1)4(M � 1) :It is easily veri�ed that, within the �rst half of a phase, LFD faults on the �rst requestand the last M � k � 1 requests. The same is true for the seond half of a phase. Hene,FLFD(UpDownnM) = M � kM � 1 f(k + 1)f(k + 1)= 8>><>>:M � kM � 1 4(M � 1)4M � k � 3 + " f(k + 1)k + 1 ; k oddM � kM � 1 4(M � 1)4M � k � 3� 1k+1 + " f(k + 1)k + 1 ; k even= 8>><>>: 4(M � k)4M � k � 3 + " f(k + 1)k + 1 ; k odd4(M � k)4M � k � 3� 1k+1 + " f(k + 1)k + 1 ; k even.4.6 ExperimentsIn this setion we present some results of our experimental study in whih we omparedthe worst-ase fault rates developed in the previous setions to the fault rates observed onreal proessor traes. We analyzed memory referene traes from the New Mexio StateUniversity Trae Base [63℄ that ontains standard benhmarks. We seleted traes from VAXand SPARC platforms. More spei�ally, we hose the ATUM VAX traes and a bundleof SPARC traes that were olleted while running the SPEC92 benhmark suite. The setsonsist of a olletion of 9 respetively 13 memory referene traes from single proesses. Therequest sequenes ontain both data read/write requests and instrution fethes. The SPARCtraes were trunated after 10 million referenes, whereas the VAX traes vary in length,but are all about 400;000 requests. We worked with a page size of 512 bytes for the VAXarhiteture and a page size of 2048 bytes for the SPARC arhiteture.We �rst analyzed the maximum and average working set size in windows of up to 100;000requests. Figure 4.2 in Setion 4.3 presents the results for four spei� traes, two VAX traesand two SPARC traes.In the seond part of the experiments, we evaluated the fault rates of LRU, FIFO, and LFDon the various traes and ompared the values to the orresponding bounds we developed forboth the Max- and the Average-Model. We performed the omparison for ahe sizes rangingfrom 1 to the maximum working set size. Figure 4.12 presents the results for the VAX Pasaland the SPARC Compress traes. The left part of the �gure shows the results for LRU andFIFO. The two lower urves represent the empirial fault rates of LRU and FIFO, while the

4.6. EXPERIMENTS 43

0

0.05

0.1

0.15

0.2

0.25

50 100 150 200 250 300 350 400 450 500

F
au

lt
R

at
e

Cache Size k

Bound FIFO/LRU (Average-Model)
Bound FIFO (Max-Model)
Bound LRU (Max-Model)

FIFO
LRU

(a) VAX, PASCAL � FIFO and LRU. 0

0.05

0.1

0.15

0.2

0.25

50 100 150 200 250 300 350 400 450 500

F
au

lt
R

at
e

Cache Size k

Bound (Average-Model)
Bound (Max-Model)

LFD

(b) VAX, PASCAL � LFD

0

0.05

0.1

0.15

0.2

0.25

50 100 150 200

F
au

lt
R

at
e

Cache Size k

Bound FIFO/LRU (Average-Model)
Bound FIFO (Max-Model)
Bound LRU (Max-Model)

FIFO
LRU

() SPARC, COMPRESS � FIFO and LRU. 0

0.05

0.1

0.15

0.2

0.25

50 100 150 200

F
au

lt
R

at
e

Cache Size k

Bound (Average-Model)
Bound (Max-Model)

LFD

(d) SPARC, COMPRESS � LFD.Figure 4.12: Measured fault rates and upper bounds on the fault rates for FIFO, LRU and LFD. Thefast memory size k varies in the range of 1 up to the total number of distint pages requested in theentire sequene.two urves in the middle show the orresponding theoretial upper bounds in the Max-Model.The upper urve depits the bound in the Average-Model. The right part of Figure 4.12 showsthe bounds for LFD in the same relative order.Sine the fault rate as de�ned in 4.4 is a worst-ase measure, we annot expet that thetheoretial bounds on the fault rates math the empirial values ompletely. Nevertheless,the gap is not large and onsiderably smaller than in the ase of ompetitiveness. On realworld traes, the �empirial ompetitiveness� of LRU and FIFO is typially no larger then 4.This was observed in [18, 103℄ and also shown in our experiments. On the other hand, theompetitive ratios from theory are k. Thus, the gap between the theoretial and empirialompetitiveness is k=4. In our paging model, the gaps are onsiderably smaller. For theSPARC COMPRESS trae the gap is, expressed as a funtion linear in k, usually betweenk=50 to k=30. For some of the traes we examined, the values were even below k=1000.We also remark that, throughout our experiments, the fault rates predited in the Max-Model were loser to the empirial fault rates than those of the Average-Model. This orre-sponds to some extent to the intuition we gained by working on the models. In the Average-Model, the adversary seems to be less limited than in the Max-Model; in the Average-Model,

44 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCEthe adversary an give any sequene he likes, and then pad it with a su�ient number ofrequests to only one page.

Chapter 5Edge Coloring with a Fixed Numberof ColorsIn [49℄ we study the maximization version of edge oloring, i.e., the version where only alimited number of olors are available, and the aim is to olor as many edges as possible. Thishapter desribes the results.5.1 AlgorithmsWe mainly onsider the lass of fair algorithms, i.e., algoithms that never rejet edges thatthey are able to olor. However, one of the results is valid for any algorithm, fair or not fair,deterministi or randomized. To denote an arbitrary algorithm for edge oloring with a �xednumber of olors, we use the term on-lineR. An algorithm that is fair and might be randomizedis alled fairR. Similarly, we let fairD and on-lineD denote deterministi algorithms that arefair, might not be fair, respetively. We let o�-line denote an optimal o�-line algorithm.We also onsider two spei� fair algorithms, First-Fit and Next-Fit. First-Fit always usesthe lowest numbered olor possible. Next-Fit uses the olors in a yli order. It olors the�rst edge with the olor 1. Whenever it uses a olor , it will olor the next edge e with the�rst olor in the sequene h + 1; : : : ; k; 1; : : : ; � 1i not used on edges adjaent to e, if any.Intuitively, the Next-Fit strategy is a poor strategy, and as an be seen in the next setion,Next-Fit has the worst possible ompetitive ratio among fair algorithms. Thus, we inlude itonly to prove that the impossibility results for fair algorithms are tight. The First-Fit strategyseems more reasonable, sine it tries to save the higher numbered olors until it really needsthem. Unfortunately, it turns out that First-Fit is not muh better than Next-Fit.5.2 ResultsWe have analyzed the ompetitive ratio of the algorithms and lasses of algorithms de�ned inthe previous setion. The results are shown in Table 5.1. For general graphs the results arerather pessimisti. No algorithm an be more than 47 -ompetitive and no fair deterministialgorithm an be more than 12 -ompetitive. There is not muh room for variation amongfair deterministi algorithms, sine any fair algorithm is more than (2p3 � 3)-ompetitive(2p3 � 3 � 0:4641). Next-Fit has the worst possible ompetitive ratio. For most values of kit is lose to 2p3� 3, and there are values of k for whih it gets arbitrarily lose to 2p3� 3.45

46 CHAPTER 5. EDGE COLORING WITH A FIXED NUMBER OF COLORSComp. Ratio Fair Det. Fair, Det. Any Next-Fit First-FitGeneral C � 2p3� 3 C � 12 C � 47 C = 2p3� 3 C � 29 (p10� 1)� 0:4641 = 0:5 � 0:5714 � 0:4641 � 0:4805k-Colorable C � 12 C � 23 12 � C � 23 C = 12 C = k2k�1Table 5.1: Competitive ratios C of the algorithms and lasses of algorithms onsideredThough, intuitively, First-Fit is a more reasonable algorithm than Next-Fit, we proved thatthe ompetitive ratio of First-Fit is at most 29 (p10 � 1) � 0:4805, and hene it annot bemuh better than Next-Fit.In the speial ase where the input graphs are all k-olorable, there might be more variation.The best upper bound we ould prove is 23 for deterministi algorithms. The lower bound of12 for fair algorithms on k-olorable graphs is only a little higher than the lower bound in thegeneral ase. Again, Next-Fit is used to prove that the bound is tight. For small values of k,First-Fit is signi�antly better than Next-Fit, but the di�erene tends to zero as k inreases.Analyzing the speial ase of k-olorable graphs is analogous to analyzing the speial asefor the seat reservation problem, where all request sequenes an be aommodated o�-line.The di�erene between aommodating sequenes and general sequenes is, however, far fromas dramati as for the seat reservation problem. The lower bound for fair algorithms is onlyraised a little. For small values of k, the ompetitive ratio of First-Fit is signi�antly betterthan that of Next-Fit, for k = 2, their respetive ratios are 12 and 23 , but for large k, thedi�erene is insigni�ant.However, analyzing k-olorable graphs has the extra advantage that the analysis of k-olorable graphs in some ases an serve as a stepping stone to the more general analysis withno restritions on the graphs. This was in partiular the ase for the lower bounds for fairalgorithms.5.3 GraphsAs desribed in the previous setion, we study the general ase as well as the speial asewhere all input graphs are known to be k-olorable. The performane guarantees proven arevalid even if we allow multigraphs, i.e., graphs that may have parallel edges, but no loops. Theadversary graphs used for proving impossibility results are all simple graphs. Furthermore,the adversary graphs are all bipartite exept one that ould easily be hanged to a bipartitegraph. Thus, the impossibility results are all valid, even if the input graphs are known to besimple, bipartite graphs.5.4 BasisA k-oloring is a oloring using at most k olors. We label the olors 1; 2; : : : ; k. For anyi; j 2 f1; 2; : : : ; kg, we let Ci;j denote the subset fi; i + 1; : : : ; jg of the k olors.A bipartite graph is a graph whose vertex set an be partitioned in two sets X and Y ,suh that no two verties within the same set are adjaent. In a omplete bipartite graph eahvertex in X is onneted to eah vertex in Y .

5.5. K-COLORABLE GRAPHS 47The degree of a vertex x is the number of edges inident to x. The olored degree of x isthe number of edges inident to x olored by the on-line algorithm under onsideration.An r-regular graph is a graph in whih all verties have degree r.By König's Theorem [100, p. 209℄, any bipartite graph with maximum degree d is d-olorable, i.e., it an be olored using at most d olors.The following laim is useful when onstruting adversary graphs for Next-Fit.Claim 5.1 Any oloring in whih eah olor is used on exatly n or n + 1 edges, for somen 2 N, an be produed by Next-Fit, for some ordering of the input sequene. The olors justneed to be permuted so that the olors used on n+ 1 edges are the lowest numbered olors.5.5 k-Colorable GraphsWe start out investigating the speial ase, where all input graphs are k-olorable. Proving theperformane guarantee for fair algorithms on k-olorable graphs is rather simple and servesas a stepping stone to proving the orresponding guarantee for general graphs. The adversarygraphs proving that Next-Fit is worst possible, on k-olorable graphs and in the general ase,have the same overall struture. However, in the ase of k-olorable graphs, the graphs areonstruted suh that the vertex degrees are as similar as possible. In the general ase, thevertex degrees are determined in a more ompliated way.5.5.1 A Performane Guarantee for Fair AlgorithmsFor any vertex x, let d(x) denote the number of edges inident to x that have been olored byfairR. Similarly, let du(x) denote the number of edges inident to x that have not been oloredby fairR. We will take the on-line algorithm's perspetive and all these edges unolored edges.To prove that any fair algorithm olors at least half of the edges of any k-olorable graph, weneed only two simple observations.(1) For any vertex x, d(x) + du(x) � k, sine o�-line olors all edges inident to x using atmost k olors.(2) For any unolored edge (x; y), d(x)+d(y) � k, sine the algorithm is fair and the edgewas not olored.Assume that one unit of some value is put on eah edge olored by fairR. If the total valuean be redistributed to the unolored edges suh that eah unolored edge reeives at leastone unit, there are at least as many olored as unolored edges. The redistribution is done inthe following way. Eah vertex reeives half a unit from eah olored edge inident to it. Inthis way, eah vertex x reeives 12d(x). After that, eah vertex splits its value equally amongthe unolored edges inident to it. Eah unolored edge (x; y) reeives the value12 �d(x)du(x) + d(y)du(y)� (1)� 12 � d(x)k � d(x) + d(y)k � d(y)�(2)� 12 � d(x)k � d(x) + k � d(x)d(x) �� 1:

48 CHAPTER 5. EDGE COLORING WITH A FIXED NUMBER OF COLORSG1 G2
Y2 X1 Y1 X2 Y2Figure 5.1: The graph GNF when k = 5. Note that the two leftmost verties are the same as the tworightmost verties.The last inequality holds, sine x+ 1x � 2 for any x > 0.Note that the fairness property is only used to onlude (2). Thus, the performaneguarantee is valid for the larger lass of algorithms that never rejet an edge e, unless it hasalready olored k edges adjaent to e.5.5.2 Next-Fit is Worst PossibleWhen k is even, the ompetitive ratio of Next-Fit exatly mathes the lower bound for fairalgorithms. When k is odd, it almost mathes the lower bound. This is proven by the followingadversary strategy.The adversary starts out giving the edges of two omplete bipartite graphs, G1 = (X1 [Y1; E1) with jX1j = jY1j = dk2e, and G2 = (X2 [Y2; E2) with jX2j = jY2j = bk2 .Consider a oloring where G1 is olored with C1;dk=2e and G2 is olored with Cdk=2e+1;k.Eah olor in C1;dk=2e is represented at eah vertex in G1 and eah olor in Cdk=2e+1;k isrepresented at eah vertex in G2. By Claim 5.1, this oloring an be obtained by Next-Fit.Next, eah vertex in Y1 is onneted to eah vertex in X2 and eah vertex in Y2 is onnetedto eah vertex in X1, thus reating a �yle� of omplete bipartite graphs, where eah bipartitegraph shares its left verties with its left neighbor and its right verties with its right neighbor.The resulting graph GNF is depited in Figure 5.1. The new edges between G1 and G2 arealled E12. After oloring E1 with C1;dk=2e and E2 with Cdk=2e+1;k, Next-Fit annot olor anyof the edges in E12.The whole graph is k-regular and bipartite (X1 [X2 forming one set and Y1 [Y2 formingthe other). Thus, by König's Theorem, it an be k-olored. Hene, the ompetitive ratio ofNext-Fit on k-olorable graphs is at mostjE1j+ jE2jjE1j+ jE2j+ jE12j = dk2e2 + bk22dk2 e2 + bk2 2 + 2dk2 ebk2 ;whih redues to 12 when k is even, and to 12 + 12k2 when k is odd.5.5.3 First-Fit is a Little BetterFor any k-olorable graph, let E be the edge set. For any 2 C1;k, let E denote the set ofedges that First-Fit olors with the olor , and let E1; = [i=1Ei. We will prove by indutionon that, for all 2 C1;k, jE1;j � 2k�1 jEj. Letting = k, this proves the lower bound on the

5.5. K-COLORABLE GRAPHS 49ompetitive ratio of First-Fit on k-olorable graphs. We only need the following three simpleobservations.(1) By the de�nition of First-Fit, any edge in E is adjaent to at least one edge in Ei,i = 1; : : : ; � 1.(2) By the de�nition of First-Fit, any unolored edge is adjaent to at least one edge of eaholor.(3) Sine the graph is k-olorable, eah vertex has degree at most k. Thus, any edge isadjaent to at most 2(k � 1) other edges.For the base ase, onsider = 1. By (1) and (2), eah edge in E nE1 is adjaent to at leastone edge in E1. Thus, by (3), jEj � 2(k�1)jE1j+ jE1j, whih is equivalent to jE1j � 12k�1 jEj.For the indution step, let 2 C2;k. By (1), eah edge in E is adjaent to at least � 1edges in E1;�1. Thus, eah edge in E is adjaent to at most 2(k � 1)� (� 1) = 2k � � 1edges in EnE1;. On the other hand, by (1) and (2), eah edge in EnE1; is adjaent to at leastone edge in E. Therefore, jE n E1;�1j � (2k � � 1)jEj+ jEj, or jEj � 12k� jE n E1;�1j.Thus,jE1;j = jE1;�1j+ jEj � jE1;�1j+ jEj � jE1;�1j2k � = jEj+ (2k � � 1)jE1;�1j2k � � jEj+ (2k � � 1) �12k�1 jEj2k � ; by the indution hypothesis= jEj � �12k�1 jEj2k � + � 12k � 1 jEj = (2k � 1)� (� 1)(2k � 1)(2k �) jEj+ � 12k � 1 jEj= 2k � 1 jEj:To prove that the lower bound is tight, we will onstrut a graph for whih the analysisleading to the bound is tight, i.e., we will onstrut a graph with the following properties.(1) Eah edge in E is adjaent to exatly one edge in Ei, i = 1; : : : ; � 1.(2) Eah unolored edge is adjaent to exatly one edge of eah olor.(3) Eah vertex has degree k. Thus, eah edge is adjaent to exatly 2(k � 1) other edges.More preisely, we will onstrut a bipartite k-regular graph GFF, where eah edge is adjaentto exatly one edge of eah olor. Sine the graph is bipartite and k-regular, it is k-olorable.The building bloks of GFF are dk=2e bipartite biregular graphs G1; : : : ; Gdk=2e. Eahgraph Gi has vertex partition (Xi; Yi). Xi ontains one vertex for eah subset of C1;k of sizek + 1 � i, and Yi ontains one vertex for eah subset of C1;k of size i. The subset of C1;kassoiated with a vertex x is denoted C(x).For eah vertex x 2 Xi, there are exatly k+1�i verties y 2 Yi suh that jC(x)\C(y)j = 1.Similarly, for eah vertex y 2 Yi, there are exatly i verties x 2 Xi suh that jC(x)\C(y)j = 1.Eah vertex x 2 Xi is onneted to the k+ 1� i verties y 2 Yi, for whih jC(x)\C(y)j = 1.Thus, eah vertex in Xi has degree k + 1 � i and eah vertex in Yi has degree i. Figure 5.2shows the graphs G1 and G2 when k = 4.

50 CHAPTER 5. EDGE COLORING WITH A FIXED NUMBER OF COLORSG1:
f1; 2; 3; 4g f4gf3gf2gf1g

X1 Y1
G2:f2; 3; 4gf1; 3; 4gf1; 2; 4gf1; 2; 3g

f1; 2gf1; 3gf1; 4gf2; 3gf2; 4gf3; 4gX2 Y2Figure 5.2: The graphs G1 and G2 when k = 4. Next to eah vertex v the olor set C(v) is shown.Consider the oloring of the graphs G1; : : : ; Gdk=2e in whih eah edge (x; y) is oloredwith the olor in C(x)\C(y). An edge (x; y) with the olor is adjaent to one edge of eaholor in C(x) n fg through the vertex x and one edge of eah olor in C(y) n fg throughthe vertex y. Thus, eah edge with olor is adjaent to exatly one edge of eah olor inC1;k n fg. Hene, for eah Gi, this oloring results if First-Fit is given the edges in order ofnon-dereasing number.For eah i, 1 � i � dk=2e, the adversary onstruts a bipartite graph GLi onsisting ofa number of opies of Gi. Let ni be the number of opies of Gi in GLi . Then, n1 = 1, andni+1 = k�ii ni, for 1 � i � dk=2e� 1. For 1 � i � bk=2, the adversary also onstruts a graphGRi isomorphi to GLi .Note that, for eah pair of verties y 2 Yi and x 2 Xi+1, jC(y)j + jC(x)j = k. For eahy 2 Yi, there is exatly one vertex x 2 Xi+1 suh that C(x) [C(y) = C1;k. After giving theedges of the graphs GL1 ; : : : ; GLdk=2e and GR1 ; : : : ; GRbk=2, the adversary onnets the k graphsin the following way. Eah vertex y 2 Y Li is onneted to k � i verties x 2 Xi+1, for whihC(y) [C(x) = C1;k. Sine ni+1=ni = k�ii and jXi+1j=jYij = � kk�i�=�ki� = �ki�=�ki� = 1, thisan be done suh that eah vertex in XLi+1 is onneted to i verties in Y Li . In this way,eah vertex in XL1 ; : : : ;XLdk=2e and Y L1 ; : : : ; Y Ldk=2e�1 ends up having degree k. The verties ofGR1 ; : : : ; GRbk=2 are onneted the same way.Finally, eah vertex in yL 2 Y Ldk=2e is onneted to bk=2 verties in yL 2 Y Rbk=2, for whihC(yL) [C(yR) = C1;k. This is done in a way suh that eah vertex in Y Rbk=2 is onneted toexatly dk=2e verties in Y Ldk=2e. If k is even, this is learly possible, sine jY Lk=2j = jY Rk=2j. Ifk is odd, it is also possible, sine jY Ldk=2ej=jY Rbk=2j = ndk=2enbk=2 = k�bk=2bk=2 = dk=2ebk=2 . The resultinggraph for k = 4 is shown in Figure 5.3.Eah of the new edges is adjaent to exatly one edge of eah olor. Hene, none of theseedges are olored by First-Fit.5.5.4 An Impossibility Result for Deterministi AlgorithmsNo deterministi algorithm has a ompetitive ratio of stritly more than 23 . To see this,onsider the following adversary strategy. The adversary starts out giving the edges of a largedk2 e-regular bipartite graph G = (X [Y;E). Sine the on-line algorithm is deterministi, the

5.5. K-COLORABLE GRAPHS 51

GL1 GL2 GR2 GR1GL GRFigure 5.3: The graph GFF when k = 4adversary knows the set of olors represented at eah vertex after giving all edges of G. Sineon-lineD uses at most k olors and eah vertex has degree dk2 e, there are at most Pdk=2ei=0 �ki�di�erent olor sets.For eah olor set C, the adversary partitions the verties in X with olor set C in sets,suh that at most one set has less than k verties and the rest have exatly k verties eah.The same is done to the verties in Y . For eah olor set, at most 2(k � 1) verties are notin a set of size k. Thus, if the number of verties in G is muh larger than 2(k � 1) timesthe number of olor sets, we an ignore these verties. For eah set V of size k, the adversaryadds a set U of bk2 new verties to the graph and onnets eah vertex in V to eah vertexin U . See Figure 5.4. The resulting graph is alled GDet. Note that GDet is bipartite and hasmaximum degree k, and thus is k-olorable.Let d denote the number of olors represented at eah vertex in V , and reall that d � dk2e.At most k � d edges inident to eah vertex in U an be olored. Hene, the total oloreddegree of verties in U [V is at most kd+2 � bk2 (k�d), whih redues to k2, if k is even, and

52 CHAPTER 5. EDGE COLORING WITH A FIXED NUMBER OF COLORS
V U

G...

...X YFigure 5.4: A part of the graph GDet when k = 4.to k2 � k+ d � k2 � k+ dk2e = k2 � 12k+ 12 , if k is odd. The total degree of verties in U [Vis k2 + bk2k, whih redues to 32k2, if k is even, and to 32k2 � 12k, if k is odd. Summing thedegrees of all verties in a graph, we get two times the number of edges. Thus, the ompetitiveratio of on-lineD is at mostCon-lineD(k) � 8>>><>>>: k232k2 = 23 ; if k is evenk2 � 12k � 1232k2 � 12k = 23 � k � 39k2 � 3k � 23 ; if k � 3 and odd.5.6 General GraphsNow we turn to general graphs. That is, there may be some edges that are not olored byo�-line. We need to distinguish edges that are olored by the on-line algorithm only andedges olored by both the on-line algorithm and o�-line. Thus, let dd(x) denote the numberof edges inident to x that are �double-olored�, i.e., olored by both the on-line algorithmand o�-line. As before, d(x) denotes the number of edges olored by the on-line algorithmand du(x) denotes the number of edges olored by o�-line only. We will not need to onsideredges olored by neither algorithm. Note that the double-olored edges are a subset of theolored edges.5.6.1 A Performane Guarantee for Fair AlgorithmsThe performane guarantee for fair algorithms is only a little worse than in the speial aseof k-olorable input graphs. As in the ase of k-olorable graphs we need only two simpleobservations.(1) For any vertex x, dd(x) + du(x) � k, sine o�-line olors at most k edges inident to x.

5.6. GENERAL GRAPHS 53(2) For any unolored edge (x; y), d(x)+d(y) � k, sine the algorithm is fair and the edgewas not olored.Observation (2) is the same as in the proof for k-olorable graphs, and (1) is analagous toObservation (1) in the proof for k-olorable graphs.Our goal is to �nd a C suh that any fair algorithm is C-ompetitive. Sine Next-Fit has aompetitive ratio of 12 , even in the speial ase of k-olorable graphs, we know that 0 � C � 12 .As in the proof for k-olorable graphs, we start out putting one unit of some value on eahedge olored by fairR. If the total value put on olored edges is enough to �pay� the frationC of a unit for eah edge olored by o�-line, the number of edges olored by fairR is at leastthe fration C of the number of edges olored by o�-line. We start out by paying C for eahedge olored by both fairR and o�-line. This is done by removing the fration C of a unitfrom eah of these edges. The remaining value on the olored edges must be distributed tothe edges olored by o�-line only, suh that eah of these edges reeives at least the frationC of a unit. As for k-olorable graphs, the value on eah olored edge is split equally betweenits endpoints, and eah vertex splits its value equally among the unolored edges inident toit. In this way, eah unolored edge (x; y) reeives the value12 �d(x)�Cdd(x)du(x) + d(y)� Cdd(y)du(y) � (1)� 12 �d(x)� Cdd(x)k � dd(x) + d(y)� Cdd(y)k � dd(y) � :By (2), it an be assumed without loss of generality that d(y) � k2 . Thus, d(y) � Ck, andthe term d(y)�Cdd(y)k�dd(y) is minimized when dd(y) is minimized, i.e., when dd(y) = 0.Similarly, if d(x) � Ck, d(x)�Cdd(x)k�dd(x) is maximized when dd(x) = 0. If d(x) � Ck,d(x)�Cdd(x)k�dd(x) is maximized when dd(x) is maximized, i.e., when dd(x) = d(x).Thus, if d(x) � Ck, the unolored edge (x; y) reeives at least12 �d(x)k + d(y)k � (2)� 12 � C:If d(x) < Ck, (x; y) reeives at least12 �d(x)�Cd(x)k � d(x) + d(y)k � (2)� 12 �(1� C)d(x)k � d(x) + k � d(x)k � ;whih is greater than or equal to C as long asC � k2 + (d(x))2 � kd(x)2k2 � kd(x) :Hene, CfairR � mind2C1;k �k2 + d2 � kd2k2 � kd � � mind2[1;k℄�k2 + d2 � kd2k2 � kd � = 2p3� 3 � 0:4641:The minimum value of 2p3� 3 is obtained when d = (2�p3)k � 0:27k.

54 CHAPTER 5. EDGE COLORING WITH A FIXED NUMBER OF COLORSG1 G2
Y2 X1 Y1 X2 Y2Figure 5.5: The graph GNF when k = 4 and d = 1, showing that CNF(4) � 1328 � 0:4643.5.6.2 Next-Fit is Worst PossibleTo show that the performane guarantee of the previous setion is tight, we desribe a familyof graphs, for whih Next-Fit olors exatly the fration mind2C1;kfk2+d2�kd2k2�kd g of the edges.For eah k, the adversary hooses a d lose to (2�p3)k and onstruts a graph GNF, where(1) For any vertex x, dd(x) + du(x) = k.(2) For any unolored edge (x; y), d(x) = d and d(y) = k � d.Consider the two bipartite graphs G1 = (X1[Y1; E1) and G2 = (X2[Y2; E2). G1 is d-regularand has jX1j = jY1j = k, and G2 is omplete and has jX2j = jY2j = k � d. See Figure 5.5.The adversary uses k opies of eah graph, G11; : : : ; Gk1 and G12; : : : ; Gk2 . Consider theoloring where G11 is olored with C1;d and G12 is olored with Cd+1;k. The oloring of Gi+11and Gi+12 is obtained from the oloring of Gi1 and Gi2 by shifting the olors one. In this way,eah olor is used on the same number of edges. Hene, by Claim 5.1, the oloring an beobtained by Next-Fit.Now, for eah i, 1 � i � k, eah vertex in Y i1 is onneted to eah vertex in Xi2, and eahvertex in Y i2 is onneted to eah vertex in Xi1. These new edges are alled E12. Next-Fitannot olor any of these edges. However, o�-line olors all edges of E1 and E12. Hene, theompetitive ratio of Next-Fit is at mostjE1j+ jE2jjE1j+ jE12j = kd+ (k � d)2kd+ 2k(k � d) = k2 � kd+ d22k2 � kd :Considering arbitrarily large values of k, this ratio an be arbitrarily lose to 2p3� 3.5.6.3 First-Fit is Not Muh BetterThe adversary graph GFF showing that the ompetitive ratio of First-Fit is at most 29 (p10�1) � 0:4805 is inspired by the adversary graph GNF of the previous setion. However, there isno ordering of the edges in E1 and E2 for whih First-Fit will olor G2 with Cd k2 e+1;k, if theedges in E1 and E2 are given before the edges in E12. Therefore, the graph GNF is extendedto ontain an extra opy of G2, G02. Eah vertex in Y2 is onneted to exatly d verties inX 02 and vie versa. Now, E2 denotes the edges in G2 and G02 and the edges onneting them.Finally, 2k(k�d) new verties are added, and eah vertex in Y2[X 02 is onneted to k of theseverties. Let E3 denote the set of these extra edges. The graph GFF for k = 4 is depited inFig. 5.6.

5.6. GENERAL GRAPHS 55
Y 02 X1 Y1G1 X2 Y2G2 X 02 Y 02G02

E12 E1 E12 E2 E3 E2 E3 E2
Figure 5.6: The graph GFF when k = 4, showing that CFF(4) � 2552 � 0:4808.If the edges in G1 and the edges between Y2 and X 02 are given �rst (one perfet mathingat a time), followed by the edges in G2 and G02 (one perfet mathing at a time), First-Fitwill olor E1 and the edges between Y2 and X 02 with C1;d and the remaining edges in E2 withCd+1;k. After this, First-Fit will not be able to olor any more edges of GFF. On the otherhand, it is possible to k-olor the set E1 [E12 [E3 of edges. Thus, the ompetitive ratio ofFirst-Fit an be no more thanjE1j+ jE2jjE1j+ jE12j+ jE3j = kd+ 2(k � d)2 + (k � d)dkd+ 2k(k � d) + 2k(k � d) = 2k2 � 2kd+ d24k2 � 3kd :This ratio attains its minimum value of 29(p10 � 1) � 0:4805, when d = 13(4 � p10)k.Thus, for the graph GFF, we hoose d to be an integer lose to 13(p10� 1)k, and by allowingarbitrarily large values of k, the ratio an be arbitrarily lose to 29(p10� 1).5.6.4 An Impossibility Result for Fair Deterministi AlgorithmsThe adversary onstruts a simple graph G = (V1 [V2; E) in two phases. In Phase 1, onlyverties in V1 are onneted. In Phase 2, verties in V2 are onneted to verties in V1. LetjV1j = jV2j = n for some large integer n.In Phase 1, the adversary gives an edge between two unonneted verties x; y 2 V1 with aommon unused olor. Sine the edge an be olored, fairD will do so. This proess is repeateduntil no two unonneted verties with a ommon unused olor an be found. At that pointPhase 1 ends.For any vertex x, let C(x) denote the set of olors not represented at x. At the end ofPhase 1, the following holds true. For eah olor and eah vertex x suh that 2 C(x), x isonneted to all other verties y with 2 C(y). Sine 2 C(x), x is onneted to at most k�1other verties. Thus, eah of the k olors are missing at at most k verties: Px2V1 C(x) � k2.The edges given in Phase 2 are the edges of a k-regular bipartite graph with V1 and V2forming the two independent sets. Note that, by König's Theorem, suh a graph an bek-olored.In Phase 2, fairD olors at most k2 edges, but o�-line rejets all edges from Phase 1 andolors all edges from Phase 2, giving a performane ratio of at most12(nk � k2) + k2nk = nk + k22nk = 12 + k2n :

56 CHAPTER 5. EDGE COLORING WITH A FIXED NUMBER OF COLORS
H1V1 V1E1 E1H2V2 V2E2 E2... ...Hn�1Vn�1 Vn�1En�1 En�1HnVn VnEn En

Figure 5.7: Struture of the adversary graph for the general impossibility result.This shows that, for any onstant � > 0, CfairD < 12 + �.Note that the adversary graph an easily be modi�ed to be a bipartite graph. Simplyreplae the vertex set V1 by two sets X1 and Y1, and let the edges of Phase 1 onnet vertiesin X1 to verties in Y1. At the end of Phase 1, eah olor is missing at at most 2k�2 verties,beause, if a olor is missing at a vertex in X1, then it an be missing at at most k�1 vertiesin Y1 and vie versa. The verties of Phase 2 should also be partitioned in two sets X2 andY2. If, for instane, verties in X2 are only onneted to verties in X1, and verties in Y2 areonly onneted to verties of Y1, the resulting graph is bipartite.5.6.5 A General Impossibility ResultWe lose the hapter with an upper bound of 47 on the ompetitive ratio of any on-linealgorithm for edge oloring. The struture of the adversary graph is depited in Figure 5.7. Ifwe allow multigraphs, we an think of eah box as a single vertex and eah line as k paralleledges. Otherwise, we an think of eah box as k verties, and a line between two boxes meansthat eah vertex inside one box is onneted to eah vertex inside the other box, thus forminga omplete bipartite graph. Thus, in this ase, eah line orresponds to k2 edges. To makethe proof as general as possible we will desribe the ase of a simple graph.The edges of the graph are divided into n levels, Level 1; : : : ; n. The adversary gives theedges, one level at a time, aording to the numbering of the levels. Depending on the ationsof the on-line algorithm, the adversary might not give all levels of the graph. The edges ofLevel i are given in three onseutive phases:1. Hi: Internal (horizontal) edges at Level i. In total k2 edges.2. Vi: Internal (vertial) edges between Level i and Level i+ 1. In total 2k2 edges.3. Ei: External edges at Level i. In total 2k2 edges.Verties that are endpoints of internal edges are alled internal verties.Note that eah internal edge ontributes to the degree of two internal verties, whereas anexternal edge ontributes to the degree of one internal vertex and one external vertex. Sineexternal verties are no problem � they have a degree of only k � it seems to be better toolor external edges than internal edges. In partiular, an optimal o�-line algorithm olorsall external edges and no internal edges. We show that no algorithm that olors at most 17 of

5.6. GENERAL GRAPHS 57the external edges an be better than 47 -ompetitive. However, we also show that no on-linealgorithm that olors more than 17 of the external edges an be 47 -ompetitive.Sine the on-line algorithm may be randomized we use random variables to ount thenumber of olored edges. Let XHi be a random variable ounting how many edges on-lineRwill olor from the set Hi, and let XVi and XEi ount the olored edges from Vi and Eirespetively. For i = 0; : : : ; n, let EXTi and INTi be random variables ounting the sum ofall external and internal edges, respetively, olored by on-lineR after Level i is given, i.e.,EXTi =Pij=1XEj and INTi =Pij=1(XVj +XHj). Note that EXT0 = INT0 = 0.Sine no algorithm an olor more than k edges inident to one vertex, the total oloreddegree of the internal verties at the �rst i levels, 1 � i � n, is at most 2k2i. Eah internaledge (exluding Vi) ontributes two to this number, and eah external edge (inluding edgesin Vi) ontributes only one. Thus, the expeted number of olored edges on the �rst i levels isE[INTi℄ +E[EXTi℄ = (E[INTi℄�E[XVi ℄) + (E[EXTi℄ +E[XVi ℄)� 12(2k2i�E[EXTi℄�E[XVi ℄) + (E[EXTi℄ +E[XVi ℄)= k2i+ 12(E[EXTi℄ +E[XVi ℄): (5.1)If E[XEi ℄ � 27k2, for all levels i, 1 � i � n, then E[EXTn℄ � 27k2n. Thus, by (5.1), theexpeted total number of edges olored by on-lineR isE[INTn℄ +E[EXTn℄ � k2n+ 12(E[EXTn℄ +E[XVn ℄)= k2n+ 12E[EXTn�1℄ + 12(E[XEn ℄ +E[XVn ℄)� k2n+ 17k2(n� 1) + 122k2= 87k2n+ 67k2:Thus, we get an upper bound on the performane ratio of 87k2n+ 67k22nk2 = 47 + 37n , whih an bearbitrarily lose to 47 , if we allow n to be arbitrarily large.Otherwise, there exists a level i, 1 � i � n, suh that E[XEi ℄ > 27k2. Assume that Level iis the �rst suh level. Thus, E[EXTi�1℄ � 27k2(i � 1). Furthermore, sine the edges in Vi�1,Hi, Vi, and Ei all ontribute to the degree of the two internal verties at Level i,E[XVi�1 ℄ + 2E[XHi ℄ +E[XVi ℄ � 2k2 �E[XEi ℄ < 127 k2: (5.2)If the adversary stops giving edges after Phase 1 of Level i, o�-line will olor k2(2i � 1)edges in total. These are the edges in the sets E1;E2; : : : ;Ei�1, and Hi. If the adversary stopsgiving edges after Phase 2 (or 3) of Level i, o�-line will olor 2k2i edges. These are the edgesin the sets E1;E2; : : : ;Ei�1, and Vi. Thus, if the algorithm is 47 -ompetitive, the following twoinequalities must hold.E[INTi�1℄ +E[EXTi�1℄ +E[XHi ℄ � 47k2(2i� 1); andE[INTi�1℄ +E[EXTi�1℄ +E[XHi ℄ +E[XVi ℄ � 47k22i:

58 CHAPTER 5. EDGE COLORING WITH A FIXED NUMBER OF COLORSAdding the two inequalities, yields2�E[INTi�1℄ +E[EXTi�1℄�+ 2E[XHi ℄ +E[XVi ℄ � 167 k2i� 47k2:Thus, by (5.1),2k2(i� 1) +E[EXTi�1℄ +E[XVi�1 ℄ + 2E[XHi ℄ +E[XVi ℄ � 167 k2i� 47k2:Now, using (5.2) yields E[EXTi�1℄ > 27k2(i � 1); whih is a ontradition. This proves theupper bound of 47 .

Chapter 6Dual Bin Paking in Variable-SizedBinsIn [43℄ we study a variant of dual bin paking in whih the bins may have di�erent sizes.We assume that the input sequenes are all aommodating, i.e., for eah sequene, all itemsan be paked in the n available bins by an optimal o�-line algorithm. The reason for thisrestrition is that, for general sequenes, no fair on-line algorithm has a onstant ompetitiveratio, even in the ase of idential bins [25℄.The problem an also be seen as a sheduling problem with n uniformly related mahines.Consider a sheduling problem with a deadline and assume that the aim is to shedule asmany jobs as possible before this deadline. If an optimal o�-line algorithm an shedule alljobs of any input sequene before the deadline, this problem is equivalent to our problem. Ourproblem an also be seen as a speial ase of the multiple knapsak problem (see [84, 29℄), whereall items have unit pro�t. (This problem was mainly studied in the o�-line environment.)6.1 AlgorithmsWe study the lass of fair algorithms. A fair algorithm rejets an item, only if the itemdoes not �t in the empty spae left in any bin. Some of the algorithms that are lassial forthe lassial bin paking problem an be adapted to the dual bin paking problem. Suh anadaptation was done for idential bins in [25℄; the n bins are all onsidered open from thebeginning, and no new bin an be opened. We also use this adaptation.Some lassial fair algorithms are First-Fit, Best-Fit, and Worst-Fit. First-Fit is not asingle algorithm but a lass of algorithms that give an order to the bins. Eah item is pakedin the �rst bin (in the ordered set of bins) in whih it �ts. Among the various versions ofFirst-Fit, two are most natural. Smallest-Fit paks eah item in the smallest bin it �ts in.Similarly, Largest-Fit paks eah item in the largest bin it �ts in. The two other algorithmsdo not need further adaptation. Thus, Best-Fit paks eah item in a bin where it leaves thesmallest possible empty spae, and Worst-Fit paks it in a bin where it leaves the largestpossible empty spae.We also analyze a lass of fair algorithms alled Smallest-Bins-First. The only thing thatharaterizes these algorithms � apart from being fair � is that whenever an item is pakedin an empty bin, the item �ts in no smaller empty bin. Smallest-Fit and Best-Fit belong tothis lass of algorithms. 59

60 CHAPTER 6. DUAL BIN PACKING IN VARIABLE-SIZED BINS6.2 ResultsWe prove that, on aommodating sequenes, the ompetitive ratio of any fair deterministialgorithm is between 12 and 23 . Thus, even though we onsider a generalization of dual binpaking in idential bins, the performane guarantee for fair algorithms mathes Worst-Fit'sperformane for idential bins [25℄. We give a very simple example showing that bothWorst-Fitand Largest-Fit have a ompetitive ratio of exatly 12 on aommodating sequenes.Smallest-Bins-First algorithms are only a little better; on aommodating sequenes, anySmallest-Bins-First algorithm has a ompetitive ratio of exatly n2n�1 , where n is the numberof bins. This is in ontrast to the ase of idential bins, where First-Fit and Best-Fit are58 -ompetitive.Finally, any fair randomized algorithm has a ompetitive ratio of at most 45 , even onaommodating sequenes.6.3 A Tight Performane GuaranteeGiven any aommodating sequene �, any fair algorithm A paks at least half of the itemsin �. Let A be the set of items aepted by A and let R be the set of items rejeted by A.We will prove that jAj � jRj. The proof is adapted from the proof of a stronger result foridential bins in [25℄.Let s be the size of the smallest item in R. From � we onstrut a new aommodatingsequene �0 in the following way.� Eah item in A of size less than s is removed from �.� Eah item in A of size ` � s is replaed by b s̀ items of size s.� Eah item in R of size more than s is replaed by an item of size s.Clearly, any paking of � indues a legal paking of �0. Sine all items in �0 have the same sizes, pakings an only be distinguished by the number of items in eah bin. Hene, to alulatean upper bound on jRj, we only need to ount how many items of size s an be added to thepaking of �0 indued by the on-line paking of �.Consider the on-line paking of �. Sine A is fair and it rejeted an item of size s, theempty spae in eah bin is less than s. Clearly, removing an item of size less than s inreasesthe empty spae in the orresponding bin by less than s. Similarly, replaing an item of size` � s by b s̀ items of size s inreases the empty spae by less than s. Thus, eah time an itemis removed or replaed, it makes room for at most one extra item of size s. This proves thatjAj � jRj, and hene the algorithm is 12 -ompetitive on aommodating sequenes.The result is tight due to the performane of Worst-Fit and Largest-Fit (see Setion 6.5).6.4 Impossibility ResultsThe Strit Competitive RatioWe an easily show that the strit ompetitive ratio on aommodating sequenes is at most23 for any fair algorithm. Consider for example the following instane with� 1 bin of size 2

6.4. IMPOSSIBILITY RESULTS 61� 1 bin of size 3� n� 2 bins of size ", 0 < " < 1.The input sequene onsists of two or three items that are all too large for the bins of size ".The �rst item has size 1.Assume �rst that the �rst item is paked in the bin of size 3. In this ase, an item of size 3arrives next. This item annot be paked, but learly both items ould be paked, if the �rstitem were paked in the bin of size 2.If the �rst item is paked in the bin of size 2, two items of size two will arrive. Only one ofthese two items an be paked, but the whole sequene ould be paked, if the �rst �rst itemwere paked in the bin of size 3.This gives an upper bound on the strit ompetitive ratio on aommodating sequenesof 23 . Furthermore, applying Yao's inequality [102℄ as desribed in [18, 65, 66℄ on these twosequenes gives an upper bound of 45 for randomized algorithms. In words Yao's priniple saysthat the ompetitive ratio of the best randomized algorithm against an oblivious adversaryequals the ompetitive ratio of the best deterministi algorithm on inputs generated from the�worst� probability distribution.To see that the upper bound of 45 follows from Yao's priniple, onsider the sequene wherethe �rst item of size 1 is followed by one item of size 3 with probability p1 = 25 and by twoitems of size 2 with probability p2 = 35 . An algorithm that paks the �rst item in the bin ofsize 3 will have an expeted performane ratio of at most p1 � 12 + p2 � 1 = 45 . Similarly, analgorithm that paks the �rst item in the bin of size 2, will have an expeted performaneratio of at most p1 � 1 + p2 � 23 = 45 . Thus, no deterministi algorithm an have an expetedperformane ratio larger than 45 on this sequene. This implies an upper bound of 45 on theompetitive ratio on aommodating sequenes for randomized algorithms.The Competitive RatioWe are interested in impossibility results that hold for the ompetitive ratio in general, andnot only for the strit ompetitive ratio. In Setion 6.6, it is shown that any fair algorithmrejets at most n� 1 items, where n is the number of bins. As long as there is only a onstantnumber of bins, we an view the number of rejeted items as just an additive onstant, andhene any fair algoirthm has ompetitive ratio 1. Thus, we need to de�ne arbitrarily longsequenes.Deterministi AlgorithmsWe de�ne n bins and an aommodating sequene onsisting of 3 � bn2 items. Let ` = bn2 .For k = 1; 2; : : : ; `, we de�ne the pair of binsB2k with size 2k + 2 � 4k" and B2k�1 with size 2k + 4k";where " � 14n is a positive onstant. Thus, 4`" � 4n�1" � 14 . If n is odd, the last bin is of size"2 (so that no items are paked in that bin for the sequene we de�ne).The sequene is de�ned indutively in Steps `; `� 1; : : : ; 1. In Step k, two large items aregiven and one small item is de�ned. The small items are all given after Step 1, i.e., after alllarge items have been given. For eah step k, the following will hold.

62 CHAPTER 6. DUAL BIN PACKING IN VARIABLE-SIZED BINS

22k �Ek+1 + 4k"
Ek = Ek+1 + 4k"

1 2k �Ek+1
Ek

(a) If the �rst large item is put in B2k�1, thenext large item has size 2k�Ek+1+4k", andEk = Ek+1 + 4k".
12k �Ek+1

Ek
2 2k �Ek+1 � 4k"

Ek = Ek+1 + 2 � 4k"
(b) If the �rst large item is put in B2k, thenext large item has size 2k�Ek+1� 4k", andEk = Ek+1 + 2 � 4k".Figure 6.1: The �rst large item of Step k has size 2k �Ek+1.� The on-line algorithm will pak the two large items in B2k and B2k�1, one in eah bin.� After paking the two large items, the empty spae in the two bins have the same sizedenoted Ek. For onveniene we de�ne E`+1 = 0.� The small item will be rejeted by the on-line algorithm.We �rst present the sequene and then prove that this is indeed the ase.� The �rst large item given in Step k has size 2k � Ek+1. Thus, the very �rst item hassize 2` and the size of the �rst large item of eah of the following steps depends on theempty spae reated in the previous step.� The seond large item given in Step k has size 2k � Ek+1 + 4k" or 2k � Ek+1 � 4k" asillustrated in Figure 6.1. Note that Ek = Ek+1 + 4k" or Ek = Ek+1 + 2 � 4k".� The small item de�ned in Step k has size Sk = Ek + 4k".Note that if the two large items of Step k are swapped in the on-line paking, the small item�ts in B2k. This proves that the sequene is aommodating. Note also thatEk+1 + 4k" (1)� Ek (2)� Ek+1 + 2 � 4k":By (1), E`+1 < E` < : : : < E1, and by (2),E1 � E`+1 + 2X̀i=1 4i" = 0 + 24`+1 � 13 " < 4`+1" � 1:

6.5. WORST-FIT AND LARGEST-FIT 63This means that both large items given in Step k have a size greater than 2k�1�4k". Thus, toprove that none of these two items �t in B2k�2, it su�es to prove 2k�1�4k" � 2k�2+2�4k�1".This is equivalent to 1 � 324k", whih is true sine 4k" � 14 .Finally, by (2), E1 < Ek + 4k" = Sk, 1 � k � `. Thus, all small items are too large evenfor the bins B1 and B2, and hene they will be rejeted.We onlude that the sequene is aommodating and one out three items is rejeted ineah step, whih proves the bound.Randomized AlgorithmsSine the sequene just desribed was built step by step depending on the on-line hoies, weannot use it against randomized algorithms. Thus, we desribe a simpler sequene provingan upper bound of 45 for randomized algorithms. For simpliity, we desribe the proof fordeterministi algorithms �rst. We use� bn2 bins of size 1 + "� bn2 bins of size 2� ",where 0 < " < 12 . If n is odd, the last bin has size ".The input sequene starts with bn2 items of size 1. Sine the algorithm is fair, all bn2 items are aepted. Let x be the number of bins of size 1 + " that reeives an item. Sineno bin an hold two items, x is the number of empty bins of size 2 � ". What happens nextdepends on the size of x.If x � 35 � bn2 , the sequene ontinues with bn2 items of size 2� ". The on-line algorithmaepts exatly x of these. Clearly, the whole sequene ould be paked, but the algorithmpaks only the fration bn2 + x2 � bn2 � 1 + 352 = 45of the items.Otherwise, the sequene ontinues with bn2 items of size 1 + " followed by bn2 items ofsize 1 � ". All items of size 1 + " are aepted. After that all bins ontain exatly one item.Items of size 1 � " an only be paked in bins of size 2 � " that ontain an item of size 1.Thus, bn2 � x of these items are aepted. Again, the whole sequene ould be paked, andthe on-line algorithm paks only 3 � bn2 � x3 � bn2 < 3� 353 = 45of the items.Now, to get an upper bound for randomized algorithms, let x denote the expetation ofthe number of bins of size 1+ " that reeived an item of size 1. The bound follows by linearityof expetation.6.5 Worst-Fit and Largest-FitIn this setion we show that, on aommodating sequenes, Worst-Fit and Largest-Fit havethe worst possible ompetitive ratio among fair algorithms.To see this, onsider the following set of bins.

64 CHAPTER 6. DUAL BIN PACKING IN VARIABLE-SIZED BINS� 1 large bin of size n� n� 1 small bins of size 1.The input sequene is given in two steps:� n� 1 items of size 1� n� 1 items of size 1 + ",where " � 1n is a positive onstant.Both Worst-Fit and Largest-Fit will pak all items of size 1 in the large bin. After that,all bins have an empty spae of size 1, whih means that the n� 1 items of size 1+ " must berejeted. However, the n � 1 items of size 1 an be paked in the n � 1 small bins, and theremaining n� 1 items an be paked in the large bin, sine (n� 1)" < 1.[25℄ shows that, even in the ase of idential bins, the ompetitive ratio of Worst-Fit is 12 .6.6 Smallest-Bins-First AlgorithmsIn this setion we show that any Smallest-Bins-First algorithm has a ompetitive ratio ofexatly n2n�1 on aommodating sequenes.The Impossibility ResultFor the impossibility result, onsider the set of n bins bi, 1 � i � n, where bi has size 1 + i"and " < 1n is a positive onstant. The sequene is� 1 item of size 1 + (i� 1)", for i = 1; 2; : : : ; n� n� 1 items of size nn�1".For eah i, 1 � i � n, any Smallest-Bins-First algorithm assigns the item of size 1+(i�1)"to bi. This leaves an empty spae of size " in eah bin. Hene, all items of size nn�1" must berejeted.An optimal o�-line algorithm paks eah item of size 1 + (i� 1)", 2 � i � n, in bi�1. Theitem of size 1 and the n� 1 small items an then be paked in b1.Thus, the sequene is aommodating, and the algorithms pak only n out of 2n�1 items.The Mathing Performane GuaranteeFor the performane guarantee, we prove an upper bound on the number of rejeted items.We use the fat that the total size of the rejeted items equals the total empty spae in theon-line paking minus the total empty spae in an optimal o�-line paking, sine all items ofthe sequene an be paked.For any input sequene, let B be the set of non-empty bins in some optimal o�-line paking,let B be the set of empty bins, and let N = jBj.If the on-line algorithm does not rejet any items, its paking is optimal. Now, assumethat at least one item is rejeted, and let s be the size of a smallest rejeted item. Sine thealgorithm is fair, the empty spae in any bin is less than s. Clearly, the size of a bin is alsoan upper bound on the empty spae in that bin. Thus, the total empty spae in the on-line

6.6. SMALLEST-BINS-FIRST ALGORITHMS 65paking is stritly less than Pb2B s +Pb2B size(b) = Ns +Pb2B size(b). Sine the totalempty spae in the o�-line paking is at least Pb2B size(b), the number of rejeted items isstritly less than N , i.e., at most N � 1. In partiular, this means that the number of rejeteditems is at most n� 1.Thus, if there are no empty bins in the on-line paking, the algorithm has paked at leastn items and rejeted at most n� 1, yielding a performane ratio of at least n2n�1 .Otherwise, let b be a largest empty bin. Let I� be the set of items no larger than b. Sinethe algorithm is fair, these items are all aepted. Let N� be the number of non-empty binsno larger than b in some optimal o�-line paking. Then, N� � jI�j, sine only the items inI� �t in bins no larger than b.Let n> be the number of bins larger than b. These bins are all non-empty in the on-linepaking, and by the de�nition of Smallest-Bins-First algorithms, the �rst item paked in eahof them is larger than b, i.e., not ontained in I�. Thus, the on-line algorithm aepts at leastjI�j+n> items. Let N> be the number of non-empty bins larger than b in the optimal o�-linepaking, and let N = N�+N> be the total number of non-empty bins in the optimal o�-linepaking. Then, jI�j + n> � N� + N> = N . Sine the number of rejeted items is at mostN � 1, this gives a ratio of at least N2N�1 � n2n�1 .

66 CHAPTER 6. DUAL BIN PACKING IN VARIABLE-SIZED BINS

Chapter 7Sheduling on Two Related MahinesIn [44℄ and [42℄ we study sheduling on two uniformly related mahines, i.e., one mahine is afator of q faster than the other. Without loss of generality, we assume that the faster mahinehas speed 1, and the other mahine has speed q. Thus, a job of size p an be ompleted intime p on the fast mahine and time qp on the slow mahine. We restrit the input sequenesto those with non-inreasing job sizes.The aim is to minimize the makespan. We determine the optimal ompetitive ratio as afuntion of q, C(q). This gives as a by-produt the overall ompetitive ratio maxq�1fC(q)g.Let M1 denote the fast mahine, and Mq the slow mahine. For a given job sequeneJ1; J2; : : : ; J`, we let p1; p2; : : : ; p` denote the job sizes. The total size of the jobs is denotedby P , i.e., P =Pì=1 pi. The time it takes to omplete a job on a given mahine is alled theload of the job on that mahine.For the �rst k jobs of an input sequene, let OPTk denote the optimal makespan and letONLk denote the makespan of the on-line algorithm under onsideration.7.1 Non-Preemptive ShedulingSine the analysis of the optimal ompetitive ratio involves long and tedious proofs, the aimof this setion is to give an overview of the analysis and the results. The proofs an be foundin the paper in Appendix B.4.7.1.1 Previous ResultsFor the o�-line problem, the algorithm LPT (Longest Proessing Time) has been studied.This algorithm sorts the jobs in non-inreasing order and then uses List Sheduling. Sine,in this hapter, we assume that the jobs arrive in order of non-inreasing size, we obtain thesame result using List Sheduling.For m idential mahines the ompetitive ratio of LPT is 43 � 13m [61℄. Thus, on twoidential mahines, the ompetitive ratio of LPT is 76 , and this is the optimal ompetitiveratio [93℄. These ratios should be ompared to 2 � 1m and 32 for general sequenes. [93℄ alsoshows that, for m = 3, no deterministi algorithm an have a ompetitive ratio better than16(1 +p37) � 1:18. Furthermore, the paper gives an 87 -ompetitive randomized algorithm form = 2 and shows that this is best possible. 67

68 CHAPTER 7. SCHEDULING ON TWO RELATED MACHINES

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3Figure 7.1: The ompetitive ratio as a funtion of qFor m related mahines, the overall ompetitive ratio of LPT is between 1.52 and 53 [56℄.Reall that for general sequenes, the ompetitive ratio is at least 1:853, ifm � 80. In [39℄, theupper bound is improved to 1912 � 1:583 (unfortunately, the proof does not seem omplete). Ontwo related mahines, the overall ompetitive ratio of LPT is at most 14(1 +p17) � 1:28 [58℄.Reall that, for general sequenes, the ratio is � � 1:618. In [86℄, the ompetitive ratio ofLPT for any speed ratio is given. The interval q � 1 is partitioned in 9 intervals, eah with adi�erent funtion of q for the ompetitive ratio.7.1.2 Our ResultsWe give the optimal ompetitive ratio as a funtion of the speed ratio q (see Figure 7.1). Thefuntion involves 15 distint intervals as de�ned below. In some of those intervals, we givegeneral lower bounds whih math the upper bounds in [86℄. In those ases, LPT is optimal.In the other intervals, we design new algorithms and prove that they are optimal. Exept forthe �rst few jobs, the algorithms all work like LPT.We show that, in terms of overall ompetitive ratio, 14(1+p17) is the optimal ompetitiveratio ahieved at q = 14(1 +p17) by LPT. Thus, in terms of overall ompetitive ratio, LPTis optimal, and as in the ase of general input sequenes, the highest ompetitive ratio equalsthe value of q for whih it is attained.The optimal ompetitive ratio is desribed by the following funtion.
C(q) = 8>>>>>>>>>>>><>>>>>>>>>>>>:

C1(q); 1 � q � q1 � 1:0401C2(q); q1 � q � q2 � 1:1410C3(q); q2 � q �q 43 � 1:1547C4(q); q 43 � q � 14 (1 +p17) � 1:2808C5(q); 14 (1 +p17) � q � p2 � 1:4142C6(q); p2 � q � 14 (1 +p33) � 1:6861C7(q); 14 (1 +p33) � q � 12 (1 +p7) � 1:8229C(q) =
8>>>>>>>>>>>>><>>>>>>>>>>>>>:
C8(q); 12 (1 +p7) � q � 2C9(q); 2 � q � 12 (1 +p11) � 2:1583C10(q); 12 (1 +p11) < q � q10 � 2:1956C11(q); q10 � q � q11 � 2:3307C12(q); q11 � q � 14 (3 +p41) � 2:3508C13(q); 14 (3 +p41) � q � q13 � 2:5111C14(q); q13 � q � q14 � 2:5704C15(q); q � q14;C1(q) = 23 + 12q , C2(q) = 1 + 12 �4q2 + 4q � 1�p(4q2 + 4q � 1)2 � 4q2�,C3(q) = 6q + 43q + 6 , C4(q) = q, C5(q) = 12 + 1q , C6(q) = 1 + 12q + 2 ,

7.1. NON-PREEMPTIVE SCHEDULING 69C7(q) = 2q + 1q + 2 , C8(q) = 23 + 1q , C9(q) = 1 + 12q + 2 , C10(q) = 3q + 22q + 3 ,C11(q) = q2 + 3 +pq4 � 6q2 + 24q + 96q , C12(q) = q2 , C13(q) = 34 + 1q ,C14(q) = 1 + q2 + 2q � 2�pq4 + 8q + 42q + 4 , C15(q) = 1 + 12q + 1 ,q1 is the largest real root of 84q4 � 24q3 � 80q2 + 6q + 9,q2 is the largest real root of 27q4 + 48q3 � 54q2 � 48q + 8,q10 is the smallest real root of 3q4 � 9q3 � 8q2 + 21q + 18,q11 is the largest real root of q3 � 2q � 8,q13 is the largest real root of 20q4 � 39q3 � 46q2 + 32q + 32,q14 is the largest real root of 4q5 + 2q4 � 24q3 � 23q2 + 6q + 8.7.1.3 Impossibility ResultsThe lower bound on the overall ompetitive ratio is easily proven. Let q = 14(1 +p17).The adversary �rst gives a job of size 1q . If the algorithm assigns this job to the slowmahine, it has a ompetitive ratio of at least q. Thus, assume that it is sheduled on the fastmahine. Now, two jobs of size 12 follow. If they are both sheduled on the slow mahine, themakespan is q. Otherwise, it is at least 1q + 12 = q.The optimal shedule is obtained by sheduling the �rst job on the slow mahine and thelast two jobs on the fast mahine, yielding a makespan of 1.Stritly speaking, this example works only for the strit ompetitive ratio, but notingthat the job sizes ould be saled by any fator, we obtain the impossibility result for theompetitive ratio in general.We now give the sequenes proving the impossibility result of eah interval. For i � 4,Ci(q) � q. Thus, when proving impossibility results for these intervals, we an assume thatthe �rst job is sheduled on the fast mahine. For intervals 1�3, we need to onsider bothpossibilities.Interval 1: 12q , 12q , 13 , 13 , 13 .For intervals 2 and 3, let p1 be the size of the �rst job. If the �rst job is put on the slowmahine, four more jobs are given. The �rst of these has size 3+2q�2q22q2+q p1 and the last threeall have size q+12q+1 p1. Otherwise, the following two sequenes are used.Interval 2: 1q � 2q + 1q + 1 p5, 2q + 1q + 1 p5, 1� 2p5, p5, p5,where p5 = q + 12q �4q2 + 4q � 1�p(4q2 + 4q � 1)2 � 4q2�.Interval 3: �3q2 + 4q + 4, q + 2, q + 2, q + 2, 3q2 + q � 2, 3q2 + q � 2.Intervals 4 and 5: 1q , 12 , 12 .Intervals 6 and 9: 2q2 + q � 2, q + 2, q + 1, q + 1.

70 CHAPTER 7. SCHEDULING ON TWO RELATED MACHINESInterval 7: q + 2, �q2 + 2q + 2, q2 � 1, q2 � 1.Interval 8: 1q , 13 , 13 , 13 .Interval 10: 2q + 3, �q2 + 3q + 3, q2 � 1, q2 � 1, q2 � 1.Interval 11: 4q, 4q2 � 3p5, p5, p5, p5, where p5 = 13 �5q2 � 3�pq4 � 6q2 + 24q + 9�.Intervals 12 and 13: 1q , 14 , 14 , 14 , 14 .Interval 14: 1q , 1� 1q � q + 2q + 1 p5, 1q � qq + 1 p5, p5, p5,where p5 = q + 12q(q + 2) �q2 + 2q � 2�pq4 + 8q + 4�.Interval 15:q < 1 +p3: 2q + 1, 2q2 � 2q � 3, q + 1, q + 1 q + 1.q � 1 +p3: 2q2 � 2q � 3, 2q + 1, q + 1, q + 1 q + 1.7.1.4 The New AlgorithmsIn the intervals where the general lower bound mathes the ompetitive ratio of LPT, learlyLPT is optimal. Those intervals are the following.� q = 1 (for q = 1, the ompetitive ratio of LPT is 76 [61℄, and this is optimal [93℄).� 16(1 + p37) � q � q9, where q9 � 2:04 is the largest real root of 4q3 � 4q2 � 10q + 3.This is most of interval 4, all of intervals 5�8, and a little of interval 9.� q � q14 � 2:57. This is the last interval (interval 15).This leaves the following intervals to deal with.� Intervals 1�4, not inluding q = 1 in interval 1, and interval 4 only up to 16 (1 +p37).� Intervals 9�14, interval 9 starting only at q9.For the �rst four intervals, we design the algorithm Slow-LPT. Intuitively, the reason whyLPT fails in the interval 1 < q < 16(1+p37) is that the slow mahine is not muh slower thanthe faster one. Sine the fast mahine does not dominate the slow mahine so easily, it oftenmakes sense to use the slow mahine �rst, and keep the fast mahine free for future jobs.Sine Slow-LPT is optimal in all of interval 4, this gives an alternative optimal algorithmfor the interval 16 (1 +p37) � q � 14(1 +p17).Algorithm Slow-LPTAssign J1 to Mq. Assign J2 to M1.If q(p1 + p3) � C(q)(p2 + p3), assign J3 to Mq, and otherwise to M1.Assign the rest of the jobs by the LPT rule.In intervals 9 and 10, 13 and 14, we use the algorithm Balaned-LPT that shedules theseond job of the sequene on the slow mahine, unless it might break the ratio.

7.1. NON-PREEMPTIVE SCHEDULING 71Sine Balaned-LPT is optimal in all of interval 9, this gives an alternative optimal algo-rithm for the interval 2 � q � q9.Algorithm Balaned-LPTAssign J1 to M1.If qp2 > C(q)(p1 + p2), assign J2 to M1, and otherwise to Mq.Assign the rest of the jobs by the LPT rule.Finally, for intervals 11 and 12, we introdue the algorithm Opposite-LPT that does theopposite of LPT, unless it might violate the ratio. If qp2 < p1 + p2, LPT puts J2 on Mq,so Opposite-LPT puts J2 on M1, unless p1 + p2 > C(q)qp2. Similarly, if qp2 � p1 + p2,Opposite-LPT puts J2 on Mq, unless qp2 > C(q)(p1 + p2).Algorithm Opposite-LPTAssign J1 to M1.Assign J2 to M1 if one of the following holds:qp2 < p1 + p2 � C(q) qp2 or qp2 > C(q)(p1 + p2).Otherwise, assign J2 to Mq.Assign the rest of the jobs by the LPT rule.7.1.5 Performane GuaranteesThe proofs of the performane guarantees use only a few simple observations.We assume without loss of generality that OPT = 1. Note that P � 1 + 1q , sine the totalsize of jobs sheduled by OPT is at most 1 on M1 and 1q on Mq.We will always assume that the makespan of the on-line algorithm is determined by thelast job, J`, i.e., ONL > ONL`�1, sine if ONL = ONL`�1, then ONL`�1OPT`�1 � ONLOPT .Consider an input sequene J1; J2; : : : ; J` and assume that J` is sheduled aording to theLPT rule. Let P `�11 and P `�1q be the total size of jobs assigned to M1 and Mq, respetively,just before the arrival of J`. Then, by the assumption that J` determines the makespan,ONL = minfP `�11 + p`; q(P `�1q + p`)g.In [86℄ it is noted that ONL � 1 + qq+1 p`. This follows from the following alulationsminnP `�11 + p`; q(P `�1q + p`)o � qq + 1 �P `�11 + p`�+ 1q + 1 q �P `�1q + p`�= qq + 1 �P `�11 + P `�1q + 2p`� = qq + 1 (P + p`)� 1 + qq + 1p`:This implies that, if OPT shedules k jobs on M1, then p` � 1k , and ONL � 1 + qk(q+1) .Similarly, if OPT shedules k jobs on Mq, then p` � 1qk , and ONL � 1 + 1k(q+1) .This shows that only short sequenes an be problemati. Indeed, the impossibility resultsannot be obtained with sequenes of more than six jobs. This is natural, sine the job sizesare non-inreasing; for long sequenes the last job is small ompared to the total job size ofthe sequene.

72 CHAPTER 7. SCHEDULING ON TWO RELATED MACHINESIntervals 9 and 10To give the �avor of how these simple observations are used in the analysis, we give the proofof the performane guarantee for intervals 9 and 10.Reall that C9(q) = 1 + 12q+2 and C10(q) = 3q+22q+3 , and that intervals 9 and 10 orrespondto the interval 2 � q � q10 � 2:20. In interval 9, C10(q) � C9(q), and in interval 10,C9(q) � C10(q). Thus, in intervals 9 and 10, C(q) = maxfC9(q); C10(q)g.If OPT runs �ve jobs on M1,ONL � 1 + q5(q + 1) � 1 + 12(q + 1) = C9(q) � C(q); sine q5(q + 1) � 12(q + 1) ; for q � 52 :Hene, we assume that OPT runs at most four jobs on M1. Similarly, we assume that OPTruns at most one job on Mq, sine otherwise ONL � 1 + 12(q+1) = C9(q). Thus, we need onlyonsider sequenes of length at most �ve.If, in the optimal shedule, no jobs are assigned to Mq, Balaned-LPT will not break theratio. Hene, we assume that OPT shedules exatly one job on Mq and at most four jobs onM1.In intervals 9 and 10, Balaned-LPT always assigns J2 to Mq, sineC(q) (p1 + p2) � C9(q) (p1 + p2) � 2C9(q) p2 � q p2; for q � 1 +p132 � 2:30:This shows that sequenes with at most two jobs annot break the ratio. It also shows that,if the sequene ontains at least three jobs, then ONL � P � p2. If OPT does not run J1 onM1, OPT � P � p2 � ONL. This leaves only the ase, where OPT runs J1 on Mq and allother jobs on M1.Three jobs. Sine OPT runs J1 on M1, OPT � qp1. By the assumption that the last jobdetermines the on-line makespan, ONL � p1 + p3 � 2 p1 � q p1, sine ONL runs J2 on Mq.Four Jobs. Sine OPT runs J1 onMq and all other jobs onM1, p1 � 1q and p2+p3+p4 � 1.Combining the latter inequality with p4 � p3 � p2 yields p3 + p4 � 23 . Thus,ONL � p1 + p3 + p4 � 1q + 23 = 2q + 33q � 2q + 32q + 2 = C9(q); for q � 2:Five Jobs If Balaned-LPT shedules at least one of the jobs J3 and J4 on Mq, ONL �P � (p2+ p4) � 1+ 1q � 2p5: Moreover, ONL � 1+ qq+1 p5. Equating these two upper boundsyields p5 = q+13q2+2q , and hene,ONL � 1 + qq + 1 q + 13q2 + 2q = 1 + 13q + 2 < C9(q):Otherwise, ONL � q (p2+p5). Sine OPT runs the last four jobs onM1, p3+p4+p5 � 1�p2,implying that p5 � 13(1 � p2). Thus, ONL � q3 (1 + 2p2). Furthermore, ONL � P � p2 �1 + 1q � p2. Equating the two upper bounds gives p2 = �q2+3q+32q2+3q . Hene,ONL � 1 + 1q + q2 � 3q � 32q2 + 3q = 3q + 22q + 3 = C10(q):

7.2. PREEMPTIVE SCHEDULING 73
1

1.05

1.1

1.15

1.2

1 2 3 4 5 6 7 8 9 10Figure 7.2: The ompetitive ratio as a funtion of q7.2 Preemptive Sheduling[93℄ gives the exat ompetitive ratio of preemptive sheduling of non-inreasing sequenes onidential mahines. The ratio tends to 12(1 +p3) � 1:366 as m tends to in�nity. The resultis valid for deterministi as well as randomized algorithms.On general sequenes, the ompetitive ratio for preemptive sheduling on two relatedmahines is 1 + qq2+q+1 (see Chapter 2). In this setion we prove that, if the job sizes arenon-inreasing, the ompetitive ratio isC(q) = 8><>:1 + 13q + 2 ; for 1 � q � 31 + q � 12q2 + q + 1 ; for q � 3;for randomized as well as deterministi algorithms. This result is depited in Figure 7.2. Asfor general sequenes, the ompetitive ratio attains its maximum at q = 1. The maximum is65 � a little lower than the maximum of 43 for general sequenes.We design two lasses of algorithms, one for q � 2 and one for q > 2. The �rst lass ofalgorithms do not use idle time and resemble previously known algorithms. The seond lassof algorithms introdue idle time when sheduling the �rst job. This is in ontrast to earlieralgorithms. In non-preemptive sheduling idle time is learly not useful. However, in previouswork on preemptive sheduling of general or non-inreasing sequenes [30, 41, 45, 92, 93, 99℄,idle time has not been used either. As observed in [30℄, idle time is never neessary in the aseof idential mahines. We prove that any optimal algorithm for sheduling non-inreasingsequenes on two related mahines with a speed ratio of more than 2 must introdue idletime when sheduling the �rst job. It seems reasonable that, for preemptive models wherethe exat ompetitive ratio is not yet known, introduing idle time ould lead to the designof algorithms with optimal ompetitive ratio. However, it is not lear how this an be done.Our algorithms introdue idle time only when sheduling the �rst job (when sheduling laterjobs, no additional idle time is introdued). This onstrution is simple enough to analyze,and leads to algorithms of optimal ompetitive ratio.Note that the break point in the ompetitive ratio is q = 3 and not q = 2. Even though thealgorithms for q � 2 and 2 < q � 3 are di�erent, they have the same funtion as ompetitiveratio.

74 CHAPTER 7. SCHEDULING ON TWO RELATED MACHINES7.2.1 PreliminariesIn the proofs of the performane guarantees, and when proving that idle time is needed whenq > 2, we need the following speial ase of a result from [64℄. For any input sequene, theoptimal makespan is maxfp1; qq+1 Pg. This means that if P � q+1q p1, the optimal makespanis qq+1 P .We let r1 = 1+ 13q+2 and r2 = 1+ q�12q2+q+1 denote the optimal ompetitive ratio that weare going to prove for q � 3 and q � 3, respetively. In Setion 7.2.3, we let ri denote r1 orr2, depending on whih range of q is onsidered.7.2.2 Algorithms for q � 2The algorithms for q � 2 work similarly to the algorithm in [30℄. The �rst job J1 is sheduledon the fast mahine. Without loss of generality we assume that it has size 1.As long as the total size of jobs does not exeed 1+ 1q , OPT = 1. These jobs are sheduledbetween time 1 and r1 on the fast mahine �rst and then from time 0 on the slow mahine.We stop when the total size reahes 1+ 1q (some job may be partially assigned, denote this jobJp). At this point, the load on the slow mahine does not exeed 1. Hene, even if a job wassplit between the two mahines, its two parts do not overlap in time. We have the followingsituation.The loads are r1 = 3q + 33q + 2 (fast)and (1 + 1q � r1)q = 2q + 23q + 2 (slow).Note that the ratio of the loads is 3 : 2. Mq M1 1r1J1
From now on, we keep the ratio of 3 : 2 between the loads, so that the fast mahine isalways more loaded. The remaining part of Jp (if any) as well as any new arriving job of sizep will be split in two piees of size 3q3q+2 p (fast mahine) and 23q+2 p (slow mahine). The ratiobetween the extra loads is 3 : 2 as required.Sine the total size of sheduled jobs is at least 1 + 1q , OPT = qq+1 P , and ONL = 3q3q+2 P .Hene, the ompetitive ratio of r1 is kept. To omplete the proof, we must prove the following.(a) The remaining part of Jp is sheduled properly.(b) Any future job J is sheduled properly.We prove (a) �rst. Let p be the size of the remaining part of Jp. The proof is split intotwo ases.Jp is the seond job in the sequene. Sine Jp is sheduled on the fast mahine noearlier than time 1, we just need to show that, on the slow mahine, it will be ompleted nolater than time 1.The part of Jp sheduled onMq adds 2q3q+2 p to the load ofMq. Sine the size of the seondjob is at most 1, and 1q of it has already been sheduled, p � 1� 1q . Thus, after sheduling all

7.2. PREEMPTIVE SCHEDULING 75of Jp, the load on Mq is2q + 23q + 2 + 2q3q + 2 p � 2q + 23q + 2 + 2q3q + 2 �1� 1q� = 4q3q + 2 � 1; sine q � 2:Jp arrives as the third job or later. In this ase, the seond job has size less than 1q ,and so have later jobs. As in the previous ase, an invalid shedule annot our, unless Jpruns on the slow mahine after time 1. Hene, assume that Jp runs on Mq after time 1. Sinep < 1q , this implies that Jp is not sheduled on M1 before time r1. Thus, it su�es to showthat the load on Mq does not exeed r1.If the load on Mq exeeds r1, the total size of the jobs is more thanr1q + 32 r1 = 2 + 3q2q r1 = 2 + 3q2q 3q + 33q + 2 = 3q + 32q = 32 q + 1q = 32 �1 + 1q�> 1 + 1q + 1q > 1 + 1q + p;whih is impossible.Now we prove (b). Let p be the size of J and let P be the total size of previous jobs.Just before sheduling J , the load on M1 is 3q3q+2 P and the load on Mq is 2q3q+2 P . Thus,we just need to show that the part of J sheduled on Mq has size at most 13q+2 P , i.e.,23q+2 p � 13q+2 P . This is true, sine at least two jobs of size at least p have been given beforeJ , and hene p � 12 P .7.2.3 Algorithms for q > 2The only real di�erene between the algorithms for q > 2 and those for q � 2 is in the waythe �rst job is sheduled.Assume without loss of generality that the �rst job has size 1. We split this job in twopiees of sizes q�riq�1 and ri�1q�1 . Sine q > 2, both frations are positive. The �rst piee issheduled on the fast mahine from time 0, and the other is sheduled on the slow mahinefrom time q�riq�1 until time q�riq�1 + ri�1q�1 q = ri.In general, future jobs (or parts of jobs) assigned to the fast mahine will be sheduled oneafter the other without any idle time. Jobs (or parts of jobs) assigned to the slow mahinewill be sheduled at the �rst idle time. One no idle time is left, they will be sheduled afterri (it might be neessary to split some job and ontinue it after time ri).Similarly to the algorithms for q � 2, as long as the total size is at most 1 + 1q , new jobsare sheduled on the fast mahine between time q�riq�1 and ri, and then on the slow mahine,starting at time 0.At the time when the total size of jobs is exatly 1 + 1q , the fast mahine is oupied fromtime 0 until time ri, sine ri�1q�1 + ri � 1 + 1q , for q � 2. On the slow mahine, there is stillidle time, sine the total size of jobs is stritly less than ri(1 + 1q).

76 CHAPTER 7. SCHEDULING ON TWO RELATED MACHINES
Mq M1

riJ1J1
From this time on, OPT = qq+1 P . If q � 3, we will keep the ratio 3 : 2 between the loadsof the fast and the slow mahines, whih gives the desired ompetitive ratio, just as in the aseq � 2. If q � 3, we keep the ratio 2 : (1 + 1q), leading to an on-line makespan of 2q22q2+q+1 P .This gives the desired ompetitive ratio of2q22q2 + q + 1 = qq + 1 = 2q(q + 1)2q2 + q + 1 :We again need to show that the leftover of the job for whih the total size reahed 1 + 1qis assigned properly, and that future jobs are assigned properly. As soon as J1 has beensheduled, the free time slots on the two mahines before time ri are disjoint. Therefore, thereis no di�erene between a omplete job and the leftover of a job.Denote the (leftover of a) job that is being sheduled by J . As earlier, let p denote thesize of J and let P denote the total size of earlier jobs.2 � q � 3: As in the proof of (b) for q � 2, we just need p � 12 P . If J is at least thethird job in the sequene, we an use the same argument as in the ase q � 2. Otherwise, Jis the leftover of a job. Sine 1q of this job has already been sheduled, p � 1� 1q . For q � 3,1� 1q � 12(1 + 1q) � 12 P holds true.q � 3: In this ase, the loads are 2q22q2+q+1 P (fast) and q2+q2q2+q+1 P (slow). Thus, the timeinterval available for a new job on the slow mahine is of length q2�q2q2+q+1 P , and the load ofJ on the slow mahine is q2+q2q2+q+1 p. Hene, we just need p � q�1q+1 P . If J is the third job ormore, then p � 12 P whih is at most q�1q+1 P , sine q � 3. Otherwise, as in the ase 2 � q � 3,p � 1� 1q . Sine P � 1 + 1q , we getp � 1� 1q = q � 1q = q � 1q + 1 q + 1q � q � 1q + 1 P:Idle Time is NeessaryIn this setion we prove that any optimal algorithm must introdue idle time when shedulingthe �rst job. Assume for the sake of ontradition that an optimal algorithm exists that doesnot use idle time. Consider suh an algorithm and a sequene of two unit jobs.After the arrival of the �rst job, OPT = 1. Sine ri < 2, the job annot be sheduledompletely on the slow mahine, sine this would break the ratio, and splitting the job wouldintrodue idle time. Hene, the job must be sheduled ompletely on the fast mahine.

7.2. PREEMPTIVE SCHEDULING 77After the arrival of the seond job, OPT = 2qq+1 . Hene the time interval that the algorithman use on the fast mahine is 2qq+1 ri�1. If it uses all of that time interval, it an only shedulethe job between time 0 and time 1 on the slow mahine. This means that the maximal sizethat an be sheduled is 2qq + 1 ri � 1 + 1q :For 2 < q � 3, this is 3q2 + q + 23q2 + 2q ;and for q � 3, it is 2q3 + q2 + 12q3 + q2 + q :For q > 2, both are less than 1.7.2.4 General Impossibility ResultsTo prove that the algorithms of Setions 7.2.2 and 7.2.3 are optimal we use the followingsimpli�ed version of a lemma in [47℄.Consider a sequene of at least two jobs, where J`�1 and J` are the last two jobs. Theompetitive ratio of any preemptive on-line algorithm, deterministi or randomized, is at leastqPOPT`�1 + qOPT` :As in [93℄, we show that the most di�ult ases are sequenes of idential jobs.Consider two sequenes onsisting of two and three unit size jobs. The optimal makespanis 1 after the �rst job, 2qq+1 after the seond job, and 3qq+1 after the third job (if it arrives).Thus, the sequene of two jobs gives a lower bound of2q1 + q 2qq+1 = 2q2 + 2qq + 1 + 2q2 = 1 + q � 12q2 + q + 1 = r2;and the sequene of three jobs gives the lower bound3q2qq+1 + 3q2q+1 = 3(q + 1)2 + 3q = 1 + 13q + 2 = r1:

78 CHAPTER 7. SCHEDULING ON TWO RELATED MACHINES

Chapter 8ConlusionIn this thesis, we have given a survey of measures for the quality of on-line algorithms.Furthermore, we have studied �ve on-line problems with restrited input. Below is asummary and a short disussion of the results.Paging with Loality of Referene. We assume that, for eah possible window length `,an upper bound on the maximum/average number of distint pages within windows of length` is given. This enables us to use the fault rate as the quality measure. We studied LRU,FIFO, the lass of deterministi marking algorithms, and the optimal o�-line algorithm LFDand proved tight or nearly tight upper and lower bounds on the fault rates. Throughoutour experiments, the results of both models were far loser to reality than the results ofompetitive analysis. The fault rates predited in the Max-Model were loser to reality thanthose of the Average-Model, supporting our intuition that in the Max-Model, the adversary ismore restrited than in the Average-Model.Edge Coloring with a Fixed Number of Colors. We �rst studied the ase of k-olorablegraphs, i.e., the input graphs an be olored ompletely with the k olors available. Any fairdeterministi algorithm has a ompetitive ratio between 12 and 23 . Next-Fit has a ompetitiveratio mathing the lower bound, and the ompetitive ratio of First-Fit is k2k�1 . Thus, for smallk, First-Fit is signi�antly better than Next-Fit, but for large k, their ompetitive ratios anhardly be distinguished.Some of the proofs for k-olorable graphs an be generalized to the ase of general graphs,with sligthly di�erent results. Thus, we proved that any fair algorithm has a ompetitive ratioof at least 2p3�3 � 0:4641, and that this bound is mathed by the upper bound for Next-Fit.Though, intuitively, First-Fit is a more reasonable algorithm than Next-Fit, we proved thatthe ompetitive ratio of First-Fit is at most 29 (p10 � 1) � 0:4805, and hene it annot bemuh better than Next-Fit.Both First-Fit and Next-Fit perform a little worse in the general ase than in the ase ofk-olorable graphs. In neither ase did we �nd an algorithm signi�antly better than Next-Fit.In the general ase, suh an algorithm would have to be unfair or randomized, beause nofair deterministi algorithm is more than 12 -ompetitive. However, even if we onsider unfairand/or randomized algorithms, no algorithm an be more than 47 -ompetitive in the ase ofgeneral graphs. 79

80 CHAPTER 8. CONCLUSIONBin Paking in Variable-Sized Bins. When studying bin paking in variable-sized bins,we onsidered only input sequenes that an be paked ompletely by an optimal o�-linealgorithm, sine for general sequenes, no fair algorithm is ompetitive. The situation forfair algorithms is similar to the situation for fair edge oloring algorithms in the ase of k-olorable graphs, with the number n of bins orresponding to k. The ompetitive ratio of anyfair deterministi algorithm is between 12 and 23 . The lower bound is tight due to Worst-Fit.A lass of algorithms (Smallest-Bins-First) inluding First-Fit and Best-Fit have ompetitiveratio n2n�1 .The ompetitive ratio of Worst-Fit is the same as in the ase of idential bins, but theompetitive ratio of First-Fit and Best-Fit is worse than for idential bins � in the ase ofidential bins they have a ompetitive ratio of at least 58 . Thus, in the more general ase ofvariable-sized bins, the variation is muh smaller.An interesting open problem is to �nd an algorithm with a ompetitive ratio signi�antlybetter than 12 for any number of bins or to show that it does not exist. It ould also beinteresting to determine whether suh an algorithm would have to be unfair.Sheduling on Two Related Mahines. We study the ase, where the job sizes are non-dereasing. As expeted, this gives a better ompetitive ratio than in the ase of generalsequenes.Non-preemptive sheduling: We have determined the ranges of q for whih LPT is optimalamong deterministi algorithms. For the intervals, where LPT is not optimal, we have devisedoptimal deterministi algorithms. The range q � 1 is divided in 15 intervals with di�erentfuntions desribing the ompetitive ratio, and our proof is divided into ases, mostly overingonly two intervals. This does not lend muh hope to generalizing our results to the ase ofmore mahines. One ould hope that there are simpler results for randomized algorithms.Preemptive Sheduling: We give optimal algorithms, one for the interval 1 � q � 2 and onefor q � 2. The ompetititive ratio onsists of two funtions, one for the interval 1 � q � 3 andone for q � 3. The algorithms are deterministi, and we prove that no randomized algorithman have a better ompetitive ratio.We prove that for q > 2, any optimal on-line algorithm must introdue idle time whensheduling the �rst job. This is the �rst on-line sheduling problem, where idle time has beenproven to be required. Even though we do not know how to use idle time for other variants ofthe sheduling problem, the use of idle time might be a step towards optimal algorithms forthose variants, where the exat ompetitive ratio has not yet been determined.

Bibliography[1℄ D. Ahlioptas, M. Chrobak, and J. Noga. Competitive Analysis of Randomized PagingAlgorithms. Theoretial Computer Siene, 234:203�218, 2000. Also in ESA 96, pages419�430.[2℄ S. Albers. On the In�uene of Lookahead in Competitive Paging Algorithms. Algorith-mia, 18:283�305, 1997. Also in ESA 93, pages 1�12.[3℄ S. Albers. Better Bounds for Online Sheduling. SIAM Journal on Computing, 29:459�473, 1999.[4℄ S. Albers, L. M. Favrholdt, and O. Giel. On Paging with Loality of Referene. In 34thAnnual ACM Symposium on the Theory of Computing (to appear), 2002.[5℄ M. Andrews, B. Awerbuh, A. Fernández, F. T. Leighton, Z. Liu, and J. M. Kleinberg.Universal-Stability Results and Performane Bounds for Greedy Contention-ResolutionProtools. Journal of the ACM, 48(1):39�69, 2001.[6℄ N. Asheuer, S. O. Krumke, and J. Rambau. Online Dial-a-Ride Problems: Minimiz-ing the Completion Time. In 17th International Symposium on Theoretial Aspets ofComputer Siene, volume 1770 of Leture Notes in Computer Siene, pages 639�650,2000.[7℄ J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-Line Load Balaning withAppliations to Mahine Sheduling and Virtual Ciruit routing. Journal of the ACM,44(3):486�504, 1997.[8℄ Y. Azar, J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen. Fairversus Unrestrited Bin Paking. Algorithmia (to appear).[9℄ Y. Azar, L. Epstein, and R. van Stee. Resoure Augmentation in Load Balaning.In 7th Sandinavian Workshop on Algorithm Theory, volume 1851 of Leture Notes inComputer Siene, pages 189�199, 2000.[10℄ E. Bah, J. Boyar, L. Epstein, L. M. Favrholdt, T. Jiang, K. S. Larsen, G.-H. Lin, andR. van Stee. Tight Bounds on the Competitive Ratio on Aommodating Sequenes forthe Seat Reservation Problem. Journal of Sheduling (to appear).[11℄ A. Bar-Noy, R. Motwani, and J. Naor. The Greedy Algorithm is Optimal for On-LineEdge Coloring. Information Proessing Letters, 44:251�253, 1992.81

82 BIBLIOGRAPHY[12℄ Y. Bartal, A. Fiat, H. Karlo�, and R. Vohra. New Algorithms for an Anient ShedulingProblem. Journal of Computer and System Sienes, 51(3):359�366, 1995.[13℄ L. A. Belady. A Study of Replaement Algorithms for Virtual Storage Computers. IBMSystems Journal, 5:78�101, 1966.[14℄ S. Ben-David and A. Borodin. A New Measure for the Study of On-Line Algorithms.Algorithmia, 11(1):73�91, 1994.[15℄ S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Wigderson. On the Power ofRandomization in On-Line Algorithms. Algorithmia, 11:2�14, 1994.[16℄ P. Berman and C. Coulston. Speed is More Powerful than Clairvoyane. Nordi Journalof Computing, 6(2):181, 1999.[17℄ M. Bern and D. Eppstein. Approximation Algorithms for Geometri Problems. InDorit S. Hohbaum, editor, Approximation Algorithms for NP-Hard Problems, hapter 8,pages 296�345. 1997.[18℄ A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. CambridgeUniversity Press, 1998.[19℄ A. Borodin, S. Irani, P. Raghavan, and B. Shieber. Competitive Paging with Loalityof Referene. Journal of Computer and System Sienes, 50(2):244�258, 1995. Also inSTOC 91, pages 249�259.[20℄ A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson. AdversarialQueueing Theory. Journal of the ACM, 48(1):13�38, 2001. Preliminary version in STOC96, pages 376�385.[21℄ A. Borodin, N. Linial, and M. E. Saks. An Optimal On-Line Algorithm for MetrialTask Systems. Journal of the ACM, 39:745�763, 92. Also in STOC 87, pages 373�382.[22℄ J. Boyar, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen. The Competitive Ratiofor On-Line Dual Bin Paking with Restrited Input Sequenes. Nordi Journal ofComputing, 8(4):463�472, 2001.[23℄ J. Boyar, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen. Extending the Aommodat-ing Funtion. In Eighth Annual International Computing and Combinatoris Conferene(to appear), 2002.[24℄ J. Boyar and K. S. Larsen. The Seat Reservation Problem. Algorithmia, 25:403�417,1999.[25℄ J. Boyar, K. S. Larsen, and M. N. Nielsen. The Aommodating Funtion � a General-ization of the Competitive Ratio. SIAM Journal of Computation, 31(1):233�258, 2001.Also in WADS 99, pages 74�79.[26℄ M. Brehop, E. Torng, and P. Uthaisombut. Applying Extra Resoure Analysis to LoadBalaning. Journal of Sheduling, 3:273�288, 2000.[27℄ J. L. Bruno and P. J. Downey. Probabilisti Bounds for Dual Bin Paking. Ata Infor-matia, 22:333�345, 1985.

BIBLIOGRAPHY 83[28℄ B. Chandra. Does Randomization Help in On-Line Bin Paking. Information ProessingLetters, 43:15�19, 1992.[29℄ C. Chekuri and S. Khanna. A PTAS for the Multiple Knapsak Problem. In 11th AnnualACM-SIAM Symposium on Disrete Algorithms, pages 213�222, 2000.[30℄ B. Chen, A. van Vliet, and G. J. Woeginger. An Optimal Algorithm for PreemptiveOn-Line Sheduling. Operations Researh Letters, 18(3):127�131, 1995.[31℄ Y. Cho and S. Sahni. Bounds for List Shedules on Uniform Proessors. SIAM Journalon Computing, 9(1):91�103, 1980.[32℄ A. Chou, J. R. Cooperstok, R. El-Yaniv, M. Klugerman, and F. T. Leighton. TheStatistial Adversary Allows Optimal Money-Making Trading Strategies. In Sixth Sym-posium on Disrete Algorithms, pages 467�476, 1995.[33℄ M. Chrobak and J. Noga. LRU is Better than FIFO. Algorithmia, 23(2):180�185, 1999.[34℄ J. Csirik. An On-Line Algorithm for Variable-Sized Bin Paking. Ata Informatia,26:697�709, 1989.[35℄ J. Csirik and G. J. Woeginger. Resoure Augmentation for Online Bounded Spae BinPaking. In 27th International Colloquium on Automata, Languages and Programming(to appear), 2000.[36℄ H. M. Deitel. Operating Systems. Addison-Wesley, 1990.[37℄ P. J. Denning. The Working Set Model of Program Behavior. Communiations of theACM, 11:323�333, 1968.[38℄ P. J. Denning. Working Sets Past and Present. IEEE Transations on Software Engi-neering, 6:64�84, 1980.[39℄ G. Dobson. Sheduling Independent Tasks on Uniform Proessors. SIAM Journal onComputing, 13(4):705�716, 1984.[40℄ J. Edmonds. Sheduling in the Dark. In 31st Annual ACM Symposium on the Theoryof Computing, pages 179�188, 1999.[41℄ L. Epstein. Optimal Preemptive On-Line Sheduling on Uniform Proessors with Non-Dereasing Speed Ratios. Operations Researh Letters, 29(2):93�98, 2001. Also in STACS2001, pages 230�237.[42℄ L. Epstein and L. M. Favrholdt. Optimal Preemptive Semi-Online Sheduling to Mini-mize Makespan on Two Related Mahines. Operations Researh Letters (to appear).[43℄ L. Epstein and L. M. Favrholdt. On-Line Maximizing the Number of Items Pakedin Variable-Sized Bins. In Eighth Annual International Computing and CombinatorisConferene (to appear), 2002.[44℄ L. Epstein and L. M. Favrholdt. Optimal Non-Preemptive Semi-Online Sheduling toMinimize Makespan on Two Related Mahines. In 27th International Symposium onMathematial Foundations of Computer Siene (to appear), 2002.

84 BIBLIOGRAPHY[45℄ L. Epstein, J. Noga, S. S. Seiden, J. Sgall, and G. J. Woeginger. Randomized OnlineSheduling on Two Uniform Mahines. Journal of Sheduling, 4(2):71�92, 2001.[46℄ L. Epstein, S. S. Seiden, and R. van Stee. New Bounds for Variable-Sized and Re-soure Augmented Online Bin Paking. In 29th International Colloquium on Automata,Languages and Programming (to appear), 2002.[47℄ L. Epstein and J. Sgall. A Lower Bound for On-Line Sheduling on Uniformly RelatedMahines. Operations Researh Letters, 26(1):17�22, 2000.[48℄ U. Faigle, W. Kern, and G. Turán. On the Performane of On-Line Algorithms forPartition Problems. Ata Cybernetia, 9:107�119, 1989/90.[49℄ L. M. Favrholdt and M. N. Nielsen. On-Line Edge-Coloring with a Fixed Numberof Colors. In Foundations of Software Tehnology and Theoretial Computer Siene,volume 1974 of Leture Notes in Computer Siene, pages 106�116, 2000.[50℄ A. Fiat and A. R. Karlin. Randomized and Multipointer Paging with Loality of Ref-erene. In 27th Annual ACM Symposium on the Theory of Computing, pages 626�634,1995.[51℄ A. Fiat, M. Karp, M. Luby, A. MGeoh, D. D. Sleator, and N. E. Young. CompetitivePaging Algorithms. Journal of Algorithms, 12(4):685�699, 1991.[52℄ A. Fiat and M. Mendel. Truly Online Paging with Loality of Referene. In 38th AnnualSymposium on Foundations of Computer Siene, pages 326�335, 1997.[53℄ A. Fiat and G. J. Woeginger. Competitive Odds and Ends. In A. Fiat and G. J.Woeginger, editors, Online Algorithms: The State of the Art, volume 1442 of LetureNotes in Computer Siene. Springer-Verlag, 1998.[54℄ A. Fiat and G. J. Woeginger. Online Algorithms: the State of the Art, volume 1442 ofLeture Notes in Computer Siene. 1998.[55℄ R. Fleisher and M. Wahl. On-Line Sheduling Revisited. Journal of Sheduling,3(6):343�353, 2000.[56℄ D. K. Friesen. Tighter Bounds for LPT Sheduling on Uniform Proessors. SIAMJournal on Computing, 16(3):554�560, 1987.[57℄ M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. Yao. Resoure ConstrainedSheduling as Generalized Bin Paking. Journal of Combinatorial Theory � Series A,21:257�298, 1976.[58℄ T. Gonzalez, O. H. Ibarra, and S. Sahni. Bounds for LPT Shedules on Uniform Pro-essors. SIAM Journal on Computing, 6(1):155�166, 1977.[59℄ T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating Adversaries forRequest-Answer Games. In 11th Annual ACM-SIAM Symposium on Disrete Algo-rithms, pages 564�565, 2000.[60℄ R. L. Graham. Bounds for Certain Multiproessing Anomalies. Bell Systems TehnialJournal, 45:1563�1581, 1966.

BIBLIOGRAPHY 85[61℄ R. L. Graham. Bounds on Multiproessing Timing Anomalies. SIAM Journal on AppliedMathematis, 17(2), 1969.[62℄ D. Hauptmeier, S. O. Krumke, and J. Rambau. The Online Dial-a-Ride Problem underReasonable Load. Theoretial Computer Siene (to appear). Prelimiary version in CIAC2000.[63℄ Homepage of New Mexio State University TraeBase (Online). Available:http://traebase.nmsu.edu/traebase.html.[64℄ E. C. Horvath, S. Lam, and R. Sethi. A Level Algorithm for Preemptive Sheduling.Journal of the Assoiation for Computing Mahinery, 24(1):32�43, 1977.[65℄ S. Irani. Competitive Analysis of Paging. In A. Fiat and G. J. Woeginger, editors,Online Algorithms: The State of the Art, volume 1442 of Leture Notes in ComputerSiene. Springer-Verlag, 1998.[66℄ S. Irani and A. R. Karlin. Online Computation. In Dorit S. Hohbaum, editor, Approx-imation Algorithms for NP-Hard Problems, hapter 13, pages 521�564. 1997.[67℄ S. Irani, A. R. Karlin, and S. Phillips. Strongly Competitive Algorithms for Paging withLoality of Referene. SIAM Journal on Computing, 25(3):477�497, 1996. Also in FOCS92, pages 228�236.[68℄ D. S. Johnson. Near-Optimal Bin Paking Algorithms. PhD thesis, MIT, Cambridge,MA, 1973.[69℄ D. S. Johnson. Fast Algorithms for Bin Paking. Journal of Computer and SystemSienes, 8:272�314, 1974.[70℄ D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-CasePerformane Bounds for Simple One-Dimensional Paking Algorithms. SIAM Journalon Computing, 3:299�325, 1974.[71℄ B. Kalyanasundaram and K. Pruhs. Speed is as Powerful as Clairvoyane. In 36thAnnual Symposium on Foundations of Computer Siene, pages 214�221, 1995.[72℄ B. Kalyanasundaram and K. Pruhs. Maximizing Job Completions Online. In EuropeanSymposium on Algorithms, pages 235�246, 1998.[73℄ A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive SnoopyCahing. Algorithmia, 3(1):79�119, 1988.[74℄ A. R. Karlin, S. J. Phillips, and P. Raghavan. Markov Paging. In 33rd Annual Symposiumon Foundations of Computer Siene, pages 208�217, 1992.[75℄ C. Kenyon. Best-Fit Bin-Paking with Random Order. In 7th Annual ACM-SIAMSymposium on Disrete Algorithms, pages 359�364, 1996.[76℄ E. Koutsoupias. Weak Adversaries for the k-Server Problem. In 40th Annual Symposiumon Foundations of Computer Siene, pages 444�449, 1999.

86 BIBLIOGRAPHY[77℄ E. Koutsoupias and C. H. Papadimitriou. Beyond Competitive Analysis. In 35th AnnualSymposium on Foundations of Computer Siene, pages 394�400, 1994.[78℄ E. Koutsoupias and C. H. Papadimitriou. On the k-Server Conjeture. Journal of theACM, 42(5):971�983, 1995.[79℄ T. W. Lam and K. K. To. Trade-O�s between Speed and Proessor in Hard-DeadlineSheduling. In 10th Annual ACM-SIAM Symposium on Disrete Algorithms, pages 623�632, 1999.[80℄ C. Lee and D. Lee. A Simple On-Line Bin Paking Algorithm. Journal of the ACM,32:562�572, 1985.[81℄ J. Y. Leung. Fast Algorithms for Paking Problems. PhD thesis, Pennsylvania StateUniversity, 1977.[82℄ F. M. Liang. A Lower Bound for On-Line Bin Paking. Information Proessing Letters,10(2), 1980.[83℄ M. S. Manasse, L. A. MGeoh, and D. D. Sleator. Competitive Algorithms for On-Line Problems. In 20th Annual ACM Symposium on the Theory of Computing, pages322�333, 1988.[84℄ S. Martello and P. Toth. Knapsak Problems. John Wiley and Sons, Chihester, 1990.[85℄ L. A. MGeoh and D. D. Sleator. A Strongly Competitive Randomized Paging Algo-rithm. Algorithmia, 6(6):816�825, 1991.[86℄ P. Mireault, J. B. Orlin, and R. V. Vohra. A Parametri Worst Case Analysis of theLPT Heuristi for Two Uniform Mahines. Operations Researh, 45:116�125, 1997.[87℄ R. Motwani, S. Phillips, and E. Torng. Non-Clairvoyant Sheduling. Theoretial Com-puter Siene, 130:17�47, 1994.[88℄ C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal Time-Critial Sheduling ViaResoure Augmentation. Algorithmia, 32:163�200, 2002. Also in STOC 97.[89℄ P. Raghavan. A Statistial Adversary for On-Line Algorithms. In On-line algorithms:Proeedings of a DIMACS workshop, volume 7 of DIMACS Series in Disrete Mathe-matis and Theoretial Computer Siene, pages 79�83, 1992.[90℄ M. B. Rihey. Improved Bounds for Harmoni-Based Bin Paking Algorithms. DisreteApplied Mathematis, 34:203�227, 1991.[91℄ S. S. Seiden. On the Online Bin Paking Problem. In 28th International Colloquiumon Automata, Languages and Programming, volume 2076 of Leture Notes in ComputerSiene, pages 237�248, 2001.[92℄ S. S. Seiden. Preemptive Multiproessor Sheduling with Rejetion. Theoretial Com-puter Siene, 262(1�2):437�458, 2001.[93℄ S. S. Seiden, J. Sgall, and G. J. Woeginger. Semi-Online Sheduling with DereasingJob Sizes. Operations Researh Letters, 27(5):215�221, 2000.

BIBLIOGRAPHY 87[94℄ J. Sgall. A Lower Bound for Randomized On-Line Multiproessor Sheduling. Informa-tion Proessing Letters, 63(1):51�55, 1997.[95℄ D. D. Sleator and R. E. Tarjan. Amortized E�ieny of List Update and Paging Rules.Communiations of the ACM, 28(2):202�208, 1985.[96℄ A. S. Tanenbaum. Modern Operating System. Prentie Hall, 1992.[97℄ E. Torng. A Uni�ed Analysis of Paging and Cahing. Algorithmia, 20:175�200, 1998.[98℄ A. van Vliet. An Improved Lower Bound for On-Line Bin Paking Algorithms. Infor-mation Proessing Letters, 43(5):277�284, 1992.[99℄ J. Wen and D. Du. Preemptive On-Line Sheduling for Two Uniform Proessors. Oper-ations Researh Letters, 23(3�5):113�116, 1998.[100℄ D. B. West. Introdution to Graph Theory, page 209. Prentie Hall, 1996.[101℄ A. C. Yao. An Improved Lower Bound for On-Line Bin Paking Algorithms. Journal ofthe ACM, 27:277�284, 1980.[102℄ A. C. Yao. Towards a Uni�ed Measure of Complexity. In 12th Annual ACM Symposiumon the Theory of Computing, pages 222�227, 1980.[103℄ N. E. Young. The k-Server Dual and Loose Competitiveness for Paging. Algorithmia,11(6):525�541, 1994.[104℄ N. E. Young. On-Line File Cahing. In Ninth Annual ACM-SIAM Symposium onDisrete Algorithms, pages 82�86, 1998.[105℄ N. E. Young. On-Line Paging against Adversarially Biased Random Inputs. Journal ofAlgorithms, 37:218�235, 2000.

88 BIBLIOGRAPHY

Appendix AResuméDenne PhD-afhandling omhandler on-line algoritmer. En on-line algoritme er en algoritme,der får input i små bidder og må reagere på hver bid uden at vide, hvad der følger efter.Et kendt eksempel er paging-problemet, hvor man arbejder med to hukommelses-niveauer;der er en stor, langsom hukommelse og en lille, hurtig hukommelse, ahe'en. Input til prob-lemet er anmodninger om sider fra den langsomme hukommelse. Hvis den ønskede side ikkeallerede er i ahe, skal den hentes ind fra den langsomme hukommelse. Samtidig skal enanden side smides ud af ahe'en for at gøre plads til den nye. Det tager tid at hente siderfra den langsomme hukommelse, så det ønsker man at gøre så sjældent som muligt. Derforgælder det om at vælge den side, der skal smides ud, med omhu.Men hvordan måler man, hvilken strategi der er bedst? Et standardmål for kvaliteten afon-line algoritmer er ompetitive ratio. Kort fortalt er ompetitive ratio worst ase forholdetmellem on-line algoritmens omkostning og omkostningen af en optimal løsning � d.v.s. denløsning man ville vælge, hvis man kendte hele input-sekvensen fra starten og havde al den tid,man havde brug for, til at �nde frem til den allerbedste løsning.Fordelen og svagheden ved ompetitive ratio er, at det er et meget generelt mål. Det eren fordel, at det kan anvendes på enhver on-line algoritme, man kan komme i tanker om.Til gengæld giver ompetitive ratio tit ikke så meget information som mere speialiseredemål. F.eks. giver ompetitive ratio meget lidt information om forskellige paging-algoritmerskvalitet. Enhver deterministisk paging-algoritme har en ompetitive ratio, der er mindst ligeså stor som størrelsen k af ahe'en. Det er et ekstremt pessimistisk resultat sammenlignetmed empiriske resultater. Samtidig er der adskillige algoritmer, som alle har ompetitive ratiok, selvom man har observeret, at der i praksis er meget stor forskel på, hvor godt de fungerer.Dette har motiveret mange forskere til at �nde mere speialierede kvalitetsmål. Afhan-dlingen giver en oversigt over resultaterne af disse bestræbelser. Derudover gengives resultaterfra fem artikler, som jeg har været medforfatter til. Vores tilgang har været at opnå mere re-alistiske resultater ved at udnytte viden om input. Tit er det nemlig ikke realistisk at antage,at intet vides om input på forhånd.Den første artikel handler om paging-problemet. Vi giver en meget simpel model for detfænomen, at input-sekvenser til paging-problemet ofte udviser en bestemt struktur kaldet�loality of referene�. Denne model giver os mulighed for at bruge fault rate (hvor tit er vinødt til at hente en side fra den langsomme hukommelse) som kvalitetsmål. Dette er en meredirekte måde at måle algoritmerne på, og vi opnår resultater, som er langt mere realistiskeend dem man opnår, når man analyserer ompetitive ratio.89

90 APPENDIX A. RESUMÉDen næste artikel handler om kant-farvning af grafer. Vi går ud fra, at der kun er etbegrænset antal farver til rådighed. Målet er at farve så mange kanter i grafen som muligt,under forudsætning af, at to nabokanter aldrig får den samme farve. Kanterne dukker open efter en, og hver kant skal farves � eller afvises � inden den næste kant afsløres. Viundersøger det generelle tilfælde såvel som det tilfælde, hvor grafen ville kunne farves med detantal farver, man har til rådighed, hvis man kendte hele grafen fra starten.I den tredje artikel undersøger vi en variant af bin paking. Et begrænset antal kasser ergivet, og input er en sekvens af elementer, som skal pakkes i kasserne. Såvel kasserne somelementerne har en en-dimensionel størrelse. Elementerne ankommer et efter et, og hvertelement skal pakkes i en kasse � eller afvises � uden nogen viden om elementerne, som evt.kommer efter. Det gælder om at pakke så mange elementer som muligt uden at overfyldenogen kasse. Vi ser på det tilfælde, hvor kasserne ikke nødvendigvis har samme størrelse. Vibetragter udelukkende sekvenser af elementer, som kan pakkes fuldstændigt i de givne kasser,d.v.s. der er plads til dem alle, hvis de bliver pakket rigtigt. I dette speialtilfælde �ndes deralgoritmer, som altid kan pakke en konstant brøkdel af elementerne. Det er tidligere blevetbevist, at ingen fair algoritme � d.v.s. en algoritme, som aldrig afviser et element, hvis denkan få plads til det i en kasse � kan garantere at pakke nogen bestemt brøkdel af elementerne,medmindre man indfører en begrænsning på mængden af input-sekvenser.De sidste to artikler handler om planlægningsproblemer. Man har to maskiner eller pro-essorer og et antal jobs, som skal afvikles på de to maskiner, som evt. ikke er lige hurtige.Hvert job har en given størrelse, som svarer til den tid, det tager at afvikle det på en maskinemed hastighed 1. Målet er at fordele jobs'ne på de to maskiner, så man tidligst muligt bliverfærdig med samtlige jobs. Jobs'ne ankommer et efter et, og for hvert job skal man beslutte,hvilken af de to maskiner, det skal afvikles på, uden at kende fremtidige jobs. Vi antager, atjobs'nes længde er ikke-stigende. Man kan enten antage, at et job kun må køre på den enemaskine, eller at man må splitte jobbet op i mindre dele, som ikke behøver at køre på densamme maskine. I begge tilfælde konstruerer vi algoritmer med optimal ompetitive ratio forenhver kombination af hastigheder.

Appendix BPapersPaging with Loality of RefereneOn-Line Edge Coloring with a Fixed Number of ColorsOn-Line Maximizing the Number of Items Paked in Variable-Sized BinsOptimal Non-Preemptive Semi-Online Sheduling on Two Related MahinesOptimal Preemptive Semi-Online Sheduling on Two Related Mahines

91

92 APPENDIX B. PAPERSB.1 Paging with Loality of Referene

B.1. PAGING WITH LOCALITY OF REFERENCE 93

94 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 95

96 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 97

98 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 99

100 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 101

102 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 103

104 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 105

106 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 107

108 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 109

110 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 111

112 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 113

114 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 115

116 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 117

118 APPENDIX B. PAPERS

B.2. EDGE COLORING WITH A FIXED NUMBER OF COLORS 119
B.2 Edge Coloring with a Fixed Number of Colors

120 APPENDIX B. PAPERS

B.2. EDGE COLORING WITH A FIXED NUMBER OF COLORS 121

122 APPENDIX B. PAPERS

B.2. EDGE COLORING WITH A FIXED NUMBER OF COLORS 123

124 APPENDIX B. PAPERS

B.2. EDGE COLORING WITH A FIXED NUMBER OF COLORS 125

126 APPENDIX B. PAPERS

B.2. EDGE COLORING WITH A FIXED NUMBER OF COLORS 127

128 APPENDIX B. PAPERS

B.2. EDGE COLORING WITH A FIXED NUMBER OF COLORS 129

130 APPENDIX B. PAPERS

B.2. EDGE COLORING WITH A FIXED NUMBER OF COLORS 131

132 APPENDIX B. PAPERS

B.2. EDGE COLORING WITH A FIXED NUMBER OF COLORS 133

134 APPENDIX B. PAPERS

B.3. ON-LINEMAXIMIZINGTHE NUMBEROF ITEMS PACKED IN VARIABLE-SIZED BINS135
B.3 On-Line Maximizing the Number of Items Paked in Variable-Sized Bins

136 APPENDIX B. PAPERS

B.3. ON-LINEMAXIMIZINGTHE NUMBEROF ITEMS PACKED IN VARIABLE-SIZED BINS137

138 APPENDIX B. PAPERS

B.3. ON-LINEMAXIMIZINGTHE NUMBEROF ITEMS PACKED IN VARIABLE-SIZED BINS139

140 APPENDIX B. PAPERS

B.3. ON-LINEMAXIMIZINGTHE NUMBEROF ITEMS PACKED IN VARIABLE-SIZED BINS141

142 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES143
B.4 Optimal Non-Preemptive Semi-Online Sheduling on TwoRelated Mahines

144 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES145

146 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES147

148 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES149

150 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES151

152 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES153

154 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES155

156 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES157

158 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES159

160 APPENDIX B. PAPERS
B.5 Optimal Preemptive Semi-Online Sheduling on Two Re-lated Mahines

B.5. OPTIMAL PREEMPTIVE SEMI-ONLINE SCHEDULINGON TWORELATEDMACHINES161

162 APPENDIX B. PAPERS

B.5. OPTIMAL PREEMPTIVE SEMI-ONLINE SCHEDULINGON TWORELATEDMACHINES163

164 APPENDIX B. PAPERS

B.5. OPTIMAL PREEMPTIVE SEMI-ONLINE SCHEDULINGON TWORELATEDMACHINES165

166 APPENDIX B. PAPERS

B.5. OPTIMAL PREEMPTIVE SEMI-ONLINE SCHEDULINGON TWORELATEDMACHINES167

168 APPENDIX B. PAPERS

B.5. OPTIMAL PREEMPTIVE SEMI-ONLINE SCHEDULINGON TWORELATEDMACHINES169

170 APPENDIX B. PAPERS

