
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

October 13, 2013
Marco Chiarandini

DM811 - Heuristics for Combinatorial Optimization

Final Assignment, Autumn 2013

Submission deadline: Thursday, October 24, 2013 at 12:00
(strict, no extension is possible)

Make sure you have read the whole document before you start to work.

1 Project Requirements

The aim of the final assignment is to revise and develop further the heuristic algorithms for
solving the graph coloring problem that have been the object of the previous assignments.
We refer to Assignment 0 for a definition of the problem.
The instances that will be used for the final comparison of results are instances of 4000 vertices
and edge density of 0.1; 0.5; 0.9. These instances are huge and a binary format is needed to
store them. You will need to update your framework to read this format. Read details on
this in the Appendix B of this document.
A few test instances are made available here:

http://www.imada.sdu.dk/~marco/DM811/Color-4/instances/

The main challenge of this final assignment is the size of the instances. Make sure that a
solution is returned in each run before the time limit is reached. The time limit is set to 120
seconds. Your program must be optimized and eventually redesigned to handled these huge
instances.

All the following points (that have been already addressed in the previous assignments) must
be accomplished to pass the exam:

1. Design and implement two or more construction heuristics and show that they perform
better than the solution obtained by a greedy algorithm that uses a random permutation
of vertices.

2. Design and implement one or more stochastic local search or metaheuristic algorithms.

3. Carry out an experimental analysis where you compare and configure the algorithms
from the previous two points. Describe the analysis in the report.

4. Describe the best construction heuristic and the best stochastic local search or meta-
heuristic algorithm in the report.

1

http://www.imada.sdu.dk/~marco/DM811/Color-4/instances/

DM811 – Autumn 2013 Assignment Sheet

Instance Construction heuristic Metaheuristic
Colors Seconds # Colors

G-4000-0.1–00.col.b
G-4000-0.1–01.col.b
G-4000-0.5–00.col.b
G-4000-0.5–01.col.b
G-4000-0.9–00.col.b
G-4000-0.9–01.col.b

Table 1: The table shows the median results from 5 runs per instance of the best construction
heuristics and the best metaheuristic designed. For the metaheuristic a time limit of 120
seconds is assumed.

5. Report the results of the best algorithms on the test instances made available in a table
like Table 1.

6. On the basis of the experimental analysis decide which algorithm has to be executed
when submitting your program. The programs will be run on a 64-bit machine with
Ubuntu Linux, equivalent to those in the terminal room. A time limit of 120 seconds
will be imposed.

2 Remarks

Remark 1 This final assignment is carried out individually and it is not allowed to collab-
orate.

Remark 2 The assignment is a revision and development of the previous 3 assignments.
Therefore, it contains algorithm design, implementation, experimentation and written
report.

Differently from the previous assignments, the submission will be graded with the 7-
steps scale and external censorship. The evaluation of the project is based on the report
and the results that will appear on the web page.

Hence, the submission consists of:

• an executable program that implements the best algorithm developed and returns
valid solutions within the time limit;

• the source code of the executable program;

• a written report that may be written in Danish or in English.

It is expected that the feedback provided in the previous assignment is used in the
revision of the work.

Remark 3 Corrections or updates to the project description, if any, will be published on
the course web page and will be announced by email to the addresses available in the
BlackBoard system. In any case, it remains students’ responsibility to check for new
announcements.

2

DM811 – Autumn 2013 Assignment Sheet

Remark 4 See Appendix A for details on how to organize the electronic archive.

In addition to the electronic submission you must deposit two printed copies of your
report at the teacher’s mailbox in the secretary office. Remember to collect and keep a
receipt of the submission.

Reports and codes handed in after the deadline will generally not be accepted. System
failures, illness, etc. will not automatically give extra time.

Remark 5 Write your name and your user ID as it appeared during the graph coloring
assignments in the front page of the report.

Remark 6 The evaluation of the submissions will be communicated to the exam office not
later than three weeks after the deadline has expired.

Remark 7 The report must contain enough details to guarantee the reproducibility of the
algorithm and experiments from the report alone (i.e., without looking at the source
code). It is important to give account of the computational cost of the operations in
the construction heuristics and in the local search.

Remark 8 The total length of the report should not be less than 5 pages and not be more
than 12 pages, appendix included (lengths apply to font size of 11pt and 3cm margins).
Although these bounds are not strict, their violation is highly discouraged. In the
description of the algorithms, it is allowed (and encouraged) to use short algorithmic
sketches in form of pseudo-code but not to include source codes.

Remark 9 This is a list of factors that will be taken into account in the evaluation:

• quality of the final results;

• level of detail of the study;

• complexity and originality of the approaches chosen;

• organization of experiments that guarantees reproducibility of conclusions;

• clarity of the report;

• effective use of graphics in the presentation of experimental results.

Remark 10 In the project requirements of Sec. 1 the words “one or more algorithms” do
NOT imply “the more algorithms, the better the final grade”. A few, well thought
algorithms are better in this sense than many naive ones!

3

DM811 – Autumn 2013 Assignment Sheet

Appendix A Submission instructions

Appendix A is copied from Assignment 0, nothing has changed. The report must be placed
in doc/.
Start early to test your submission. You can submit as many times as you wish within the
deadline. Every new valid submission overwrites the previous submission.
Your archive must decompress as follows:

• README

• bin/ where your executable called gcp must be

• src/ the source files that implement the algorithm

• Makefile to compile the sources in src and puts the executables in bin.

Your program will NOT be recompiled; the executable file gcp in bin/ will be used for
the tests. Makefile and src/ are required just for debugging purposes in special cases.
Additionally, you are recommended to have the following content, which will however not be
used.

• data/ containing the test instances.

• res/ containing your results, the performance measurements

• r/ statistics, data analysis, visualization

• doc/ a description of the algorithms.

• log/ other log files produced by the run of the algorithm

The programs will run on a machine with ubuntu 12.04, hence you can log in on any machine
of the terminal room, compile your program there, and make sure that it executes.
If your program is written in C or C++ you should compile with the -lm and -static flags.
If your program is written in Java then your bin directory must contain a jar file that you
compiled on an IMADA machine and a shell executable file called gcp containing:

#!/bin/bash

HERE=‘dirname $0‘

java -jar $HERE/gcp.jar $@

See in Sec. B.2 how this file must be changed.
Python users can do the same but with python commands instead.

The executable must run with the following arguments:

• -i filename the instance file

• -c filename the file with the solution in the format described below

• -s # a random seed

• -t # an integer indicating the time limit in seconds.

4

DM811 – Autumn 2013 Assignment Sheet

for example:

gcp -i ../data/marco10.col -c marco10.sol -s 10 -t 60

All output must go in the standard output and in the solution file. Do not create other files.
The files containing the solution must be named with the name of the instance (without .col
extension) and with extension .sol. The files must be in ASCII format and consist of a single
column of numbers representing the colors to each vertex. Each number indicates the color
for the vertex corresponding to the line number. Both colors and vertices start at 1. For
example:

$ cat marco10.sol

2

3

4

3

2

2

1

...

indicates that the vertex 1 receives color 2, vertex 2 receives color 3, etc.
Note that the upload and analysis system is still under test and therefore it may have to be
fine tuned, hence be patient and contact the teacher if something is not working as it should.

Appendix B The new instance format

To read the new instances you need to update the framework made available at Assignment
0.

B.1 In C++

Follow these steps:

• Download the two files: bin2asc.h and bin2asc.cpp and put them in src with the
other sources.

• In Makefile, add bin2asc.o among the object files

• In Problem.h, include bin2asc.h.

• In Problem.cpp, change the code that handles the case BIN_FORMAT. Precisely, you need
to substitute this piece of code:

cout << "...read input in GZIP format..." << endl;

exit(1);

break;

with this:

5

bin2asc.h
bin2asc.cpp

DM811 – Autumn 2013 Assignment Sheet

cout << "...read input in BIN format..." << endl;

DIMACS_bin_format in(id);

num_of_vertices = in.Nr_vert;

adjacency_matrix = new unsigned char *[num_of_vertices];

Vertex v, w;

for (v = 0; v < num_of_vertices; v++) {

adjacency_matrix[v] = new unsigned char[num_of_vertices];

for (w = 0; w < num_of_vertices; w++)

adjacency_matrix[v][w] = 0;

}

for (w = 0; w < in.Nr_vert; w++) {

for (v = 0; v <= w; v++) {

if (in.get_edge(w, v)) {

//printf("e %d %d\n",w+1,v+1);

if (adjacency_matrix[v][w] == 0) {

num_of_edges++;

}

adjacency_matrix[v][w] = adjacency_matrix[w][v] = 1;

}

}

}

assert(num_of_edges == in.Nr_edges);

break;

In case, you can also downloaded the updated framework: FrameworkC++.tgz.

B.2 In Java

A possibility is to translate the C++ files in Java. Alternatively you can use them as library
via SWIG. This has already been prepared for you. You need to follow these steps:

• Download the archive swig.tgz uncompress and put the directory swig in the root
of the FrameworkJava that was distributed with Assignment 0. Enter in the swig

directory and compile the library via make. You need to compile the package on one of
the IMADA machines. It has been tested on Linux and MacOS.

If something goes wrong you can try to download the precompiled package for different
architectures:

– swig.x86_64.tgz

– swig.x86.tgz

– swig.darwin.x86_64.tgz

You will need to include and link the first in the list for the execution on the dedicated
machine. If you compile the library on a 32-bit Ubuntu Linux machine, the library will
not work on a 64-bit architecture.

• In the Makefile inside src, add ../swig/bin2asc.jar to the class path

• In manifest inside meta/ add ../swig/bin2asc.jar to Class-Path, thus the content
of the file becomes:

6

FrameworkC++.tgz
swig.tgz
swig.x86_64.tgz
swig.x86.tgz
swig.darwin.x86_64.tgz

DM811 – Autumn 2013 Assignment Sheet

Main-Class: GCP

Class-Path: . ../lib/commons-cli-1.2.jar ../swig/bin2asc.jar

• In the executable bin/gcp add -Djava.library.path="${HERE}/../swig", thus its
content becomes:

#!/bin/bash

HERE=‘dirname $0‘

java -Djava.library.path="${HERE}/../swig" -jar $HERE/gcp.jar $@

• You should now be ready to use the library from your Problem.java. To do this you
must add inside the class Problem:

static {

try {

System.loadLibrary("bin2asc");

} catch (UnsatisfiedLinkError e) {

System.err.println("Native code library failed to load. See the chapter on Dynamic

 Linking Problems in the SWIG Java documentation for help.\n" + e);

System.exit(1);

}

}

and then use the library in the constructor of the class Problem for example as shown
here:

int format = 0;

int BIN_FORMAT=1;

int ASCII_FORMAT=2;

if (filename.contains(".b"))

format = BIN_FORMAT;

else

format = ASCII_FORMAT;

if (format == BIN_FORMAT)

{

System.out.println("Reading in bin format");

DIMACS_bin_format in = new DIMACS_bin_format(filename);

//in.write_graph_DIMACS_ascii("tmp.col");

numVertices = in.getNr_vert();

numEdges = in.getNr_edges();

colors = new int[numVertices];

adjacency_list = (List<Integer>[])new List[numVertices];

adj_matrix = new boolean[numVertices][numVertices];

for(int i=0; i < numVertices; i++){

adjacency_list[i] = new ArrayList<Integer>();

for(int j=i; j < numVertices; j++){

adj_matrix[i][j]=false;

adj_matrix[j][i]=false;

}

}

for (int u = 0; u < in.getNr_vert(); u++) {

7

DM811 – Autumn 2013 Assignment Sheet

for (int v = 0; v < u; v++) {

//System.out.println(u+" "+v+"-"+(int) in.get_edge(u, v)+"-");

if (((int) in.get_edge(u, v)==1))

{

//printf("e %d %d\n",w+1,v+1);

adjacency_list[u].add(v);

adjacency_list[v].add(u);

adj_matrix[u][v]=true;

adj_matrix[v][u]=true;

}

}

}

}

else if (format==ASCII_FORMAT)

{

System.out.println("Reading in ASCII format");

// The old source code of the constructor

}

In case, you can also downloaded the updated framework: FrameworkJava.tgz.

8

FrameworkJava.tgz

	Project Requirements
	Remarks
	Submission instructions
	The new instance format
	In C++
	In Java

