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Prepare the following exercises for discussion in class on Thursday, November 24.

Exercises

1. Exercise 14.14 of the text book.

2. Exercise 14.15 of the text book.

3. Exercise 14.17 of the text book.

4. Exercise 15.2 of the text book.

5. This example is a slightly modified version of one taken from Wikipedia. Con-
sider two friends, Alice and Bob, who live far apart from each other and who talk
together daily over the telephone about what they did that day. Bob is only inter-
ested in two activities: walking in the park or staying at home and reading. The
choice of what to do is determined exclusively by the weather on a given day. Al-
ice has no definite information about the weather where Bob lives, but she knows
general trends. Based on what Bob tells her he did each day, Alice tries to guess
what the weather must have been like.

Alice believes that the weather of a day depends only on the weather of the pre-
vious day. There are three states, “Rainy”, “Sunny” and “Foggy”, but she cannot
observe them directly. On each day, there is a certain chance that Bob will perform
one of the following activities, depending on the weather: ”walk” or ”read”. Bob
tells Alice about his activities.

states = [’Rainy’, ’Sunny’, ’Foggy’]

observations = [’walk’, ’read’, ’walk’]

start_probability = {’Rainy’: 0.5, ’Sunny’: 0.4, ’Foggy’: 0.1}

transition_probability = {

’Rainy’ : {’Rainy’: 0.6, ’Sunny’: 0.2, ’Foggy’: 0.2},

’Sunny’ : {’Rainy’: 0.05, ’Sunny’: 0.8, ’Foggy’: 0.15},

’Foggy’ : {’Rainy’: 0.3, ’Sunny’: 0.2, ’Foggy’: 0.5},

}

emission_probability = {

’Rainy’ : {’walk’: 0.2, ’read’: 0.8},

’Sunny’ : {’walk’: 0.9, ’read’: 0.1},

’Foggy’ : {’walk’: 0.7, ’read’: 0.3},
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}

Derive manually the computations for answering the following questions.

a Suppose that where Bob lives one day the weather was sunny. The next day, Bob
tells Alice that he read. What is the probability that the next day it was rainy?

b Suppose that where Bob lives one day it is foggy (and he walked); Bob tells
Alice that the successive day (day 2) he read, but that he went walking on day
3. What is the probability that it is foggy on day 3?

c Alice talks to Bob three days in a row and discovers that on the first day he went
for a walk, on the second day he read, and on the third day he walked again.
Alice has a question: what is the most likely sequence of rainy/foggy/sunny
days that would explain these observations?

Check the correctness of your answer to the second and third questions running on
the appropriate data the Forward and the Viterbi algorithm implemented below.

from numpy import *

aFirst = array([0.5,0.4,0.1])

a = array([[.6,.2,.2],[.05,.8,.15],[.3,.2,.5]]) ## trans

b = array([[.2,.8],[.9,.1],[.7,.3]]) ## emit

obs = array([0,1,0])

def Forward(start_p,trans_p,emit_p,obs):

nStates = shape(b)[0]

T = shape(obs)[0]

alpha = zeros((nStates,T))

alpha[:,0] = start_p*emit_p[:,obs[0]]

for t in range(1,T):

for s in range(nStates):

## elapse time

alpha[s,t] = sum(alpha[:,t-1] * trans_p[:,s])

## observe

alpha[s,t] = alpha[s,t] * emit_p[s,obs[t]]

return alpha

def ViterbiSimple(start_p,trans_p,emit_p,obs):

nStates = shape(b)[0]

T = shape(obs)[0]

path = zeros(T)

m = zeros((nStates,T))

2



DM825 – Spring 2011 Assignment Sheet

m[:,0] = start_p * emit_p[:,obs[0]]

path[0] = argmax(m[:,0])

for t in range(1,T):

for s in range(nStates):

m[s,t] = max( emit_p[s,obs[t]] * trans_p[:,s] * m[:,t-1] )

path[t] = argmax(m[:,t])

print m

print "Path: ", path

#print m[path[T-1]]

return path,m

path,m = ViterbiSimple(aFirst,a,b,obs)

print [states[int(x)] for x in path]

Solution of 14.14.

a

P(B|j, m) = αP(B)∑
e

P(e)∑
a

P(a|b, e)P(j|a)P(m|a)

= αP(B)∑
e

P(e)
[

.9.7
[

.95 .29

.94 .001

]
+ .05.01

[
.05 .71
.06 .999

]]
= αP(B)∑

e
P(e)

[
.598525 .183055
.59223 .0011295

]
= αP(B)

[
.002

[
.598525
.183055

]
+ .998

[
.59223

.0011295

]]
= α

[
.001
.999

] [
.59224259

.001493351

]
= α

[
.00059224259
.0014918576

]
≈ 〈.284, .716〉

b Including the normalization step, there are 7 additions, 16 multiplications, and 2

divisions. The enumeration algorithm has two extra multiplications.

c To compute P(X1|Xn = true) using enumeration, we have to evaluate two complete
binary trees (one for each value of X1), each of depth n − 2, so the total work is
O(2n). Using variable elimination, the factors never grow beyond two variables. For
example, the first step is

P(X1|Xn = true) = αP(X1) . . . ∑
xn−2

P(xn−2|xn−3) ∑
xn−1

P(xn−1|xn−2)P(Xn = true|xn−1)

= αP(X1) . . . ∑
xn−2

P(xn−2|xn−3) ∑
xn−1

fXn−1(xn−1, xn−2) fXn(xn−1)

= αP(X1) . . . ∑
xn−2

P(xn−2|xn−3) fXn−1Xn(xn−2)

The last line is isomorphic to the problem with n− 1 variables instead of n; the work
done on the first step is a constant independent of n, hence (by induction on n, if you
want to be formal) the total work is O(n).
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d Here we can perform an induction on the number of nodes in the polytree. The base
case is trivial. For the inductive hypothesis, assume that any polytree with n nodes
can be evaluated in time proportional to the size of the polytree (i.e., the sum of the
CPT sizes). Now, consider a polytree with n + 1 nodes. Any node ordering consistent
with the topology will eliminate first some leaf node from this polytree. To eliminate
any leaf node, we have to do work proportional to the size of its CPT. Then, because
the network is a polytree, we are left with independent subproblems, one for each
parent. Each subproblem takes total work proportional to the sum of its CPT sizes,
so the total work for n + 1 nodes is proportional to the sum of CPT sizes.

4


