DM828 - Introduction to Artificial Intelligence

Exercise Sheet 6, Autumn 2011 [pdf format]

Prepare the following exercises for discussion in class on Tuesday, December 20.

Exercises

1. The game tree in Figure 1 is limited to depth 3. The evaluation function values at this level are indicated. Assuming that the player at level o is MAX, at level 1 is MIN, at level 3 is MAX and at level 4 is MIN, perform the following algorithms:

- Minimax.
- Left-to-right alpha-beta pruning.
- Right-to-left alpha-beta pruning.

For the two alpha-beta pruning, indicate the direction you are taking, the alpha and beta values at the nodes $([\alpha, \beta])$, and exactly where pruning takes place (use a bar transversal to the pruned edge).
Consider now the situation in which the outcome of some actions is stochastic and all outcomes are equally likely. Perform:

- Expectimax, assuming at level o there is a MAX player, at level 1 chance, at level 2 again MAX and at level 4 chance.
- Expectiminimax, assuming at level o there is a MAX player, at level 1 chance, at level 2 MIN, at level 4 chance.

2. Get aquainted with Kalaha reading the rules of the game and play a couple of games: http://kalaha.krus.dk/. Solve then by pen and paper the case with two pits for opponent and 2 stones within each pit. Consider then the more challenging case 6×6. How many search states there are? How would you implement efficiently the representation of a state? How would you implement a move generator? What could be a good scoring system? Provided alpha-beta search remains infeasible for this case, how would you proceed? Would iterative deepenining be a good strategy to apply? If yes or not, why? Be as deatiled in your explanation as possible.
3. Consider the following 2-player game. Cookies are laid out on a rectangular grid $n \times m$. The cookie in the top left position is poisoned, as shown in Figure 2. The two players take turns making moves; at each move, a player is required to eat a remaining cookie, together with all cookies to the right and/or below it (see Figure 2, for example). The loser is the player who has no choice but to eat the poisoned cookie.

Draw the search tree for this game in a 3×3 grid expanded by the left-to-right alpha-beta pruning algorithm. (Do not draw unexpanded subtrees.)

Figure 1: A game tree

Initially	Player A	Player B	Player A	Player B
0000	00000	00000	0	0
00000	00000	0000	00	0
00000	00000	000	0	

Figure 2: A sequence of moves in the game of Exercise 1 starting with a 3×5 grid. Player A must eat the last block and so loses.

Is this game a fair or an impartial game? That is, can one of the players always make moves that are guaranteed to lead to a win if he starts? Does the conclusion changes if $n \neq m$?
4. The following code from the python aima repository implements the MIN-MAX algorithm for two-players games.

```
def minimax_decision(state, game):
    player = game.to_move(state)
    def max_value(state):
        if game.terminal_test(state):
            return game.utility(state, player)
        v = -infinity
        for (a, s) in game.successors(state):
            v = max(v, min_value(s))
        return v
    def min_value(state):
        if game.terminal_test(state):
            return game.utility(state, player)
        v = infinity
        for (a, s) in game.successors(state):
            v = min(v, max_value(s))
        return v
```


Figure 3: The game tree of Exercise 2.

```
# Body of minimax_decision starts here:
action, state = argmax(game.successors(state),
    lambda ((a, s)): min_value(s))
return action
```

Let's consider a three-player game (without alliances) and let's call $0,1,2$ the three players. Each terminal state has now associated three values indicating the likelihood of winning of player 0,1 and 2 , respectively.
a) Does the code above implement a MIN-MAX algorithm also for the threeplayer game? If not what has to be changed?
b) Complete the game tree of Figure 3 by filling the backed-up value triples for all remaining nodes.
5. Exercise 5.16 of the text book.

