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Abstract. Tabu Search (TS) is a well known local search method
which has been widely used for solving AI problems. Different ver-
sions of TS have been proposed in the literature, and many features
of TS have been considered and tested experimentally. The feature
that is present in almost all TS variants is the so called (short-term)
tabu list which is recognised as the crucial issue of TS. However, the
definition of the parameters associated with the tabu list remains in
most TS applications still a handcrafted activity.

In this work we undertake a systematic study of the relative in-
fluence of few relevant tabu list features on the performances of TS
solvers. In particular, we apply statistical methods for the design and
analysis of experiments. The study focuses on a fundamental theo-
retical problem (GRAPH COLOURING) and on one of its practical
specialisation (EXAMINATION TIMETABLING), which involves spe-
cific constraints and objectives. The goal is to determine which TS
features are more critical for the good performance of TS in a general
context of applicability.

The general result is that, when the quantitative parameters are
well tuned, the differences with respect to qualitative parameters be-
come less evident.

1 INTRODUCTION
Local search is a search paradigm which has evidenced to be very
effective for a large number of AI problems [18]. Tabu Search (TS)
[15] is one of the most successful local search methods, which has
been widely used for solving AI problems. Different versions of TS
have been proposed in the literature, and many features of TS have
been considered and tested experimentally. They range from long-
term tabu, to dynamic cost functions, to strategic oscillation, to elite
candidate lists, to complex aspiration criteria, just to mention some
(see [15] for an overview).

The feature that is included in virtually all TS variants is the so
called (short-term) tabu list. The tabu list is indeed recognised as the
basic ingredient for the effectiveness of a TS-based solution, and its
behaviour is a crucial issue of TS.

Despite the importance of a correct empirical analysis, which has
been emphasised in the general context of heuristic methods [2, 19]
and even in the specific case of TS [28], the definition of the param-
eters associated with the tabu list remains in most research work still
a handcrafted activity. Often, the experimental work behind the pa-
rameter setting remains hidden or is condensed in a few lines of text
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reporting only the final best configuration. Even the recently intro-
duced racing methodology for the tuning of algorithms [4] only al-
lows to determine the best possible configuration. These procedures
are certainly justified from a practical point of view, but a more de-
tailed description of the behaviour and sensibility of the algorithm
with respect to its different factors and parameters is surely of great
interest in the research field.

In this work, we aim at determining which factors of basic TS are
important and responsible for the good behaviour of the algorithm
and its robustness (i.e., the capability of exhibiting a stable behaviour
across several set of instances). In contrast to the one-factor-at-a-time
approach used in [28], we use different experimental design tech-
niques [23], with parametric and non-parametric analysis of variance
and racing algorithms. The suitability and comparison of these tech-
niques in the field of search algorithms is still an open issue, hence
we use more than one method to provide complementary support to
their conclusions. We focus the analysis on both a fundamental the-
oretical problem, namely the GRAPH COLOURING problem, and on
one of its practical specialisation, the EXAMINATION TIMETABLING
problem, for which there is a consistent literature and many bench-
mark instances.

Although the statistical methods applied indicate that an algorith-
mic configuration of general validity does not arise, they point out
that for these problems TS is robust enough w.r.t. the qualitative fea-
tures, and thus it is reasonable to focus mainly on tuning the quan-
titative parameters. In addition, we strengthen our analysis with a
comparison with previous work thus providing absolute validity to
the results here presented and avoiding the pitfall of a self-standing
work. We show indeed that the so-configured solution algorithm pro-
duces results that are comparable with the state-of-art.

2 PROBLEM DEFINITIONS
The first problem we consider is the classical GRAPH (VERTEX)
COLOURING problem in its chromatic number formulation [14].
Given an undirected graph G = (V, E), the GRAPH COLOURING
problem consists in finding the minimal number of colours such that
there exists an assignment of exactly one colour to each vertex and
vertices connected by an edge e ∈ E receive different colours.

The EXAMINATION TIMETABLING problem consists in schedul-
ing the exams of a set of university courses in rooms and timeslots.
In doing this, overlaps of exams with students in common must be
avoided, exams must be fairly spread for each students, and room
capacity constraints must be satisfied [26]. Among the different EX-
AMINATION TIMETABLING versions, we focus on the formulation
proposed by Burke et al. [5]. According to this formulation, the ex-
amination session consists of a given fixed number of periods, and
each period belongs to a specific day. Exams with common students



cannot be scheduled in the same period (first order conflicts), but
they should also be not scheduled in adjacent periods of the same
day (second order conflicts). It is easy to see, that this formulation
corresponds to the GRAPH COLOURING problem in which the ex-
ams represent the vertices, the periods the colours, and two nodes
are connected if they have students in common. The differences stem
from the fact that for the EXAMINATION TIMETABLING the num-
ber of periods is fixed, whereas the objective function consists in the
second order conflicts (weighted by the number of students).

3 TABU SEARCH BASICS
Local search is based on the idea of navigating a space of solutions
(called search space) by iteratively moving from one state to one
of its “neighbours”, which are obtained by applying a simple local
change to the current solution. Several criteria for the selection of
the move can be defined upon this idea. In particular, TS explores
the full current neighbourhood and selects, as the new current state,
the neighbour that gives the minimal value of a cost function, inde-
pendently of whether its cost is less or greater than the current one.
This selection allows the search to escape from local minima, but
creates the risk of cycling among a set of states. In order to prevent
cycling, TS uses a prohibition mechanism based on memory of past
iterations: a list (called tabu list) stores the most recently accepted
moves, so that the inverses of the moves in the tabu list are forbidden
(i.e., the moves that are leading again toward the just visited local
minimum).

The precise instantiation of the above general scheme can be done
in different ways. In details, the three main features related to the
tabu list are the following:

Neighbourhood exploration: Often exploring the full neighbour-
hood and determining the best move can be computationally too
expensive for a tabu search algorithm to perform well. The explo-
ration of the neighbourhood is therefore reduced to a part of it.
The part of the neighbourhood explored can be determined prob-
abilistically, heuristically or through considerations on structural
properties of the problem that guarantee no improvement for the
neighbours omitted.

Prohibition power: The prohibition power determines which
moves are prohibited by the fact that a move is in the tabu list.
A move is normally composed of several attributes; depending on
the prohibition power, the tabu status can be assigned only to the
move with the same values for all attributes or to the set of moves
that have one or more attribute equal.

List dynamics: The list dynamics determines for how many itera-
tions a move remains in the tabu list. This can be a fixed value,
or a value selected randomly in an interval, or a value selected
adaptively on the basis of the current state of the search.

In the next section, we propose different alternatives for the defi-
nition of the above features in the two case studies.

4 INSTANTIATION OF TABU SEARCH
FEATURES

The search space considered is the same for both problems and is
composed by one variable for each vertex (resp. exam) whose do-
main corresponds to the set of colours (resp. periods). The neigh-
bourhood of a state is composed by all states reachable by changing
exactly one colour at a vertex. In this setting, a local search move m

can be identified by three attributes: a vertex v, its old colour o and
its new colour n and it can be identified by the triple m = 〈v, o, n〉.
Note that the two attributes v and n suffice to identify the move
uniquely.

The exploration of the neighbourhood can be restricted to only
those vertices involved in a conflict (i.e., adjacent vertices that are
assigned the same colour). In this way, it is guaranteed that no im-
proving move is missed and, although the worst case complexity re-
mains O(kn), in practise we obtain a large reduction of search effort
especially when the search explores states that are close to good so-
lutions. This reduction is very helpful, and we do it in all cases. A
further possible reduction of the neighbourhood exploration could be
achieved by means of the MinConflict heuristic [22]. Consequently,
we decide to implement the following three neighbourhood explo-
ration reductions:

No reduction (NoRed): for each vertex involved in a conflict all
the colours are tried and the overall best move is taken.

MinConflict Vertex (MinConfv): for a vertex randomly chosen
among those involved in a conflict the colour that yields the best
move is chosen.

MinConflict Colour (MinConfc): for all vertices involved in a
conflict a colour is selected at random and the best overall move
is taken.

For the prohibition power, assuming that the move 〈v, n, o〉 is in
the tabu list, we consider the following three alternatives (where the
underscore means “any value”):

Strong: All moves of the form 〈v, , 〉 are prohibited.
Medium: All moves of the form 〈v, , o〉 are prohibited
Weak: Only the single move 〈v, n, o〉 is prohibited

In other terms, in the first case, it is not allowed to recolour the
vertex in the tabu iterations. In the second case, it is not allowed to
recolour the vertex with its old colour. In the third case, it is not
allowed only to make the reverse of the tabu move.

Finally, in regards to the list dynamics, we also consider two pos-
sibilities:

Interval: The size of the list can vary in the range [tb, tb + w] of
width w. Each accepted move remains in the list for a number t of
iterations equal to tb + Random(0, w), where Random(a, b) is
the uniform integer-valued random distribution in [a, b]

Adaptive: The value t depends on the current state. We use the for-
mula (proposed in [13]) t = bα ∗ csc+ Random(0, tb) where tb

and α (real value) are parameters, and cs is the number of conflicts
in the current state s.

A special case of Interval is the case, called Fixed, in which w =
0, so that the tabu list is a queue of size tb. At each iteration, the
accepted move gets in and the oldest one gets out. All moves remain
in the list for exactly tb iterations.

As a final remark, it is worth to note that according to the common
practise in Tabu Search applied to the GRAPH COLOURING problem
(e.g., [16]), the issue of finding the minimum number of colours is
solved as a sequence of decision problems. The procedure stops and
returns the value k, as soon as no solution with k − 1 colours can be
found.

5 EXPERIMENTAL METHODOLOGY
It is recognised that studying local search algorithms in an analytical
way is a complex task which often yields results with scarce practical



implications [17, 24]. The assessment of these algorithms is therefore
carried out through empirical tests and the experimental design the-
ory, largely applied in the engineering fields, provides the guidelines
to do this in a methodological way [25, 3, 8].

The tabu search features introduced above are treatment factors
(i.e., aspects that are hypothesised to have an effect on the behaviour
of the algorithm) and they can be subdivided in two types: quantita-
tive and qualitative. The three qualitative factors are the neighbour-
hood exploration, the prohibition power and the list dynamics, and
consist each of different levels. The quantitative factors are the nu-
merical parameters of the list dynamics strategy and may assume an
unlimited number of values. There are two issues that complicate the
factorial design: (i) the qualitative parameters do not cross with all
other factors (for example, there is no α parameter with Interval list
dynamics); (ii) the importance of each of the two qualitative factors
strongly depends on the values assigned to the underlying quantita-
tive parameters.

We follow two approaches in the analysis: a bottom-up approach
consisting in first studying the best configurations of quantitative
parameters for each combination of qualitative factors and then
analysing the effects of the latter; and a top-down approach consist-
ing in analysing the effects of the qualitative factors in a first step and
then refining the analysis on the quantitative parameters for the best
configuration. Both these approaches have a drawback: the bottom-
up approach may require a huge amount of experiments and analysis;
the top-down approach may be biased by the few values chosen for
the qualitative parameters.

A further issue is the level of the analysis to be undertaken. Clearly
discriminating results on single instances is not meaningful in prac-
tise; however, both an aggregate analysis and a separated analysis on
single classes of instances are relevant for practical applications. We
include, therefore, in the case of GRAPH COLOURING six classes of
instances3 determined by the type of random graphs (geometric and
uniform) and edge density (0.1, 0.5, 0.9). We maintain, instead, the
size of the graph fixed to 1000 vertices.

Finally, a matter of concern in the statistical analysis of algorithms
is the choice between parametric and non-parametric methods. We
opt even in this case for maintaining both approaches. Indeed, being
based on two different transformations of the results (normalisation
and ranking) the two approaches are likely to produce a different sta-
tistical inference. From a theoretical perspective, the parametric anal-
ysis of variance through the F -ratio (ANOVA) is a procedure which
has been recognised as particularly robust against deviation from the
assumption of normal distribution of data [23]. The non-parametric
analysis of variance through the Friedman test [9] by ranks is instead
grounded on less assumptions but is unable to study interactions be-
tween factors.

6 ANALYSIS
We split our analysis in two parts, one for each problem, and we
report the results on the two problems separately.

6.1 Graph Colouring
The experimental designs and the values considered for the factors
of analysis are reported in Table 2a. We consider the random seed
to generate different instances as a blocking factor [10]. The dis-
tinction between two designs, DA and DB , is necessary because of
3 Instances are newly generated using the Culberson’s generator available at
www.cs.alberta.ca/˜joe/Coloring

the different meaning of parameter t1. Note that the degenerate case
t1 = w = 0 in Interval list dynamics corresponds to a fixed tabu
length depending only on the parameter t2 = tb.

For each algorithmic configuration we collect one run on each
instance. The response variable is the minimal number of colours
found in a run after 10 million algorithm iterations. In the para-
metric analysis the number of colours r(i) obtained by each algo-
rithmic configuration on an instance i is normalised by the formula
e(r, i) = r(i)−rbest(i)

rRLF (i)−rbest(i)
, where rbest is the best result achieved

on instance i by all algorithms and rRLF is the average solution
produced by the RLF heuristic [20], which is used as the starting
solution for the tabu search. Therefore, we consider e(r, i) as our re-
sponse variable. In the non-parametric analysis, instead, results are
ranked within instances and no normalisation is needed. A level of
significance of 5% is maintained over all the statistical tests.

In the top-down approach we maintain the two designs DA and
DB separated. A parametric analysis of variance (ANOVA) by means
of the F -ratio provides a general view of the significant effects.
ANOVA assumes a linear model of responses and treatments. We
use an automated stepwise model selection based on AIC [1] to dis-
tinguish which treatment combinations are significant enough to be
included in the model. Accordingly, all main effects and interactions
between two factors result significant. The analysis should therefore
discriminate too much and this approach is not helpful. It is impor-
tant to remark however that also the two instance class factors in-
teract with the algorithm factors hence indicating that results might
vary between instance classes.

In the bottom-up approach we use a sequential testing methodol-
ogy for tuning of the parameters t1 and t2. In particular we adopt
the RACE algorithm proposed by Birattari [4] based on t-test for
multiple comparisons and Holm’s adjustment of the p-value. This
procedure determines the best t1 and t2 for each combination of the
other factors and allows to remove the quantitative parameters from
the analysis. What remains is a unique design D of 5 qualitative fac-
tors that can be analysed by ANOVA. Interaction with instance type
and density is significant and indicates that a fine grained analysis
should discriminate among the instance classes. We decide to fo-
cus, however, primarily on robust results, i.e., settings that are robust
across multiple classes of instances. Hence, simplifying the analy-
sis we remain with 3 algorithmic factors and study their main effects
and interactions. In Table 3a and Figure 1 we report the results of this
analysis. The most important result, emphasised from the visualisa-
tion of the analysis through interaction plots in Figure 1, is the bad
performance of the MinConf neighbourhood exploration strategy on
the colour. Another ineffective choice is the employment of a Strong
prohibition power.

The non-parametric analysis through the Friedman analysis of
variance followed by its extension in to multiple comparisons [9]
confirms these results. In these tests, the factors studied are the com-
bination of neighbourhood exploration, prohibition power and list
dynamics (hence, a unique factor with 3 × 4 × 2 levels) and the in-
stance blocking factor. The conclusions above are recognised by the
fact that all levels composed by the MinConfc neighbourhood explo-
ration strategy or Strong prohibition power are statistically inferior
to the others.

6.2 Examination Timetabling
For space limits, we restrict the presentation of results of the bottom-
up analysis only. Given the results on the GRAPH COLOURING we
consider only the NoRed neighbourhood. The values of the param-



Table 1: Experimental designs employed in the experimentation for the two problems

Factors Design DA Design DB

Qualitative
Neighbourhood {NoRed, MinConfv , MinConfc}
Prohibition power {Weak, Medium, Strong}
List dynamics Interval Adaptive
Quantitative
t1=w|α {0, 5, 10} {0.3, 0.6, 0.9}
t2=tb {5, 10, 15, 20} {5, 10, 20}
Blocking
Type {Uniform, Geometric}
Density {0.1, 0.5, 0.9}
Random seed [1, . . . , 10]

(a) Experimental designs for GRAPH COLOURING

Factors Design DA Design DB

Qualitative
Neighbourhood {NoRed}
Prohibition power {Weak, Medium, Strong}
List dynamics Interval Adaptive
Quantitative
t1=w|α {0, 5, 10} {0.3, 0.5, 0.8}
t2=tb {5, 10, 15, 20, 25} {5, 10, 20, 30}
Blocking
Instances Carter’s data-set [7]

(b) Experimental designs for EXAMINATION TIMETABLING

Table 2: The p-values corresponding to the ANOVA F -ratio in the bottom-up analysis performed on the two problems: quantitative parameters have been set by
the RACE procedure; blocking factors are not taken into account.

Main Effects Pr(> F ) Interaction Effects Pr(> F )
Prohibition power < 10−15 Prohibition|Neighb. < 10−15

Neighbourhood < 10−15 Prohibition|List dyn. 0.6450
List Dynamics 0.5971 Neighb.|List dyn. 0.1909

(a) Numerical results of ANOVA performed on GRAPH COLOURING

Main Effects Pr(> F ) Interaction Effects Pr(> F )
Prohibition power 0.0669 Prohibition p.|List dyn. 0.3738
List Dynamics 0.6896 —

(b) Numerical results of ANOVA on EXAMINATION TIMETABLING
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Figure 1: Interaction plots for the factors of the bottom-up analysis on the
GRAPH COLOURING problem.

eters tested are shown in Table 2b.
The RACE algorithm is used for the selection of the quantitative

parameters. Experiments are carried out on 7 instances taken from
Carter’s data-set [7]. Each run of a configuration was granted 120
seconds of CPU time on an AMD Athlon 1.5GHz computer running
Linux. The outcomes of the RACE procedure are reported in Table 3
that shows the configurations for which no significant difference was
found after 50 stages.

Table 3: RACE results for EXAMINATION TIMETABLING

Prohibition power /
List dynamics t1-t2 avg z(r, i)
Weak/Adaptive 0.3-5 0.5-10 0.5-20 0.3-30 -0.085
Medium/Adaptive 0.3-5 0.8-5 0.3-20 0.5-20 0.8-20 -0.087
Strong/Adaptive 0.3-10 0.5-10 0.5-30 0.010
Weak/Interval 5-5 -0.128
Medium/Interval 5-5 20-25 20-30 -0.084
Strong/Interval 25-25 0.068

Once good values for the parameters have been determined we
study main effects and interactions of the two remaining qualitative
factors, list dynamics and prohibition power. To this aim, we run a
full factorial design collecting 25 replicates per instance. Each ex-
perimental unit exploits a different combination of list dynamics,
prohibition power and test instance. The result r(i) is the penalty

for constraint violation, which has to be minimised. In order to have
comparable values across all the tested instances we consider the z-
score z(r, i) = r(i)−r̄(i)

s[r(i)]
as the response variable in our analysis.

In the analysis of variance instances are treated as blocks and
hence their influence on the performance of the algorithms, though
recognised, is not taken into account (this entails that the results of
the analysis are robust with respect to the set of instances). The re-
sults of the F -ratio and the Friedman test indicate as non significant
both the main effects and the interactions (The F -ratios are shown in
Table 3b, whereas the Friedman test yields a p-value of 0.54).

The visual investigation of results by means of box-plots in Fig-
ure 2 reveals indeed that the numerical differences in results are ap-
parently negligible. In conclusion, if the quantitative parameters are
well chosen by means of a statistically sound procedure, all configu-
rations of qualitative parameters are equally good.

Medium/Adaptive Medium/Interval Strong/Adaptive Strong/Interval Weak/Adaptive Weak/Interval

−2
0

2
4

6
8

Configuration

z(
r,i

)

Figure 2: Results of the six configurations for the qualitative features

Finally we compare, in Table 4, our overall best results (in bold)
with the currently published ones (see references on the column la-
bels). (The use of best results to infer performance is known in Statis-
tics to be a biased procedure, here however it is justified by the usual
practise in the literature.) From Table 4 it is evident that we improved
significantly w.r.t. both our previous best results [11] and other re-
sults obtained by using similar local search techniques [6]. In addi-
tion, although our results are still far from the best results attained by
Merlot et al. [21], they are in most cases the second best ones.



Table 4: Best results found for each configuration and comparison with the best known results.

Instance p W/A W/D W/F M/A M/D M/F S/A S/D S/F [11] [5] [6] [21]
car-f-92 40 271 292 265 263 278 275 297 224 242 424 331 268 158
car-s-91 51 46 38 38 53 54 32 37 40 33 88 81 74 31
kfu-s-93 20 1148 1027 1103 1047 914 984 1172 1104 932 512 974 912 247
nott 23 112 89 109 103 106 69 109 112 73 123 269 — 7
nott 26 17 17 17 7 15 15 16 13 20 11 53 — —
tre-s-92 35 0 0 0 0 0 0 0 0 0 4 3 2 0
uta-s-92 38 534 544 526 584 572 507 565 537 567 554 772 680 334

7 RELATED WORK & CONCLUSIONS

This study has been inspired by the works [2] and [19], and by the
more recent work [3], which in different ways trace the guidelines for
a correct empirical analysis of algorithms. The application of these
guidelines to analyse TS features has been proposed in [28]. With
respect to these works, we take into consideration also interaction
effects between factors and hence remove the bias of a one-feature-
at-a-time procedure.

The work in [27] proposes a similar analysis, although it considers
specifically the lesser used features of TS, whereas we focus on the
most used ones. In addition, also that work uses the one-feature-at-a-
time approach, thus missing the interactions among them.

We adopted different statistical procedures, such as ANOVA,
Friedman test and racing procedures to corroborate the results and
guarantee fairness to all TS features. On the GRAPH COLOURING
we have been able to discriminate which components of neighbour-
hood exploration and prohibition power are important to be selected
correctly. Less relevant is instead the choice of the tabu length.

On the EXAMINATION TIMETABLING the analysis provides a
similar indication to the results found on the GRAPH COLOURING.
No significant influence of both main and interaction effects on the
qualitative factors considered have been detected. Nevertheless, the
analysis permits to improve the tuning of the numerical parameters
and improve over previously published configurations. The results of
the final algorithm are comparable with the state-of-the-art solvers.

A common conclusion arising in both studies is that, once a good
setting has been found for the quantitative parameters, the differences
between some of the qualitative parameters are less pronounced.

More features could be added to TS implementations. One exam-
ple is the case in which the neighbourhood explored is the union of
a set of basic neighbourhood relations (see [12]). In this case, typi-
cally, there are different tabu dynamics for moves of different sort.
Another example, is the use of long term memory or reactive mecha-
nisms. Extending the scope of this analysis to these and similar cases
will be the subject of future work.
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