The Basic GLSM Model

Many high-performance SLS methods are based on combinations of simple (pure) search strategies (e.g., ILS, MA).

These hybrid SLS methods operate on two levels:
- **lower level**: execution of underlying simple search strategies
- **higher level**: activation of and transition between lower-level search strategies.

Key idea underlying Generalised Local Search Machines: Explicitly represent higher-level search control mechanism in the form of a finite state machine.

Example: Simple 3-state GLSM

- States z_0, z_1, z_2 represent simple search strategies, such as Random Picking (for initialisation), Iterative Best Improvement and Uninformed Random Walk.
- PROB(p) refers to a probabilistic state transition with probability p after each search step.
Generalised Local Search Machines (GLSMs)

- States \(\cong\) simple search strategies.
- State transitions \(\cong\) search control.
- GLSM \(\mathcal{M}\) starts in initial state.
- In each iteration:
 - \(\mathcal{M}\) executes one search step associated with its current state \(z\);
 - \(\mathcal{M}\) selects a new state (which may be the same as \(z\)) in a nondeterministic manner.
- \(\mathcal{M}\) terminates when a given termination criterion is satisfied.

Example: Simple 3-state GLSM (formal definition)

\[\mathcal{M} := (Z, z_0, M, m_0, \Delta, \sigma_Z, \sigma_\Delta, \tau_Z, \tau_\Delta) \]

- \(Z := \{z_0, z_1, z_2\}\); \(z_0\) is initial machine state
- no memory \((M := \{m_0\}; m_0 = \text{initial and only memory state})\)
- \(\Delta := \{(z_0, z_1), (z_1, z_2), (z_1, z_1), (z_2, z_1), (z_2, z_2)\}\)
- \(\sigma_Z := \{z_0, z_1, z_2\}\)
- \(\sigma_\Delta := \{\text{PROB}(p) \mid p \in \{1, p_1, p_2, 1 - p_1, 1 - p_2\}\}\)
- \(\tau_Z(z_i) := z_i, \ i \in \{0, 1, 2\}\)
- \(\tau_\Delta((z_0, z_1)) := \text{PROB}(1), \tau_\Delta((z_1, z_2)) := \text{PROB}(p_1), \ldots\)

Example: Simple 3-state GLSM (semantics)

- Start in initial state \(z_0\), memory state \(m_0\) (never changes).
- Perform one search step according to search strategy associated with state type \(z_0\) (e.g., random picking).
- With probability 1, switch to state \(z_1\).
- Perform one search step according to state \(z_1\); switch to state \(z_2\) with probability \(p_1\), otherwise, remain in state \(z_1\).
- In state \(z_2\), perform one search step according to \(z_2\); switch back to state \(z_1\) with probability \(p_2\), otherwise, remain in state \(z_2\).

\(\rightsquigarrow\) After one \(z_0\) step (initialisation), repeatedly and nondeterministically switch between phases of \(z_1\) and \(z_2\) steps until termination criterion is satisfied.
States types formally represent (subsidiary) search strategies, whose definition is not part of the GLSM definition.

Transition types formally represent mechanisms used for switching between GLSM states.

Multiple states / transitions can have the same type.

\(\sigma_Z, \sigma_\Delta\) should include only state and transition types that are actually used in given GLSM (‘no junk’).

Not all states in \(Z\) may actually be reachable when running a given GLSM.

Termination condition is not explicitly captured in GLSM model, but considered part of the execution environment.

GLSM Semantics

Behaviour of a GLSM is specified by *machine definition + run-time environment* comprising specifications of

- state types,
- transition types;
- problem instance to be solved,
- search space,
- solution set,
- neighbourhood relations for subsidiary SLS algorithms;
- termination predicate for overall search process.

Run GLSM \(\mathcal{M}\):

set current machine state to \(z_0\); set current memory state to \(m_0\);

While termination criterion is not satisfied:

- perform search step according to type of current machine state; this results in a new search position
- select new machine state according to types of transitions from current machine state, possibly depending on search position and current memory state; this may change the current memory state

Note:

- The current search position is only changed by the subsidiary search strategies associated with states, *not* as side-effect of machine state transitions.
- The machine state and memory state are only changed by state-transitions, *not* as side-effect of search steps. (Memory state is viewed as part of higher-level search control.)
- The operation of \(\mathcal{M}\) is uniquely characterised by the evolution of machine state, memory state and search position over time.
GLSMs are factored representations of SLS strategies:

- Given GLSM represents the way in which *initialisation* and step function of a hybrid SLS method are composed from respective functions of subsidiary component SLS methods.

- When modelling hybrid SLS methods using GLSMs, subsidiary SLS methods should be as simple and pure as possible, leaving search control to be represented explicitly at the GLSM level.

- *Initialisation* is modelled using GLSM states (advantage: simplicity and uniformity of model).

- Termination of subsidiary search strategies are often reflected in conditional transitions leaving respective GLSM states.

State, Transition and Machine Types

In order to completely specify the search method represented by a given GLSM, we need to define:

- the GLSM model (states, transitions, . . .);
- the search method associated with each state type, i.e., step functions for the respective subsidiary SLS methods;
- the semantics of each transition type, i.e., under which conditions respective transitions are executed, and how they effect the memory state.

State types

- State type semantics are often most conveniently specified procedurally (see algorithm outlines for ‘simple SLS methods’ from Chapter 2).

- *initialising state type* = state type τ for which search position after one τ step is independent of search position before step.
 initialising state = state of initialising type.

- *parametric state type* = state type τ whose semantics depends on memory state.
 parametric state = state of parametric type.

Transitions types (1)

- *Unconditional deterministic transitions* – type DET:
 - executed always and independently of memory state or search position;
 - every GLSM state can have at most one outgoing DET transition;
 - frequently used for leaving initialising states.

- *Conditional probabilistic transitions* – type PROB(p):
 - executed with probability p, independently of memory state or search position;
 - probabilities of PROB transitions leaving any given state must sum to one.
Note:

- DET transitions are a special case of PROB transitions.
- For a GLSM M any state that can be reached from initial state z_0 by following a chain of PROB(p) transitions with $p > 0$ will eventually be reached with arbitrarily high probability in any sufficiently long run of M.
- In any state z with a PROB(p) self-transition (z, z) with $p > 0$, the number of GLSM steps before leaving z is distributed geometrically with mean and variance $1/p$.

Transitions types (2)

- Conditional probabilistic transitions – type $CPROB(C, p)$:

 - executed with probability proportional to p iff condition predicate C is satisfied;
 - all CPROB transitions from the current GLSM state whose condition predicates are not satisfied are blocked, i.e., cannot be executed.

Note:

- Special cases of $CPROB(C, p)$ transitions:

 - PROB(p) transitions;
 - conditional deterministic transitions, type $CDET(C)$.

- Condition predicates should be efficiently computable (ideally: \leq linear time w.r.t. size of given problem instance).

Commonly used simple condition predicates:

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\top</td>
<td>always true</td>
</tr>
<tr>
<td>$\text{count}(k)$</td>
<td>total number of GLSM steps $\geq k$</td>
</tr>
<tr>
<td>$\text{countm}(k)$</td>
<td>total number of GLSM steps modulo $k = 0$</td>
</tr>
<tr>
<td>$\text{scount}(k)$</td>
<td>number of GLSM steps in current state $\geq k$</td>
</tr>
<tr>
<td>$\text{scountm}(k)$</td>
<td>number of GLSM steps in current state modulo $k = 0$</td>
</tr>
<tr>
<td>lmin</td>
<td>current candidate solution is a local minimum w.r.t. the given neighbourhood relation</td>
</tr>
<tr>
<td>$\text{evalf}(y)$</td>
<td>current evaluation function value $\leq y$</td>
</tr>
<tr>
<td>$\text{noimpr}(k)$</td>
<td>incumbent candidate solution has not been improved within the last k steps</td>
</tr>
</tbody>
</table>

All based on local information; can also be used in negated form.

Transition actions:

- Associated with individual transitions; provide mechanism for modifying current memory states.
- Performed whenever GLSM executes respective transition.
- Modify memory state only, cannot modify GLSM state or search position.
- Have read-only access to search position and can hence be used, e.g., to memorise current candidate solution.
- Can be added to any of the previously defined transition types.
Machine types:

Capture *structure of search control mechanism*, obtained by abstracting from state and transition types of GLSMs.

- **1-state machines:**
 - simplest machine type, single initialising state only;
 - realises iterated sampling processes, such as Uninformed Random Picking.

- **1-state+init machines:**
 - one initialising + one working state;
 - good model for many simple SLS methods.

- **2-state+init sequential machines:**
 - one initialising state (visited only once), two working states;
 - any search trajectory can be partitioned into three phases: one initialisation step, a sequence of \(z_1 \) steps and a sequence of \(z_2 \) steps.

- **2-state+init alternating machines:**
 - one initialising state, two working states;
 - arbitrary transitions between any states are possible.

- **sequential 1-state machines:**
 - visit initialising state \(z_0 \) only on once.

- **alternating 1-state+init machines:**
 - may visit initialising state \(z_0 \) multiple times;
 - good model for simple SLS methods with restart mechanism.
Generalisations:

- **k-state+init sequential machines:**
 - one initialising state (visited only once), \(k \) working states;
 - every search trajectory consists of \(1+k \) phases.

- **k-state+init alternating machines:**
 - one initialising state, \(k \) working states;
 - arbitrary transitions between states;
 - may have multiple initialising states (e.g., to realise alternative restart mechanisms).

Modelling SLS Methods Using GLSMs

Uninformed Picking and Uninformed Random Walk

- **RP**
- **DET**
- **RW**

```
procedure step-RP(\( \pi, s \))
    input: problem instance \( \pi \in \Pi \),
           candidate solution \( s \in S(\pi) \)
    output: candidate solution \( s \in S(\pi) \)
    \( s' := \text{selectRandom}(S) \);
    return \( s' \)
end step-RP
```

```
procedure step-RW(\( \pi, s \))
    input: problem instance \( \pi \in \Pi \),
           candidate solution \( s \in S(\pi) \)
    output: candidate solution \( s \in S(\pi) \)
    \( s' := \text{selectRandom}(N(s)) \);
    return \( s' \)
end step-RW
```

Uninformed Random Walk with Random Restart

- **RP**
- **DET**
- **RW**
- **CDET(not R)**

```
R = \text{restart predicate, e.g., countm}(k)

R := \text{selectRandom} \left( \left\{ s' \in N(s) \mid g(s') = g^* \right\} \right);
return R
```

Iterative Best Improvement with Random Restart

- **RP**
- **DET**
- **BI**
- **CDET(not R)**

```
procedure step-BI(\( \pi, s \))
    input: problem instance \( \pi \in \Pi \),
            candidate solution \( s \in S(\pi) \)
    output: candidate solution \( s \in S(\pi) \)
    \( g^* := \min \{ g(s') \mid s' \in N(s) \} \);
    \( s' := \text{selectRandom}(N(s) \mid g(s') = g^*) \);
    return \( s' \)
end step-BI
```
Randomised Iterative Best Improvement with Random Restart

Simulated Annealing

Iterated Local Search (1)

Iterated Local Search (2)

The acceptance criterion is modelled as a state type, since it affects the search position.

Note the use of transition actions for memorising the current candidate solution (pos) at the end of each local search phase.

Condition predicates \(CP \) and \(CL \) determine the end of perturbation and local search phases, respectively; in many ILS algorithms, \(CL := l_{\text{min}} \).

The initial temperature \(T_0 \) and function \(\text{update} \) implement the annealing schedule.

procedure \(\text{step-AC}(\pi, s, t) \)

input: problem instance \(\pi \in \Pi \),

candidate solution \(s \in S(\pi) \)

output: candidate solution \(s \in S(\pi) \)

if \(C(\pi, s, t) \) then

return \(s \)

else

return \(t \)

end

end \(\text{step-AC} \)