python

powered

DM502
Programming A

Peter Schneider-Kamp

peterskl@imada.sdu.dk
http://imada.sdu.dk/~petersk/DM502/

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

STRINGS

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Strings as Sequences

= strings can be viewed as 0-indexed sequences

= Examples:

"Slartibartfast"[0] == "S"
"Slartibartfast"[1] == "I"
"Slartibartfast"[2] == "Slartibartfast"[7]

"Phartiphukborlz"[-1] == "z

= grammar rule for expressions:

<expr> => ... | <expr,>[<expr,>]
= <expr,> = expression with value of type string
" index <expr,> = expression with value of type integer

" negative index counting from the back

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Length of Strings

* length of a string computed by built-in function len(object)

= Example:
name = "Slartibartfast”
length = len(name)

print name[length-4]
= Note: name[length] gives runtime error

" identical to write name[len(name)-1] and name[-1]

= more general, name[len(name)-a] identical to name[-a]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Traversing with While Loop

" many operations go through string one character at a time
= this can be accomplished using
= a while loop,
= an integer variable, and
" index access to the string
= Example:
index =0
while index < len(name):
letter = name[index]
print letter

index = index + |

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Traversing with For Loop

" many operations go through string one character at a time
= this can be accomplished easier using
= a for loop and

= a string variable
= Example:

for letter in name:

print letter

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Generating Duck Names

* What does the following code do!?

prefix = "R"
infixes = "iau"
suffix = "p"

for infix in infixes:

print prefix + infix + suffix

= ... and greetings from Andebyen!

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

String Slices

= slice part of a string
= Example I:
name = "Phartiphukboriz"

print name[6:10]

" one can use negative indices:

name[6:-5] == name[6:len(name)-5]

a r ¢t h u

= view string with indices before letters:
1 1 1 1 |1

i'p
6
O I 2 3 45

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

P'h klb
I 7 8 9 |

0 2 3 4 5

String Slices

= slice part of a string
= Example 2:

name = "Phartiphukboriz"

print name[6:6] # empty string has length 0
print name[:6] # no left index = 0

print name[6:] # no right index = len(name)
print name|[:] # guess ;)

a r ¢t h u

= view string with indices before letters:
1 1 1 1 |1

i‘p
6
O I 2 3 45

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

P!h

0 2 3 4 5 7 8 9

Changing Strings

* indices and slices are read-only (immutable)

" you cannot assign to an index or a slice:

= change strings by building new ones
= Example I:

name = "Slartibartfast”

name = "s" + name[|:]
= Example 2:

name = "Anders And"

name2 = name[:6] + "ine" + name[6:]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Searching in Strings

* indexing goes from index to letter
" reverse operation is called find (search)
* |Implementation:
def find(word, letter):
index =0
while index < len(word):
if word[index] == letter:
return index
index = index + |
return -|

* Why not use a for loop?

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Looping and Counting

= want to count number of a certain letter in a word

= for this, we use a counter variable

= |mplementation:
def count(word, letter):
count =0
for x in word:
if x == letter:
count = count + |
return count

= Can we use a while loop here!?

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

String Methods

* methods = functions associated to a data structure
= calling a method is called method invocation
= dir(object): get list of all methods of a data structure
= Example:

name = "Slartibartfast”

print name.lower()

print name.upper ()

print name.find("a")

print name.count("a")

for method in dir(name):

print method
help(name.upper)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Using the Inclusion Operator

* how to find out if string contained in another string?
* ldea: use a while loop and slices
def contained_in(word|l, word2):
index =0
while index+len(wordl) <= len(word2):
if word2[index:index+len(wordl)] == word|:
return True
index = index+ |

return False

* Python has pre-defined operator in:

print "phuk” in "Phartiphukborlz"

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Comparing Strings
= string comparison is from left-to-right (lexicographic)

= Example I:
"slartibartfast" > "phartiphukborlz"

= Example 2:
"Slartibartfast” < "phartiphukborlz"

= Note: string comparison is case-sensitive

= to avoid problems with case, use lower() or upper()

= Example 3:

"Slartibartfast".upper() > "phartiphukborlz".upper()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging String Algorithms

* beginning and end critical, when iterating through sequences
* number of iterations often off by one (obi-wan error)

= Example:
def is_reverse(wordl, word?2):
if len(wordl) != len(word?2): return False
i=0
j = len(word?2)
while j > O:
if wordI[i] != word2[j]: return False

=i+l j=j-1

return True

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging String Algorithms

* beginning and end critical, when iterating through sequences
* number of iterations often off by one (obi-wan error)

= Example:
def is_reverse(wordl, word?2):
if len(wordl) != len(word?2): return False
i=0
j = len(word?2) - |
while j > O:
if wordI[i] != word2[j]: return False

=i+l j=j-1

return True

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging String Algorithms

* beginning and end critical, when iterating through sequences
* number of iterations often off by one (obi-wan error)

= Example:
def is_reverse(wordl, word?2):
if len(wordl) != len(word?2): return False
i=0
j = len(word?2) - |
while j >= 0:
if wordI[i] != word2[j]: return False

=i+l j=j-1

return True

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging String Algorithms

* beginning and end critical, when iterating through sequences
* number of iterations often off by one (obi-wan error)

= Example:
def is_reverse(wordl, word?2):
if len(wordl) != len(word?2): return False
i=0
j = len(word?2)
while j > O:
if wordI[i] != word2[j-1]: return False

=i+l j=j-1

return True

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

HANDLING TEXT FILES

Reading Files

= open files for reading using the open(name) built-in function
= Example: f = open("anna_karenina.txt")

= return value is file object in reading mode (mode 'r')

= we can read all content into string using the read() method
= Example: content = f.read()
print content[:60]
print content[3000:3137]

= contains line endings (here “\r\n”)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Reading Lines from a File

" instead of reading all content, we can use method readline()
= Example: print f.readline()
next = f.readline().strip()
print next
= the method strip() removes all leading and trailing whitespace

= whitespace = \n,\r,or \t (new line, carriage return, tab)

= we can also iterate through all lines using a for loop
= Example: for line in f:
line = line.strip()

print line

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Reading Words from a File

= often a line consists of many words
" no direct support to read words
= string method split() can be used with for loop

= Example:

def print_all_words(f):
for line in f:
for word in line.split():
print word

= variant split(sep) using sep instead of whitespace

= Example: for part in "Slartibartfast”.split("a"):

print part

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Analyzing Words

€69

= Example |: words beginning with capital letter ending in “a
def cap_end a(word):

return word[0].upper() == word[0]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Analyzing Words

€69

= Example |: words beginning with capital letter ending in “a
def cap_end a(word):

return word[0].upper() == word[0] and word[-1] == "a

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Analyzing Words

€69

= Example |: words beginning with capital letter ending in “a
def cap_end a(word):

return word[0].isupper() and word[-1] == "a

= Example 2: words that contain a double letter
def contains_double_letter(word):
last = word[0]
for letter in word[1]
if last == letter:
return True
last = letter

return False

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Analyzing Words

€69

= Example |: words beginning with capital letter ending in “a
def cap_end a(word):

return word[0].isupper() and word[-1] == "a

= Example 2: words that contain a double letter
def contains_double_letter(word):
for i in range(len(word)-1):
if word[i] == word[i+1]:
return True

return False

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Adding Statistics

= Example: let’s count our special words
def count_words(f):
count = count_cap_end a = contains_double_letter =0
for line in f:
for word in line.split():
count = count + |
if cap_end_a(word):
count_cap _end a =count_cap_end a + |
if contains_double letter(word):
count_double letter = count_double letter + |
print count, count_cap_end_a, count_double letter

print count_double_letter * 100 / count, "%"

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Adding Statistics

= Example: let’s count our special words
def count_words(f):
count = count_cap_end a = contains_double_letter =0
for line in f:
for word in line.split():
count += |
if cap_end_a(word):
count_cap _end a +=|
if contains_double letter(word):
count_double letter += |
print count, count_cap_end_a, count_double letter

print count_double_letter * 100 / count, "%"

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging by Testing Functions

= correct selection of tests important
= check obviously different cases for correct return value
= check corner cases (here:first letter, last letter etc.)
= Example:
def contains_double_letter(word):

for i in range(len(word)-1):

if word[i] == word[i+1]:
return True

return False
= test "'mallorca” and "ibiza"
= test "llamada" and "bell"

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

LIST PROCESSING

Lists as Sequences

= lists are sequences of values

= lists can be constructed using “[”" and “]”
= Example: 42, 23]

"Hello", "World", "!"]

"strings and", int, "mix", 2]

]
= |ists can be nested, i.e., a list can contain other lists
= Example: [[I,2,3],[4,5,6],[7,8, 9]]

= lists are normal values, i.e., they can be printed, assigned etc.
= Example: x =[1,2,3]

print X, [x, x], [[X, X], X]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Mutable Lists

= lists can be accessed using indices
= lists are mutable, i.e., they can be changed destructively
= Example:

x =11,2,3]

print x[1]

x[1] =4

print x, x[1]
* len(object) and negative values work like for strings
= Example:

x[2] == x[-1]

x[1] == x[len(x)-2]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

