
1

Database Modifications

  A modification command does not
return a result (as a query does), but
changes the database in some way

  Three kinds of modifications:
1.  Insert a tuple or tuples
2.  Delete a tuple or tuples
3.  Update the value(s) of an existing tuple

or tuples

2

Insertion

  To insert a single tuple:
 INSERT INTO <relation>
 VALUES (<list of values>);

  Example: add to Likes(drinker, beer)
the fact that Lars likes Odense Classic.
 INSERT INTO Likes
 VALUES(’Lars’, ’Od.Cl.’);

3

Specifying Attributes in INSERT

  We may add to the relation name a list of
attributes

  Two reasons to do so:
1.  We forget the standard order of attributes for

the relation
2.  We don’t have values for all attributes, and

we want the system to fill in missing
components with NULL or a default value

4

Example: Specifying Attributes

  Another way to add the fact that Lars
likes Odense Cl. to Likes(drinker, beer):

INSERT INTO Likes(beer, drinker)
VALUES(’Od.Cl.’, ’Lars’);

5

Adding Default Values

  In a CREATE TABLE statement, we can
follow an attribute by DEFAULT and a
value

  When an inserted tuple has no value for
that attribute, the default will be used

6

Example: Default Values

 CREATE TABLE Drinkers (
 name CHAR(30) PRIMARY KEY,
 addr CHAR(50)

 DEFAULT ’Vestergade’,
 phone CHAR(16)
);

7

Example: Default Values

 INSERT INTO Drinkers(name)
 VALUES(’Lars’);
Resulting tuple:

Lars Vestergade NULL
name address phone

8

Inserting Many Tuples

  We may insert the entire result of a
query into a relation, using the form:
 INSERT INTO <relation>
 (<subquery>);

9

Example: Insert a Subquery

  Using Frequents(drinker, bar), enter
into the new relation PotBuddies(name)
all of Lars “potential buddies”, i.e.,
those drinkers who frequent at least
one bar that Lars also frequents

10

Solution

INSERT INTO PotBuddies
(SELECT d2.drinker
 FROM Frequents d1, Frequents d2
 WHERE d1.drinker = ’Lars’ AND
 d2.drinker <> ’Lars’ AND
 d1.bar = d2.bar

);

Pairs of Drinker
tuples where the
first is for Lars,
the second is for
someone else,
and the bars are
the same

The other
drinker

11

Deletion

  To delete tuples satisfying a condition
from some relation:
 DELETE FROM <relation>
 WHERE <condition>;

12

Example: Deletion

  Delete from Likes(drinker, beer) the fact
that Lars likes Odense Classic:
 DELETE FROM Likes
 WHERE drinker = ’Lars’ AND
 beer = ’Od.Cl.’;

13

Example: Delete all Tuples

  Make the relation Likes empty:

 DELETE FROM Likes;

  Note no WHERE clause needed.

14

Example: Delete Some Tuples

  Delete from Beers(name, manf) all
beers for which there is another beer by
the same manufacturer.

DELETE FROM Beers b
WHERE EXISTS (
 SELECT name FROM Beers
 WHERE manf = b.manf AND
 name <> b.name);

Beers with the same
manufacturer and
a different name
from the name of
the beer represented
by tuple b

15

Semantics of Deletion

  Suppose Albani makes only Odense
Classic and Eventyr

  Suppose we come to the tuple b for
Odense Classic first

  The subquery is nonempty, because of
the Eventyr tuple, so we delete Od.Cl.

  Now, when b is the tuple for Eventyr,
do we delete that tuple too?

16

Semantics of Deletion

  Answer: we do delete Eventyr as well
  The reason is that deletion proceeds in

two stages:
1.  Mark all tuples for which the WHERE

condition is satisfied
2.  Delete the marked tuples

17

Updates

  To change certain attributes in certain
tuples of a relation:
 UPDATE <relation>
 SET <list of attribute assignments>
 WHERE <condition on tuples>;

18

Example: Update

  Change drinker Lars’s phone number to
47 11 23 42:

 UPDATE Drinkers
 SET phone = ’47 11 23 42’
 WHERE name = ’Lars’;

19

Example: Update Several Tuples
  Make 30 the maximum price for beer:

 UPDATE Sells
 SET price = 30
 WHERE price > 30;

Summary 4

More things you should know:
  More joins

 OUTER JOIN, NATURAL JOIN

  Aggregation
  COUNT, SUM, AVG, MAX, MIN
  GROUP BY, HAVING

  Database updates
  INSERT, DELETE, UPDATE

20

21

Functional Dependencies

22

Functional Dependencies

  X →Y is an assertion about a relation R that
whenever two tuples of R agree on all the
attributes of X, then they must also agree on
all attributes in set Y
  Say “X → Y holds in R”
  Convention: …, X, Y, Z represent sets of

attributes; A, B, C,… represent single attributes
  Convention: no set formers in sets of attributes,

just ABC, rather than {A,B,C }

23

Splitting Right Sides of FD’s

  X→A1A2…An holds for R exactly when
each of X→A1, X→A2,…, X→An hold for R

  Example: A→BC is equivalent to A→B
and A→C

  There is no splitting rule for left sides
  We’ll generally express FD’s with

singleton right sides

24

Example: FD’s

Drinkers(name, addr, beersLiked, manf,
favBeer)

  Reasonable FD’s to assert:
1.  name → addr favBeer

  Note: this FD is the same as name → addr
and name → favBeer

2.  beersLiked → manf

25

Example: Possible Data

name addr beersLiked manf favBeer
Peter Campusvej Odense Cl. Albani Erdinger W.
Peter Campusvej Erdinger W. Erdinger Erdinger W.
Lars NULL Odense Cl. Albani Odense Cl.

Because name → addr Because name → favBeer

Because beersLiked → manf

26

Keys of Relations

  K is a superkey for relation R if
K functionally determines all of R

  K is a key for R if K is a superkey,
but no proper subset of K is a
superkey

27

Example: Superkey

Drinkers(name, addr, beersLiked, manf,
 favBeer)

  {name, beersLiked} is a superkey
because together these attributes
determine all the other attributes
  name → addr favBeer
  beersLiked → manf

28

Example: Key

  {name, beersLiked} is a key because
neither {name} nor {beersLiked} is a
superkey
  name doesn’t → manf
  beersLiked doesn’t → addr

  There are no other keys, but lots of
superkeys
  Any superset of {name, beersLiked}

29

Where Do Keys Come From?

1.  Just assert a key K
  The only FD’s are K → A for all

attributes A
2.  Assert FD’s and deduce the keys by

systematic exploration

30

More FD’s From “Physics”

  Example:
“no two courses can meet in the same
room at the same time” tells us:
  hour room → course

31

Inferring FD’s

  We are given FD’s X1 → A1, X2 → A2,…,
Xn → An , and we want to know whether
an FD Y → B must hold in any relation
that satisfies the given FD’s
  Example:

If A → B and B → C hold, surely A → C
holds, even if we don’t say so

  Important for design of good relation
schemas

32

Inference Test

  To test if Y → B, start by assuming two
tuples agree in all attributes of Y

 Y
0000000. . . 0
00000?? . . . ?

33

Inference Test

  Use the given FD’s to infer that these
tuples must also agree in certain other
attributes
  If B is one of these attributes, then Y → B

is true
 Otherwise, the two tuples, with any forced

equalities, form a two-tuple relation that
proves Y -> B does not follow from the
given FD’s

34

Closure Test

  An easier way to test is to compute the
closure of Y, denoted Y +

  Basis: Y + = Y
  Induction: Look for an FD’s left side X

that is a subset of the current Y +
  If the FD is X → A, add A to Y +

35

Y+
new Y+

X A

36

Finding All Implied FD’s

  Motivation: “normalization,” the process
where we break a relation schema into
two or more schemas

  Example: ABCD with FD’s AB → C,
C → D, and D → A
  Decompose into ABC, AD. What FD’s hold in

ABC ?
  Not only AB → C, but also C → A !

37

Why?

a1b1c ABC

ABCD

a2b2c

Thus, tuples in the projection
with equal C’s have equal A’s
C → A

a1b1cd1 a2b2cd2

comes
from

d1=d2 because
C → D

a1=a2 because
D → A

38

Basic Idea

1.  Start with given FD’s and find all
nontrivial FD’s that follow from the
given FD’s
  Nontrivial = right side not contained in

the left

2.  Restrict to those FD’s that involve only
attributes of the projected schema

39

Simple, Exponential Algorithm

1.  For each set of attributes X, compute X +
2.  Add X → A for all A in X + - X
3.  However, drop XY → A whenever we

discover X → A
  Because XY → A follows from X → A in any

projection

4.  Finally, use only FD’s involving projected
attributes

40

A Few Tricks

  No need to compute the closure of the
empty set or of the set of all attributes

  If we find X + = all attributes, so is the
closure of any superset of X

41

Example: Projecting FD’s

  ABC with FD’s A → B and B → C
Project onto AC:
  A +=ABC ; yields A → B, A → C

 We do not need to compute AB + or AC +

  B +=BC ; yields B → C
  C +=C ; yields nothing
  BC +=BC ; yields nothing

42

Example: Projecting FD’s

  Resulting FD’s: A → B, A → C, and
B → C

  Projection onto AC: A → C
 Only FD that involves a subset of {A,C }

43

A Geometric View of FD’s

  Imagine the set of all instances of a
particular relation

  That is, all finite sets of tuples that have
the proper number of components

  Each instance is a point in this space

44

Example: R(A,B)

{(1,2), (3,4)}

{}

{(1,2), (3,4), (1,3)}

{(5,1)}

45

An FD is a Subset of Instances

  For each FD X → A there is a subset
of all instances that satisfy the FD

  We can represent an FD by a region in
the space

  Trivial FD = an FD that is represented
by the entire space
  Example: A → A

46

Example: A → B for R(A,B)

{(1,2), (3,4)}

{}

{(1,2), (3,4), (1,3)}

{(5,1)}
A → B

47

Representing Sets of FD’s

  If each FD is a set of relation instances,
then a collection of FD’s corresponds to
the intersection of those sets
  Intersection = all instances that satisfy all

of the FD’s

48

Example

A → B
B → C

CD → A

Instances satisfying
A → B, B → C, and
CD → A

49

Implication of FD’s

  If an FD Y → B follows from FD’s
X1 → A1, …, Xn → An , then the region in
the space of instances for Y → B must
include the intersection of the regions
for the FD’s Xi → Ai
  That is, every instance satisfying all the

FD’s Xi → Ai surely satisfies Y → B
  But an instance could satisfy Y → B, yet

not be in this intersection

50

Example

A → B B → C A → C

51

Relational Schema Design

  Goal of relational schema design is to
avoid anomalies and redundancy
  Update anomaly: one occurrence of a fact

is changed, but not all occurrences
  Deletion anomaly: valid fact is lost when a

tuple is deleted

52

Example of Bad Design

Drinkers(name, addr, beersLiked, manf, favBeer)

name addr beersLiked manf favBeer
Peter Campusvej Odense Cl. Alb. Erdinger W.
Peter ??? Erdinger W. Erd. ???
Lars NULL Odense Cl. ??? Odense Cl.

Data is redundant, because each of the ???’s can be figured
out by using the FD’s name → addr favBeer and
beersLiked → manf

53

This Bad Design Also
Exhibits Anomalies

Drinkers(name, addr, beersLiked, manf, favBeer)

name addr beersLiked manf favBeer
Peter Campusvej Odense Cl. Alb. Erdinger W.
Peter Campusvej Erdinger W. Erd. Erdinger W.
Lars NULL Odense Cl. Alb. Odense Cl.

•  Update anomaly: if Peter moves to Niels Bohrs Alle,
 will we remember to change each of his tuples?
•  Deletion anomaly: If nobody likes Odense Classic, we lose
 track of the fact that Albani manufactures Odense Classic

54

Boyce-Codd Normal Form

  We say a relation R is in BCNF if
whenever X → Y is a nontrivial FD that
holds in R, X is a superkey
  Remember: nontrivial means Y is not

contained in X
  Remember, a superkey is any superset of

a key (not necessarily a proper superset)

55

Example

Drinkers(name, addr, beersLiked, manf, favBeer)
FD’s: name → addr favBeer, beersLiked → manf

  Only key is {name, beersLiked}
  In each FD, the left side is not a

superkey
  Any one of these FD’s shows Drinkers

is not in BCNF

56

Another Example

Beers(name, manf, manfAddr)
FD’s: name → manf, manf → manfAddr
  Only key is {name}
  Name → manf does not violate BCNF, but

manf → manfAddr does

57

Decomposition into BCNF

  Given: relation R with FD’s F
  Look among the given FD’s for a BCNF

violation X → Y
  If any FD following from F violates BCNF,

then there will surely be an FD in F itself
that violates BCNF

  Compute X +
  Not all attributes, or else X is a superkey

58

Decompose R Using X → Y

  Replace R by relations with schemas:
1.  R1 = X +
2.  R2 = R – (X + – X)

  Project given FD’s F onto the two
new relations

59

Decomposition Picture

R-X + X X +-X

R2

R1

R

60

Example: BCNF Decomposition

Drinkers(name, addr, beersLiked, manf, favBeer)
F = name → addr, name → favBeers

 beersLiked → manf
  Pick BCNF violation name → addr
  Close the left side:

 {name}+ = {name, addr, favBeer}
  Decomposed relations:

1.  Drinkers1(name, addr, favBeer)
2.  Drinkers2(name, beersLiked, manf)

61

Example: BCNF Decomposition

  We are not done; we need to check
Drinkers1 and Drinkers2 for BCNF

  Projecting FD’s is easy here
  For Drinkers1(name, addr, favBeer),

relevant FD’s are name → addr and
name → favBeer
  Thus, {name} is the only key and Drinkers1

is in BCNF

62

Example: BCNF Decomposition

  For Drinkers2(name, beersLiked, manf),
the only FD is beersLiked → manf, and
the only key is {name, beersLiked}
  Violation of BCNF

  beersLiked+ = {beersLiked, manf}, so
we decompose Drinkers2 into:

1.  Drinkers3(beersLiked, manf)
2.  Drinkers4(name, beersLiked)

63

Example: BCNF Decomposition
  The resulting decomposition of Drinkers:

1.  Drinkers1(name, addr, favBeer)
2.  Drinkers3(beersLiked, manf)
3.  Drinkers4(name, beersLiked)
  Notice: Drinkers1 tells us about drinkers,

Drinkers3 tells us about beers, and Drinkers4
tells us the relationship between drinkers and
the beers they like

  Compare with running example:
1.  Drinkers(name, addr, phone)
2.  Beers(name, manf)
3.  Likes(drinker,beer)

64

Third Normal Form – Motivation

  There is one structure of FD’s that
causes trouble when we decompose

  AB → C and C → B
  Example:

A = street address, B = city, C = post code

  There are two keys, {A,B } and {A,C }
  C → B is a BCNF violation, so we must

decompose into AC, BC

65

We Cannot Enforce FD’s

  The problem is that if we use AC and
BC as our database schema, we cannot
enforce the FD AB → C by checking
FD’s in these decomposed relations

  Example with A = street, B = city, and
C = post code on the next slide

66

An Unenforceable FD

 street post
Campusvej 5230
Vestergade 5000

 city post
Odense 5230
Odense 5000

Join tuples with equal post codes

 street city post
Campusvej Odense 5230
Vestergade Odense 5000

No FD’s were violated in the decomposed relations and
FD street city → post holds for the database as a whole

67

An Unenforceable FD

 street post
Hjallesevej 5230
Hjallesevej 5000

 city post
Odense 5230
Odense 5000

Join tuples with equal post codes

 street city post
Hjallesevej Odense 5230
Hjallesevej Odense 5000

Although no FD’s were violated in the decomposed relations,
FD street city → post is violated by the database as a whole

68

3NF Let’s Us Avoid This Problem

  3rd Normal Form (3NF) modifies the
BCNF condition so we do not have to
decompose in this problem situation

  An attribute is prime if it is a member of
any key

  X → A violates 3NF if and only if X is
not a superkey, and also A is not prime

69

Example: 3NF

  In our problem situation with FD’s
AB → C and C → B, we have keys AB
and AC

  Thus A, B, and C are each prime
  Although C → B violates BCNF, it does

not violate 3NF

70

What 3NF and BCNF Give You

  There are two important properties of a
decomposition:

1.  Lossless Join: it should be possible to project
the original relations onto the decomposed
schema, and then reconstruct the original

2.  Dependency Preservation: it should be
possible to check in the projected relations
whether all the given FD’s are satisfied

71

3NF and BCNF – Continued

  We can get (1) with a BCNF decomposition
  We can get both (1) and (2) with a 3NF

decomposition
  But we can’t always get (1) and (2) with a

BCNF decomposition
  street-city-post is an example

