
1

Database Design
and Programming

DM 505, Spring 2012, 3rd Quarter

Peter Schneider-Kamp

2

Course Organisation

§  Literature
§  Database Systems: The Complete Book

§  Evaluation
§  Project and 1-day take-home exam, 7 scale

§  Project
§  Design and implementation of a database

using PostgreSQL and JDBC

§  Schedule
§  4/2 lectures a week, 2/4 exercises a week

3

Course Organisation

§  Literature
§  Database Systems: The Complete Book
§  Chapters 1 & 2 available online
§  Chapter 5.1 on Blackboard
§  book available from SDU book store

4

(Preliminary) Course Schedule

§  some exercises in terminal room
§  1st in Week 07

Week Room 05 06 07 08 09 10 11

Tue
14-16 U151 L Fri

12-14 E E E E E E

Wed
10-12 U151 L L L L L Fri

08-10 L L

Thu
14-16 U151 L E L E L E L

5

Where are Databases used?

It used to be about boring stuff:
§  Corporate data

§  payrolls, inventory, sales, customers,
accounting, documents, ...

§  Banking systems
§  Stock exchanges
§  Airline systems
§  ...

6

Where are Databases used?

Today, databases are used in all fields:
§  Web backends:

§ Web search (Google, Live, Yahoo, ...)
§  Social networks (Facebook, ...)
§  Blogs, discussion forums
§  ...

§  Integrating data (data warehouses)
§  Scientific and medical databases
§  ...

7

Why are Databases used?

§  Easy to use
§  Flexible searching
§  Efficiency
§  Centralized storage, multi-user access
§  Scalability (large amounts of data)
§  Security and consistency
§  Abstraction (implementation hiding)
§  Good data modeling

8

Why learn about Databases?

§  Very widely used
§  Part of most current software solutions
§  DB expertise is a career asset
§  Interesting:

§ Mix of different requirements
§ Mix of different methodologies
§  Integral part of data driven development
§  Interesting real world applications

9

Short History of Databases

§  Early 60s: Integrated Data Store, General
Electric, first DBMS, network data model

§  Late 60s: Information Management
System, IBM, hierarchical data model

§  1970: E. Codd: Relational data model,
relational query languages, Turing prize

§  Mid 70s: First relational DBMSs (IBM
System R, UC Berkeley Ingres, ...)

§  80s: Relational model de facto standard

10

Short History of Databases

§  1986: SQL standardized
§  90s: Object-relational databases,

object-oriented databases
§  Late 90s: XML databases
§  1999: SQL incorporates some OO features
§  2003, 2006: SQL incorporates support for

XML data
§  ...

11

Current Database Systems

§  DBMS = Database Management System
§  Many vendors (Oracle, IBM DB2, MS

SQL Server, MySQL, PostgreSQL, . . .)
§  All rather similar
§  Very big systems, but easy to use
§  Common features:

§  Relational model
§  SQL as the query language
§  Server-client architecture

Transactions

§  Groups of statements that need to be
executed together

§  Example:
§  Transferring money between accounts
§  Need to subtract amount from 1st account
§  Need to add amount to 2nd account
§ Money must not be lost!
§ Money should not be created!

12

ACID

Required properties for transactions
§  “A“ for “atomicity“ – all or nothing of

transactions
§  “C“ for “consistency“ – constraints hold

before and after each transaction
§  “I“ for “isolation“ – illusion of sequential

execution of each transaction
§  “D“ for “durability“ – effect of a

completed transaction may not get lost
13

14

Database Develolpment

§  Requirement specification (not here)
§  Data modeling
§  Database modeling
§  Application programming
§  Database tuning

15

Database Course Contents

§  E/R-model for data modeling
§  Relational data model
§  SQL language
§  Application programming (JDBC)
§  Basic implementation principles
§  DB tuning
Note: DM 505 ≠ SQL course
Note: DM 505 ≠ PostgreSQL course

Data Model

16

17

What is a Data Model?

1.  Mathematical representation of data
§  relational model = tables
§  semistructured model = trees/graphs
§  ...

2.  Operations on data
3.  Constraints

18

A Relation is a Table

 name manf
 Odense Classic Albani
 Erdinger Weißbier Erdinger
 Beers

Note: Order of attributes and rows
 is irrelevant (sets / bags)

Attributes
(column
headers)

Tuples
(rows)

Relation
 name

19

Schemas

§  Relation schema =
 relation name and attribute list

§ Optionally: types of attributes
§  Example: Beers(name, manf) or

Beers(name: string, manf: string)
§  Database = collection of relations
§  Database schema = set of all relation

schemas in the database

20

Why Relations?

§  Very simple model
§  Often matches how we think about data
§  Abstract model that underlies SQL,

the most important database language
today

21

Our Running Example

 Beers(name, manf)
 Bars(name, addr, license)
 Drinkers(name, addr, phone)
 Likes(drinker, beer)
 Sells(bar, beer, price)
 Frequents(drinker, bar)

§  Underline = key (tuples cannot have
the same value in all key attributes)
§  Excellent example of a constraint

22

Database Schemas in SQL

§  SQL is primarily a query language, for
getting information from a database

§  But SQL also includes a data-definition
component for describing database
schemas

23

Creating (Declaring) a Relation

§  Simplest form is:
 CREATE TABLE <name> (
 <list of elements>
);

§  To delete a relation:
 DROP TABLE <name>;

24

Elements of Table Declarations

§  Most basic element:
an attribute and its type

§  The most common types are:
§  INT or INTEGER (synonyms)
§  REAL or FLOAT (synonyms)
§  CHAR(n) = fixed-length string of n

characters
§  VARCHAR(n) = variable-length string of up

to n characters

25

Example: Create Table

 CREATE TABLE Sells (
 bar CHAR(20),

 beer VARCHAR(20),

 price REAL

);

26

SQL Values

§  Integers and reals are represented as
you would expect

§  Strings are too, except they require
single quotes
§  Two single quotes = real quote, e.g.,
’Trader Joe’’s Hofbrau Bock’

§  Any value can be NULL
§  (like Objects in Java)

27

Dates and Times

§  DATE and TIME are types in SQL
§  The form of a date value is:
 DATE ’yyyy-mm-dd’
§  Example: DATE ’2009-02-04’ for

February 4, 2009

28

Times as Values

§  The form of a time value is:
 TIME ’hh:mm:ss’

 with an optional decimal point and
fractions of a second following
§  Example: TIME ’15:30:02.5’ = two

and a half seconds after 15:30

29

Declaring Keys

§  An attribute or list of attributes may be
declared PRIMARY KEY or UNIQUE

§  Either says that no two tuples of the
relation may agree in all the attribute(s)
on the list

§  There are a few distinctions to be
mentioned later

30

Declaring Single-Attribute Keys

§  Place PRIMARY KEY or UNIQUE after the
type in the declaration of the attribute

§  Example:
 CREATE TABLE Beers (
 name CHAR(20) UNIQUE,

 manf CHAR(20)

);

31

Declaring Multiattribute Keys

§  A key declaration can also be another
element in the list of elements of a
CREATE TABLE statement

§  This form is essential if the key consists
of more than one attribute
§ May be used even for one-attribute keys

32

Example: Multiattribute Key

§  The bar and beer together are the key for Sells:
 CREATE TABLE Sells (
 bar CHAR(20),

 beer VARCHAR(20),

 price REAL,

 PRIMARY KEY (bar, beer)

);

33

PRIMARY KEY vs. UNIQUE

1.  There can be only one PRIMARY KEY
for a relation, but several UNIQUE
attributes

2.  No attribute of a PRIMARY KEY can
ever be NULL in any tuple. But
attributes declared UNIQUE may have
NULL’s, and there may be several
tuples with NULL

