
1

Boyce-Codd Normal Form

§  We say a relation R is in BCNF if
whenever X → Y is a nontrivial FD that
holds in R, X is a superkey
§  Remember: nontrivial means Y is not

contained in X
§  Remember, a superkey is any superset of

a key (not necessarily a proper superset)

2

Example

Drinkers(name, addr, beersLiked, manf, favBeer)
FD’s: name → addr favBeer, beersLiked → manf

§  Only key is {name, beersLiked}
§  In each FD, the left side is not a

superkey
§  Any one of these FD’s shows Drinkers

is not in BCNF

3

Another Example

Beers(name, manf, manfAddr)
FD’s: name → manf, manf → manfAddr
§  Only key is {name}
§  Name → manf does not violate BCNF, but

manf → manfAddr does

4

Decomposition into BCNF

§  Given: relation R with FD’s F
§  Look among the given FD’s for a BCNF

violation X → Y
§  If any FD following from F violates BCNF,

then there will surely be an FD in F itself
that violates BCNF

§  Compute X +
§  Not all attributes, or else X is a superkey

5

Decompose R Using X → Y

§  Replace R by relations with schemas:
1.  R1 = X +
2.  R2 = R – (X + – X)

§  Project given FD’s F onto the two
new relations

6

Decomposition Picture

R-X + X X +-X

R2

R1

R

7

Example: BCNF Decomposition

Drinkers(name, addr, beersLiked, manf, favBeer)
F = name → addr, name → favBeers

 beersLiked → manf
§  Pick BCNF violation name → addr
§  Close the left side:

 {name}+ = {name, addr, favBeer}
§  Decomposed relations:

1.  Drinkers1(name, addr, favBeer)
2.  Drinkers2(name, beersLiked, manf)

8

Example: BCNF Decomposition

§  We are not done; we need to check
Drinkers1 and Drinkers2 for BCNF

§  Projecting FD’s is easy here
§  For Drinkers1(name, addr, favBeer),

relevant FD’s are name → addr and
name → favBeer
§  Thus, {name} is the only key and Drinkers1

is in BCNF

9

Example: BCNF Decomposition

§  For Drinkers2(name, beersLiked, manf),
the only FD is beersLiked → manf, and
the only key is {name, beersLiked}
§  Violation of BCNF

§  beersLiked+ = {beersLiked, manf}, so
we decompose Drinkers2 into:

1.  Drinkers3(beersLiked, manf)
2.  Drinkers4(name, beersLiked)

10

Example: BCNF Decomposition
§  The resulting decomposition of Drinkers:

1.  Drinkers1(name, addr, favBeer)
2.  Drinkers3(beersLiked, manf)
3.  Drinkers4(name, beersLiked)
§  Notice: Drinkers1 tells us about drinkers,

Drinkers3 tells us about beers, and Drinkers4
tells us the relationship between drinkers and
the beers they like

§  Compare with running example:
1.  Drinkers(name, addr, phone)
2.  Beers(name, manf)
3.  Likes(drinker,beer)

11

Third Normal Form – Motivation

§  There is one structure of FD’s that
causes trouble when we decompose

§  AB → C and C → B
§  Example:

A = street address, B = city, C = post code

§  There are two keys, {A,B } and {A,C }
§  C → B is a BCNF violation, so we must

decompose into AC, BC

12

We Cannot Enforce FD’s

§  The problem is that if we use AC and
BC as our database schema, we cannot
enforce the FD AB → C by checking
FD’s in these decomposed relations

§  Example with A = street, B = city, and
C = post code on the next slide

13

An Unenforceable FD

 street post
Campusvej 5230
Vestergade 5000

 city post
Odense 5230
Odense 5000

Join tuples with equal post codes

 street city post
Campusvej Odense 5230
Vestergade Odense 5000

No FD’s were violated in the decomposed relations and
FD street city → post holds for the database as a whole

14

An Unenforceable FD

 street post
Hjallesevej 5230
Hjallesevej 5000

 city post
Odense 5230
Odense 5000

Join tuples with equal post codes

 street city post
Hjallesevej Odense 5230
Hjallesevej Odense 5000

Although no FD’s were violated in the decomposed relations,
FD street city → post is violated by the database as a whole

15

Another Unenforcable FD

§  Departures(time, track, train)
§  time track → train and train → track
§  Two keys, {time,track} and {time,train}
§  train → track is a BCNF violation, so we

must decompose into
Departures1(time, train)
Departures2(track,train)

16

Another Unenforceable FD

 time train
 19:08 ICL54
 19:16 IC852

 track train
 4 ICL54
 3 IC852

Join tuples with equal train code

 time track train
 19:08 4 ICL54
 19:16 3 IC852

No FD’s were violated in the decomposed relations,
FD time track → train holds for the database as a whole

17

Another Unenforceable FD

 time train
 19:08 ICL54
 19:08 IC 42

 track train
 4 ICL54
 4 IC 42

Join tuples with equal train code

 time track train
 19:08 4 ICL54
 19:08 4 IC 42

Although no FD’s were violated in the decomposed relations,
FD time track → train is violated by the database as a whole

18

3NF Let’s Us Avoid This Problem

§  3rd Normal Form (3NF) modifies the
BCNF condition so we do not have to
decompose in this problem situation

§  An attribute is prime if it is a member of
any key

§  X → A violates 3NF if and only if X is
not a superkey, and also A is not prime

19

Example: 3NF

§  In our problem situation with FD’s
AB → C and C → B, we have keys AB
and AC

§  Thus A, B, and C are each prime
§  Although C → B violates BCNF, it does

not violate 3NF

20

What 3NF and BCNF Give You

§  There are two important properties of a
decomposition:

1.  Lossless Join: it should be possible to project
the original relations onto the decomposed
schema, and then reconstruct the original

2.  Dependency Preservation: it should be
possible to check in the projected relations
whether all the given FD’s are satisfied

21

3NF and BCNF – Continued

§  We can get (1) with a BCNF decomposition
§  We can get both (1) and (2) with a 3NF

decomposition
§  But we can’t always get (1) and (2) with a

BCNF decomposition
§  street-city-post is an example
§  time-track-train is another example

22

Testing for a Lossless Join

§  If we project R onto R1, R2,…, Rk , can
we recover R by rejoining?

§  Any tuple in R can be recovered from
its projected fragments

§  So the only question is: when we rejoin,
do we ever get back something we
didn’t have originally?

23

The Chase Test

§  Suppose tuple t comes back in the join
§  Then t is the join of projections of

some tuples of R, one for each Ri of
the decomposition

§  Can we use the given FD’s to show that
one of these tuples must be t ?

24

The Chase – (2)

§  Start by assuming t = abc… .
§  For each i, there is a tuple si of R that

has a, b, c,… in the attributes of Ri
§  si can have any values in other

attributes
§  We’ll use the same letter as in t, but

with a subscript, for these components

25

Example: The Chase

§  Let R = ABCD, and the decomposition
be AB, BC, and CD

§  Let the given FD’s be C → D and B →
A

§  Suppose the tuple t = abcd is the join
of tuples projected onto AB, BC, CD

 A B C D
 a b c1 d1

 a2 b c d2

 a3 b3 c d
d

Use C → D

a

Use B → A

26

The Tableau

We’ve proved the
second tuple must be t

The tuples
of R pro-
jected onto
AB, BC, CD

27

Summary of the Chase

1.  If two rows agree in the left side of a FD, make
their right sides agree too

2.  Always replace a subscripted symbol by the
corresponding unsubscripted one, if possible

3.  If we ever get an unsubscripted row, we know
any tuple in the project-join is in the original (the
join is lossless)

4.  Otherwise, the final tableau is a counterexample

28

Example: Lossy Join

§  Same relation R = ABCD and same
decomposition.

§  But with only the FD C → D

29

The Tableau

 A B C D
 a b c1 d1

 a2 b c d2

 a3 b3 c d
d

Use C → D These three tuples are an example
R that shows the join lossy
abcd is not in R, but we can project and
rejoin to get abcd

These projections
rejoin to form
abcd

30

3NF Synthesis Algorithm

§  We can always construct a decomposition
into 3NF relations with a lossless join and
dependency preservation

§  Need minimal basis for the FD’s:
1.  Right sides are single attributes
2.  No FD can be removed
3.  No attribute can be removed from a left side

31

Constructing a Minimal Basis

1.  Split right sides
2.  Repeatedly try to remove an FD and

see if the remaining FD’s are
equivalent to the original

3.  Repeatedly try to remove an attribute
from a left side and see if the resulting
FD’s are equivalent to the original

32

3NF Synthesis – (2)

§  One relation for each FD in the minimal
basis
§  Schema is the union of the left and right

sides

§  If no key is contained in an FD, then add
one relation whose schema is some key

33

Example: 3NF Synthesis

§  Relation R = ABCD
§  FD’s A → B and A → C
§  Decomposition: AB and AC from the

FD’s, plus AD for a key

34

Why It Works

§  Preserves dependencies: each FD from
a minimal basis is contained in a
relation, thus preserved

§  Lossless Join: use the chase to show
that the row for the relation that
contains a key can be made all-
unsubscripted variables

§  3NF: hard part – a property of minimal
bases

Summary 5

More things you should know:
§  Functional Dependency
§  Key, Superkey
§  Update Anomaly, Deletion Anomaly
§  BCNF, Closure, Decomposition
§  Chase Algorithm
§  3rd Normal Form

35

36

Entity-Relationship Model

37

Purpose of E/R Model

§  The E/R model allows us to sketch
database schema designs
§  Includes some constraints, but not

operations

§  Designs are pictures called entity-
relationship diagrams

§  Later: convert E/R designs to relational
DB designs

38

Framework for E/R

§  Design is a serious business
§  The “boss” knows they want a

database, but they don’t know what
they want in it

§  Sketching the key components is an
efficient way to develop a working
database

39

Entity Sets

§  Entity = “thing” or object
§  Entity set = collection of similar entities

§  Similar to a class in object-oriented languages

§  Attribute = property of (the entities of) an
entity set
§  Attributes are simple values, e.g. integers or

character strings, not structs, sets, etc.

40

E/R Diagrams

§  In an entity-relationship diagram:
§  Entity set = rectangle
§  Attribute = oval, with a line to the

rectangle representing its entity set

41

Example:

§  Entity set Beers has two attributes, name and

manf (manufacturer)
§  Each Beers entity has values for these two

attributes, e.g. (Odense Classic, Albani)

Beers

name manf

42

Relationships

§  A relationship connects two or more
entity sets

§  It is represented by a diamond, with
lines to each of the entity sets involved

43

Example: Relationships

Drinkers addr name

Beers

manf name

Bars

name

license

addr

Note:
license =
beer, full,
none

Sells Bars sell some
beers

Likes
Drinkers like
some beers Frequents

Drinkers frequent
some bars

44

Relationship Set

§  The current “value” of an entity set is
the set of entities that belong to it
§  Example: the set of all bars in our

database

§  The “value” of a relationship is a
relationship set, a set of tuples with one
component for each related entity set

45

Example: Relationship Set

§  For the relationship Sells, we might
have a relationship set like:

Bar Beer
C.Ch. Od.Cl.
C.Ch. Erd.Wei.
C.Bio. Od.Cl.
Brygg. Pilsener
C4 Erd.Wei.

46

Multiway Relationships

§  Sometimes, we need a relationship that
connects more than two entity sets

§  Suppose that drinkers will only drink
certain beers at certain bars
§ Our three binary relationships Likes, Sells,

and Frequents do not allow us to make this
distinction

§  But a 3-way relationship would

47

Example: 3-Way Relationship

Bars Beers

Drinkers

name name addr manf

name addr

license

Preferences

48

A Typical Relationship Set

Bar Drinker Beer
C.Ch. Peter Erd.Wei.
C.Ch. Lars Od.Cl.
C.Bio. Peter Od.Cl.
Brygg. Peter Pilsener
C4 Peter Erd.Wei.
C.Bio. Lars Tuborg
Brygg. Lars Ale

49

Many-Many Relationships

§  Focus: binary relationships, such as
Sells between Bars and Beers

§  In a many-many relationship, an entity
of either set can be connected to many
entities of the other set
§  E.g., a bar sells many beers; a beer is sold

by many bars

50

In Pictures:

many-many

51

Many-One Relationships

§  Some binary relationships are many -
one from one entity set to another

§  Each entity of the first set is connected
to at most one entity of the second set

§  But an entity of the second set can be
connected to zero, one, or many
entities of the first set

52

In Pictures:

 many-one

53

Example: Many-One Relationship
§  Favorite, from Drinkers to Beers is

many-one
§  A drinker has at most one favorite beer
§  But a beer can be the favorite of any

number of drinkers, including zero

54

One-One Relationships

§  In a one-one relationship, each entity of
either entity set is related to at most one
entity of the other set

§  Example: Relationship Best-seller between
entity sets Manfs (manufacturer) and Beers
§  A beer cannot be made by more than one

manufacturer, and no manufacturer can have
more than one best-seller (assume no ties)

55

In Pictures:

 one-one

56

Representing “Multiplicity”

§  Show a many-one relationship by an
arrow entering the “one” side
§  Remember: Like a functional dependency

§  Show a one-one relationship by arrows
entering both entity sets

§  Rounded arrow = “exactly one,” i.e.,
each entity of the first set is related to
exactly one entity of the target set

57

Example: Many-One Relationship

Drinkers Beers Likes

Favorite
Notice: two relationships
connect the same entity
sets, but are different

58

Example: One-One Relationship
§  Consider Best-seller between Manfs

and Beers
§  Some beers are not the best-seller of

any manufacturer, so a rounded arrow
to Manfs would be inappropriate.

§  But a beer manufacturer has to have a
best-seller

59

In the E/R Diagram

Manfs Beers Best-
seller

A manufacturer has
exactly one best
seller

A beer is the best-
seller for 0 or 1
manufacturer(s)

60

Attributes on Relationships

§  Sometimes it is useful to attach an
attribute to a relationship

§  Think of this attribute as a property of
tuples in the relationship set

61

Example: Attribute on
Relationship

Bars Beers Sells

price

Price is a function of both the bar and the beer,
not of one alone

62

Equivalent Diagrams Without
Attributes on Relationships

§  Create an entity set representing values
of the attribute

§  Make that entity set participate in the
relationship

63

Example: Removing an
Attribute from a Relationship

Bars Beers Sells

price

Prices
Note convention: arrow
from multiway relationship
= “all other entity sets
together determine a
unique one of these”

64

Roles

§  Sometimes an entity set appears more
than once in a relationship

§  Label the edges between the
relationship and the entity set with
names called roles

65

Example: Roles

Drinkers

Married

husband wife

 Relationship Set

Husband Wife
Lars Lene
Kim Joan
… …

66

Example: Roles

Drinkers

Buddies

1 2

 Relationship Set

Buddy1 Buddy2
Peter Lars
Peter Pepe
Pepe Bea
Bea Rafa
… …

67

Subclasses

§  Subclass = special case = fewer entities
= more properties

§  Example: Ales are a kind of beer
§  Not every beer is an ale, but some are
§  Let us suppose that in addition to all the

properties (attributes and relationships) of
beers, ales also have the attribute color

68

Subclasses in E/R Diagrams

§  Assume subclasses form a tree
§  I.e., no multiple inheritance

§  Isa triangles indicate the subclass
relationship
§  Point to the superclass

69

Example: Subclasses

Beers

Ales

isa

name manf

color

70

E/R Vs. Object-Oriented Subclasses

§  In OO, objects are in one class only
§  Subclasses inherit from superclasses.

§  In contrast, E/R entities have
representatives in all subclasses to
which they belong
§  Rule: if entity e is represented in a subclass,

then e is represented in the superclass (and
recursively up the tree)

71

Example: Representatives of
Entities

Beers

Ales

isa

name manf

color

Pete’s Ale

72

Keys

§  A key is a set of attributes for one
entity set such that no two entities in
this set agree on all the attributes of
the key
§  It is allowed for two entities to agree on

some, but not all, of the key attributes

§  We must designate a key for every
entity set

73

Keys in E/R Diagrams

§  Underline the key attribute(s)
§  In an Isa hierarchy, only the root entity

set has a key, and it must serve as the
key for all entities in the hierarchy

74

Example: name is Key for Beers

Beers

Ales

isa

name manf

color

75

Example: a Multi-attribute Key

Courses

dept number hours room

•  Note that hours and room could also serve as a
 key, but we must select only one key

76

Weak Entity Sets

§  Occasionally, entities of an entity set
need “help” to identify them uniquely

§  Entity set E is said to be weak if in
order to identify entities of E uniquely,
we need to follow one or more many-
one relationships from E and include
the key of the related entities from the
connected entity sets

77

Example: Weak Entity Set

§  name is almost a key for football players, but
there might be two with the same name

§  number is certainly not a key, since players
on two teams could have the same number.

§  But number, together with the team name
related to the player by Plays-on should be
unique

78

In E/R Diagrams

Players Teams Plays-
on

name name number

•  Double diamond for supporting many-one relationship
•  Double rectangle for the weak entity set

Note: must be rounded
because each player needs
a team to help with the key

79

Weak Entity-Set Rules

§  A weak entity set has one or more
many-one relationships to other
(supporting) entity sets
§  Not every many-one relationship from a

weak entity set need be supporting
§  But supporting relationships must have a

rounded arrow (entity at the “one” end is
guaranteed)

80

Weak Entity-Set Rules – (2)

§  The key for a weak entity set is its own
underlined attributes and the keys for
the supporting entity sets
§  E.g., (player) number and (team) name is

a key for Players in the previous example

81

Design Techniques

1.  Avoid redundancy
2.  Limit the use of weak entity sets
3.  Don’t use an entity set when an

attribute will do

82

Avoiding Redundancy

§  Redundancy = saying the same thing
in two (or more) different ways

§  Wastes space and (more importantly)
encourages inconsistency
§  Two representations of the same fact

become inconsistent if we change one and
forget to change the other

§  Recall anomalies due to FD’s

83

Example: Good

Beers Manfs ManfBy

name

This design gives the address of each
manufacturer exactly once

name addr

84

Example: Bad

Beers Manfs ManfBy

name

This design states the manufacturer of a beer
twice: as an attribute and as a related entity.

name

manf

addr

85

Example: Bad

Beers

name

This design repeats the manufacturer’s address
once for each beer and loses the address if there
are temporarily no beers for a manufacturer

manf manfAddr

86

Entity Sets Versus Attributes

§  An entity set should satisfy at least
one of the following conditions:
§  It is more than the name of something; it

has at least one nonkey attribute
 or

§  It is the “many” in a many-one or many-
many relationship

87

Example: Good

Beers Manfs ManfBy

name

•  Manfs deserves to be an entity set because of
 the nonkey attribute addr
•  Beers deserves to be an entity set because it is
 the “many” of the many-one relationship ManfBy

name addr

88

Example: Good

Beers

name

There is no need to make the manufacturer an
entity set, because we record nothing about
manufacturers besides their name

manf

89

Example: Bad

Beers Manfs ManfBy

name

Since the manufacturer is nothing but a name,
and is not at the “many” end of any relationship,
it should not be an entity set

name

90

Don’t Overuse Weak Entity Sets

§  Beginning database designers often doubt
that anything could be a key by itself
§  They make all entity sets weak, supported by all

other entity sets to which they are linked

§  In reality, we usually create unique ID’s for
entity sets
§  Examples include CPR numbers, car’s license

plates, etc.

91

When Do We Need Weak
Entity Sets?

§  The usual reason is that there is no
global authority capable of creating
unique ID’s

§  Example: it is unlikely that there could
be an agreement to assign unique
player numbers across all football teams
in the world

92

From E/R Diagrams to Relations
§  Entity set → relation

§  Attributes → attributes

§  Relationships → relations whose
attributes are only:
§  The keys of the connected entity sets
§  Attributes of the relationship itself

93

Entity Set → Relation

Relation: Beers(name, manf)

Beers

name manf

94

Relationship → Relation

Drinkers Beers Likes

Likes(drinker, beer)
Favorite

Favorite(drinker, beer)

Married

husband

wife

Married(husband, wife)

name addr name manf

Buddies

1 2

Buddies(name1, name2)

95

Combining Relations

§  OK to combine into one relation:
1.  The relation for an entity-set E
2.  The relations for many-one relationships

of which E is the “many”

§  Example: Drinkers(name, addr) and
Favorite(drinker, beer) combine to
make Drinker1(name, addr, favBeer)

Redundancy

96

Risk with Many-Many Relationships
§  Combining Drinkers with Likes would be

a mistake. It leads to redundancy, as:

name addr beer
Peter Campusvej Od.Cl.
Peter Campusvej Erd.W.

97

Handling Weak Entity Sets

§  Relation for a weak entity set must
include attributes for its complete key
(including those belonging to other
entity sets), as well as its own, nonkey
attributes

§  A supporting relationship is redundant
and yields no relation (unless it has
attributes)

98

Example: Weak Entity Set →
Relation

Logins Hosts At

name name

Hosts(hostName, location)
Logins(loginName, hostName, expiry)
At(loginName, hostName, hostName2)

Must be the same

expiry

At becomes part of
Logins

location

99

Subclasses: Three Approaches

1. Object-oriented : One relation per subset of
subclasses, with all relevant attributes

2.  Use nulls : One relation; entities have NULL
in attributes that don’t belong to them

3.  E/R style : One relation for each subclass:
§  Key attribute(s)
§  Attributes of that subclass

100

Example: Subclass → Relations

Beers

Ales

isa

name manf

color

101

Object-Oriented

 name manf
 Odense Classic Albani

 Beers

name manf color
HC Andersen Albani red

 Ales

Good for queries like “find the
color of ales made by Albani”

102

E/R Style
name manf
Odense Classic Albani
HC Andersen Albani

 Beers

name color
HC Andersen red

 Ales

Good for queries like
“find all beers (including
ales) made by Albani”

103

Using Nulls

name manf color
Odense Classic Albani NULL
HC Andersen Albani red

 Beers

Saves space unless there are lots
of attributes that are usually NULL

Summary 6

More things you should know:
§  Entities, Attributes, Entity Sets,
§  Relationships, Multiplicity, Keys
§  Roles, Subclasses, Weak Entity Sets
§  Design guidelines
§  E/R diagrams → relational model

104

The Project

105

Purpose of the Project

§  To try in practice the process of designing
and creating a relational database
application

§  This process includes:
§  development of an E/R model
§  transfer to the relational model
§  normalization of relations
§  implementation in a DBMS
§  programming of an application

106

Project as part of The Exam

§  Part of the exam and grading!
§  The project must be done individually
§  No cooperation is allowed beyond what

is explicitly stated in the description

107

Subject of the Project

§  To create an electronic inventory for a
computer store

§  Keep information about complete
computer systems and components

§  System should be able to
§  calculate prices for components and

computer systems
§ make lists of components to order from the

distributor
108

Objects of the System

§  component: name, kind, price
§  kind is one of CPU, RAM, graphics card,

mainboard, case
§  CPU: socket, bus speed
§  RAM: type, bus speed
§ mainboard: CPU socket, RAM type, on-

board graphics?, form factor
§  case: form factor

109

Objects of the System

§  computer system: catchy name, list of
components
§  requires a case, a mainboard, a CPU, RAM,

optionally a graphics card
§  sockets, bus speed, RAM type, and form

factor must match
§  if there is no on-board graphics, a graphics

card must be included

110

Objects of the System

§  current stock: list of components and their
current amount

§  minimum inventory: list of components,
their allowed minimum amount, and their
preferred amount after restocking

111

Intended Use of the System

§  Print a daily price list for components
and computer systems

§  Give quotes for custom orders
§  Print out a list of components for

restocking on Saturday morning
(computer store restocks his inventory
every Saturday at his distributor)

112

Selling Price

§  Selling price for a component is the
price + 30%

§  Selling price for a computer system is
sum of the selling prices of the
components rounded up to next ’99‘

§  Rebate System:
§  total price is reduced by 2% for each

additional computer system ordered
§ maximal 20% rebate

113

Example: Selling Price

§  computer system for which the
components are worth DKK 1984

§  the selling price of the components is
1984*1.3 = 2579.2

§  It would be sold for DKK 2599
§  Order of 3 systems: DKK 7485, i.e.,

DKK 2495 per system
§  Order of 11, 23, or 42 systems:

DKK 2079 per system
114

Functionality of the System

§  List of all components in the system and
their current amount

§  List of all computer systems in the
system and how many of each could be
build from the current stock

§  Price list including all components and
their selling prices grouped by kind all
computers systems that could be build
from the current stock including their
components and selling price 115

Functionality of the System

§  Price offer given the computer system
and the quantity

§  Sell a component or a computer system
by updating the current stock

§  Restocking list including names and
amounts of all components needed for
restocking to the preferred level

116

Limitations for the Project

§  No facilities for updating are required
except for the Selling mentioned explicitly

§  Only a simple command-line based
interface for user interaction is required
§  Choices by the user can be input by showing

a numbered list of alternatives or by
prompting for component names, etc.

§  You are welcome to include update
facilities or make a better user interface
but this will not influence the final grade! 117

Tasks

1.  Develop an appropriate E/R model
2.  Transfer to a relational model
3.  Ensure that all relations are in 3NF

(decompose and refine the E/R model)
4.  Implement in PostgreSQL DBMS

(ensuring the constraints hold)
5.  Program in Java or Python an

application for the user interaction
providing all functionality from above

118

Test Data

§  Can be made up as you need it
§  At least in the order of 8 computer

systems and 30 components
§  Sharing data with other participants in

the course is explicitly allowed and
encouraged

119

Formalities

§  Printed report of approx. 10 pages
§  design choices and reasoning
§  structure of the final solution
§ Must include:

§ A diagram of your E/R model
§ Schemas of your relations
§ Arguments showing that these are in 3NF
§ Central parts of your SQL code + explanation
§ A (very) short user manual for the application
§ Documentation of testing

120

Milestones

§  There are two stages:
1.  Tasks 1-3, deadline March 11

Preliminary report describing design choices,
E/R model, resulting relational model
(will be commented on and handed back)

2.  Tasks 4-5, deadline March 25
Final report as correction and extension of
the preliminary report

§  Grade for the project will be based both
on the preliminary and on the final report

121

Implementation

§  Java with fx JDBC as DB interface
§  Python with fx psycopg2 as DB interface
§  SQL and Java/Python code handed in

electronically with report in Blackboard
§  Database for testing must be available

on the PostgreSQL server
§  Testing during grading will use your

program and the data on that server

122

