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DM 509 Programming Languages
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Department of Mathematics and Computer Science
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This exam set consists of 7 pages (including this front page) and contains a
total of 5 problems. Each problem is weighted by the given percentage. The
individual questions of a problem are not necessarily weighted equally.

Most questions in a problem can be answered independently from the other
questions of the same problem.

All written aids are allowed. Answering questions by reference to material
not listed in the course curriculum is not acceptable.

You may answer the exam in English or in Danish.

This document contains the essential parts of the solutions to the exam set
identified above. Note that many times, there are several possible solutions,
and this document just lists one. Also, perfect answers to some of the exam
questions should contain explanations which are generally omitted in this doc-
ument. Finally, this document has not been scrutinized in the same meticu-
lous manner as an exam set and may contain typos, etc.
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Problem 1 (20%)

Question a: Implement a Prolog predicate take/3 such that take(N,L,M)
is true if, and only if, M is the longest prefix of length at most N of the list L.

For example, the query

?- take(2, [6,3,4], M).

should yield the answer M / [6,3]. Likewise, the query

?- take(4, [6,3,4], M).

should yield the answer M / [6,3,4].

Possible Solution:

take(N,L,M) :- length(L,O), P is min(O,N), append(M,Q,L), length(M,P).

Alternative Solution:

take(0,_,[]).

take(_,[],[]).

take(N,[X|Xs],[X|Ys]) :- N > 0, O is N-1, take(O,Xs,Ys).

Question b: Implement a Prolog predicate firstHalf/2 such that
firstHalf(L, M) is true if, and only if, M is the list that contains exactly
the first half of the elements of the list L.

For example, the query

?- firstHalf([6,3,4,5], M).

should yield the answer M / [6,3]. Likewise, the query

?- firstHalf([6,3,4], M).

should yield the answer M / [6].

Possible Solution:

firstHalf(L,M) :- length(L,N), O is N//2, take(O,L,M).
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Question c: Implement a Prolog predicate fib/4 such that fib(A,B,N,M)
is true if, and only if, M is the N-th number of the Fibonacci sequence starting
with the numbers A and B.

For example, the query

?- fib(0,1,3,M).

should yield the answer M / 2 and the query

?- fib(0,1,7,M).

should yield the answer M / 13.

Your implementation should return the answer in time linear in N. You may
assume that built-in addition has constant time complexity.

Possible Solution:

fib(A,B,0,A).

fib(A,B,1,B).

fib(A,B,N,M) :- N > 1, O is N-1, C is A+B, fib(B,C,O,M).
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Question d: A magic square is a matrix of dimension n×n containing all
numbers from 1 to n2 such that the sum of each row and of each column is
exactly n(n2+1)

2
.

The following is an example of a square of dimension 3× 3.

4 9 2
3 5 7
8 1 6

We represent such a square as a list of the concatenated rows. I.e., the above
square would be represented as follows.

[4,9,2,3,5,7,8,1,6]

Implement a Prolog predicate magic/1 such that the query ?- magic(L). has
exactly those lists L as answers that represent a magic square of dimension
3× 3.

You may (but do not have to) use constraint logic programming for your
implementation.

Possible Solution:

magic(L) :- L = [A,B,C,D,E,F,G,H,I],

fd_domain(L,1,9),

fd_all_different(L),

A+B+C #= 15, D+E+F #= 15, G+H+I #= 15,

A+D+G #= 15, B+E+H #= 15, C+F+I #= 15,

fd_labeling(L).
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Problem 2 (25%)

Question a: Consider the following Prolog program.

p(X,Y) :- q(X), r(Y), p(Y,X).

p(3,Y).

q(1).

q(2).

r(3).

r(4).

Draw the SLD tree for the query ?- p(A,B). and list all answers with the
instantiations of A and B.

Possible Solution:

p(A, B)

{X/A,Y/B}
mmmmmmmmmmmm

{A/3,Y/B}

OOOOOOOOOOOOO

q(A), r(B), p(B, A)

{A/1}
ooooooooooo

{A/2}

WWWWWWWWWWWWWWWWWWWWWWW �

r(B), p(B, 1)

{B/3}
ooooooooooo

{B/4}

OOOOOOOOOOO r(B), p(B, 2)

{B/3}
ooooooooooo

{B/4}

OOOOOOOOOOO

p(3, 1)

{X/3,Y/1}
{Y/1}

OOOOOOOOOOOOO p(4, 1)

{X/4,Y/1}

p(3, 2)

{X/3,Y/2}
{Y/2}

OOOOOOOOOOOOO p(4, 2)

{X/4,Y/2}

q(3), r(1), p(1, 3) � q(4), r(1), p(1, 4) q(3), r(2), p(2, 3) � q(4), r(2), p(2, 4)

The answers returned by Prolog are:

A = 1, B = 3

A = 2, B = 3

A = 3
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Question b: We now introduce a cut into the body of the third clause
from Question a, i.e., we now have the following Prolog clauses for q/1.

q(1) :- !.

q(2).

Indicate in the SLD tree of Question a which branches are cut and list all
remaining answers with the instantiations of A and B.

Possible Solution:

p(A, B)

{X/A,Y/B}
mmmmmmmmmmmm

{A/3,Y/B}

OOOOOOOOOOOOO

q(A), r(B), p(B, A)

{A/1}
ooooooooooo

{A/2}

�WWWWWWWWWWWWWWWWWWWWWWWW �

r(B), p(B, 1)

{B/3}
ooooooooooo

{B/4}

OOOOOOOOOOO r(B), p(B, 2)

{B/3}
ooooooooooo

{B/4}

OOOOOOOOOOO

p(3, 1)

{X/3,Y/1}
{Y/1}

OOOOOOOOOOOOO p(4, 1)

{X/4,Y/1}

p(3, 2)

{X/3,Y/2}
{Y/2}

OOOOOOOOOOOOO p(4, 2)

{X/4,Y/2}

q(3), r(1), p(1, 3) � q(4), r(1), p(1, 4) q(3), r(2), p(2, 3) � q(4), r(2), p(2, 4)

The answers returned by Prolog are:

A = 1, B = 3

A = 3
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Question c: For the following pairs of Prolog terms, find a most general
unifier or argue that none exists. Show the steps of the algorithm. In case
of success, give the resulting substitution. In case of failure, state if it is an
occur failure or a clash failure.

1. p(f(X),a,Y) and p(f(Y),X,b)

2. q(g(X),g(Y),Y) and q(g(A),A,g(X))

3. r(a,0,[X,Y]) and r(X,Y,[X|Xs])

Possible Solution:

1. CLASH FAILURE {p(f(X), a, Y) ?= p(f(Y), X, b)}

⇒ (DECOMPOSE) {f(X) ?= f(Y), a ?= X, Y
?= b}

⇒ (DECOMPOSE) {X ?= Y, a
?= X, Y

?= b}

⇒ (ELIMINATE) {X ?= b, a
?= X, Y

?= b}

⇒ (ELIMINATE) {X ?= b, a
?= b, Y

?= b}

2. OCCUR FAILURE {q(g(X), g(Y), Y) ?= q(g(A), A, g(X))}

⇒ (DECOMPOSE) {g(X) ?= g(A), g(Y) ?= A, Y
?= g(X)}

⇒ (DECOMPOSE) {X ?= A, g(Y) ?= A, Y
?= g(X)}

⇒ (ELIMINATE) {X ?= A, g(Y) ?= A, Y
?= g(A)}

⇒ (ORIENT ) {X ?= A, A
?= g(Y), Y ?= g(A)}

⇒ (ELIMINATE) {X ?= A, A
?= g(Y), Y ?= g(g(Y))}

3. SUBSITUTION {X/a, Y/0, Xs/[0]}
{r(a, 0, [X, Y]) ?= r(X, Y, [X|Xs])}

= {r(a, 0, .(X, .(Y, []))) =?r(X, Y, .(X, Xs))}

⇒ (DECOMPOSE) {a ?= X, 0
?= Y, .(X, .(Y, [])) ?= .(X, Xs)}

⇒ (DECOMPOSE) {a ?= X, 0
?= Y, X

?= X, .(Y, []) ?= Xs}

⇒ (DELETE) {a ?= X, 0
?= Y, .(Y, []) ?= Xs}

⇒ (ORIENT ) {X ?= a, 0
?= Y, .(Y, []) ?= Xs}

⇒ (ORIENT ) {X ?= a, Y
?= 0, .(Y, []) ?= Xs}

⇒ (ORIENT ) {X ?= a, Y
?= 0, Xs

?= .(Y, [])}

⇒ (ELIMINATE) {X ?= a, Y
?= 0, Xs

?= .(0, [])}

= {X ?= a, Y
?= 0, Xs

?= [0]}
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Problem 3 (15%)

Question a: Define a haskell function divisibleByTwo which takes a
positive integer and determines if it is divisible by 2.

For example, divisibleByTwo 3 = False and divisibleByTwo 2 = true.

Here, you may not use any pre-defined functions except for (+) and (-).

Possible Solution:

divisibleByTwo 0 = True

divisibleByTwo 1 = False

divisibleByTwo n = divisibleByTwo (n-2)

Question b: Define a haskell function divisibleByTwoList which takes
a list of positive integers and determines if at least one of the elements is
divisible by 2.

For example, divisibleByTwoList [1,2,3] = True.

You should use the function divisibleByTwo from Part a.

Possible Solution:

divisibleByTwoList xs = any divisibleByTwo xs

Alternative Solution:

divisibleByTwoList [] = False

divisibleByTwoList (x:xs) = divisibleByTwo x || divisibleByTwoList xs
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Question c: Define a haskell function productPairs which takes a pos-
itive integer n and computes the list of all pairs (x,y) of natural numbers
such that their product is exactly n.

For example, productPairs 4 should return the following list.

[(1,4), (2,2), (4,1)]

Possible Solution:

productPairs n = filter (\(x,y) -> x * y == n) (map (\x -> (x, div n x)) [1..n])

Alternative Solution:

productPairs n = p n n where

p 0 n = []

p i n | mod n i == 0 = (div n i, i) : p (i-1) n

| otherwise = p (i-1) n

Question d: The sequence of Fibonacci words is defined as the w0, w1, w2, . . .
such that w0 = "a", w1 = "ab", and wn+2 = wn+1wn. Thus, w2 = "aba",
w3 = "abaab" etc.

Give a haskell declaration for the infinite list fibWord of all Fibonacci
words as defined above.

For example, take 4 fibWord should return the following list.

["a", "ab", "aba", "abaab"]

Possible Solution:

fibWord = "a" : "ab" : zipWith (++) (tail fibWord) fibWord

Alternative Solution:

fibWord = f "a" "ab" where

f n m = n : f m (m ++ n)
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Problem 4 (20%)

Question a: Consider the following data type for binary trees.

data Tree a = Leaf | Node (Tree a) a (Tree a)

Thus, the expression ex = Node (Node Leaf 2 (Node Leaf 3 Leaf)) 3 (Node

Leaf 4 Leaf) corresponds to the following tree (with leaves marked by x).

3

wwpppppppppppppp

��>>>>>>>>

2

����������

��>>>>>>>> 4

����������

��>>>>>>>>

x 3

����������

��???????? x x

x x

Define a haskell function paths which takes a Tree a and produces the
list of paths from the root to a Node that has two Leaf children.

For example, paths ex should return [[3,2,3], [3,4]].

Possible Solution:

paths = p [] where

p path Leaf = []

p path (Node Leaf x Leaf) = [path++[x]]

p path (Node left x right) = p (path++[x]) left ++ p (path++[x]) right

Alternative Solution:

paths t = map reverse (p [] t) where

p path Leaf = []

p path (Node Leaf x Leaf) = [x:path]

p path (Node left x right) = p (x:path) left ++ p (x:path) right
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Question b: Consider the following tree that contains elements of type
String and of type Int.

"abc"

ttjjjjjjjjjjjjjjjjjjj

##FFFFFFFFF

2

����������

##FFFFFFFFF 4

{{xxxxxxxxxx

��>>>>>>>>

x "def"

{{wwwwwwwww

%%LLLLLLLLLLL x x

x x

Declare a haskell data type LevelTree a b using a data declaration that
on the first level of the tree contains elements of type a, on the second level
elements of type b, on the third level again elements of type a etc.

The tree above would be of type LevelTree String Int.

Possible Solution:

data LevelTree a b = Leaf | Node (LevelTree b a) a (LevelTree b a)
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Problem 5 (20%)

Question a: Find the most general type for each of the following two
haskell functions.

• f x y z = f y z x

• g (x:xs) = \x -> [xs]

Explain your reasoning.

Possible Solution:

• Assume f::a -> c -> d -> b, x::e, y::g, and z::h. As f is applied
to x (on the left-hand side) and y (on the right-hand side), a, e, and
g must unify. Similarly, we see that c, g, and h must unify. The
most general unifier is {e/a, g/a, h/a. Thus, the resulting type is
the following.

f::a -> a -> a -> b

• Assume g::c -> d and (:)::a -> [a] -> [a]. Then due to g being
applied to x:xs we need to unify c and [a]. Furthermore, we have
to unify d with the type of \x -> [xs]. From x:xs we get x::a and
xs::[a] and thus need to unify d with b -> [[a]] where b is the type
of the x bound by lambda. Thus, the resulting type is the following.

g::[a] -> b -> [[a]]
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Question b: Consider the two following ways of defining haskell func-
tions for computing the length of a list.

length1 [] = 0

length1 (x:xs) = 1 + length1 xs

length2 = len 0 where

len n [] = n

len n (x:xs) = len (n+1) xs

Prove by induction that for all ys of type [a], these two definitions yield the
same result, i.e., length1 ys = length2 ys.

You may assume the following lemma about len for all n and m of type Int

and all zs of type [a].

n + len m zs = len (n+m) zs

Possible Solution:

• base case (ys = [])

length1 [] = 0 = len 0 [] = length2 []

• step case (assume theorem holds for ys, show it holds for y:ys)
Using the definition of length1 and the induction hypothesis we obtain:

length1 (y:ys) = 1 + length1 ys = 1 + length2 ys

Next, we use the definition of length 2 and the given lemma:

1 + length2 ys = 1 + len 0 ys = len (1+0) ys

Now, we use commutativity of (+) and the definition of len backwards.

len (1+0) ys = en (0+1) ys = len 0 (y:ys)

Finally, by applying the definition of length2 backwards, we obtain:

len 0 (y:ys) = length2 (y:ys)
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