
DM 509 Programming Languages

Fall 2011 Project (Part 2)

Department of Mathematics and Computer Science
University of Southern Denmark

December 2, 2011



2

Introduction

The purpose of the project for DM509 is to try in practice the use of logic
and functional programming for small but non-trivial examples. The project
consists of two parts. The first deals with logic programming and the second
part with functional programming.

Please make sure to read this entire note before starting your work on
this part of the project. Pay close attention to the sections on deadlines,
deliverables, and exam rules.

Exam Rules

This second part of the project is a part of the final exam. Both parts of the
project have to be passed to pass the course.

Thus, the project must be done individually, and no cooperation is al-
lowed beyond what is explicitly stated in this document.

Deliverables

There is one deliverable for this first part of the project: A short project
report in PDF format (2-5 pages without front page and appendix) has to
be delivered. This report should contain the following 7 sections:

• front page

• specification

• design

• implementation

• testing

• conclusion

• appendix including all source code

The report has to be delivered in TWO copies:

• 1 electronic copy using Blackboard’s Assignment Hand-In functionality

• 1 paper copy (to the teacher’s mailbox at the IMADA secretariat)

Deadline

January 13, 2012, 12:00



3

The Problem

Fractals are geometric objects that are
similar to themselves on arbitrarily
small scales. There are many examples
of fractals in nature, and they form some
of the most beautiful structures you can
find. One example is snowflakes, but
also lightning has a fractal structure.
Another example are ferns, where each
part is similar to the whole.

Many fractals can be generated by
using so-called L-Systems. These sys-
tems describe a start state (depth 0) and
a set of rules how to evolve a state into a state of larger depth. For more
background on L-Systems, have a look at the Wikipedia article:

http://en.wikipedia.org/wiki/L-system

For example, to generate a Koch curve, we start with
the initial (depth 0) state F signifying a forward move,
i.e., a straight line. The rule for expanding to the next
depth is given as a replacement rule.

F -> F L F R F L F

where L is a 60 degree turn to the left and R is a 120
degree turn to the right. That is, we replace a straight
line by a straight line, a left-turn, a straight line, a sharp

right-turn, a straight line, a left-turn, and a fourth and final straight line.
Thus, the state for depth 1 is F L F R F L F. To get to depth 2, we

have to apply the rule again to all positions of the state where it is possible,
i.e., we have to replace each of the four F by F L F R F L F. The result
is F L F R F L F L F L F R F L F R F L F R F L F L F L F R F L F

where the new sections are underlined to aid your understanding.
To get to depth 3, we would have to replace each of the 16 Fs by the right

side of the rule. For the sake of brevity, I leave this exercise to you.
In general, if there is more than one rule, all rules need to be applied in

parallel. That is, all letters, for which there is a rule, need to be replaced
by the rules’ right-hand sides at the same time to go from depth n to depth
n + 1. Letters, for which there is rule defined are copied into the new state.

http://en.wikipedia.org/wiki/L-system


4

Let us take a look at the file koch.fdl available from the project section
of the course home page.

start F

rule F -> F L F R F L F

length 2

depth 5

cmd F fd

cmd L lt 60

cmd R rt 120

The first line gives the start state, i.e., the
state F for depth 0. The second line give the
only rule needed for the Koch curve, i.e.,
to replace F by F L F R F L F. The third
line specifies the length of each segment, i.e.,
each straight line will be 2 units long. The
fourth line specifies that states should be ex-
panded to depth 5 before drawing the frac-
tal. Finally, the Lines 5 to 7 specify that F

is a straight line, L is a 60 degree left-turn
and R is a 120 degree right-turn.

Task 0 – Preparation
Download the file fdl.hs and load it into hugs using

hugs fdl.hs

Test the functionality using the following command (in one line):

runGraphics (withWindow_ "Test" (1000, 600) (\ w -> drawIt

(w, 500, 300, 0, 50) [Forward, RightTurn 90, Forward,

RightTurn 90, Forward, RightTurn 90, Forward] >> getKey w))

You should see a window with a white square on a black background.

Task 1 – Applying Rules to a State

Your first task is to write a function apply :: State

-> [Rule] -> State that takes a state (i.e., a sequence
of letters) and applies to each letter of this state the first
applicable rule from the list of rules. As specified before,
letters that have no applicable rules are copied to the
new state.

This function corresponds to going from depth n to
depth n + 1. Test your function by calling it with the following command:

apply "FXRYF" [Rule ’X’ "XRYF", Rule ’Y’ "FXLY"]

This should produce the following result:

"FXRYFRFXLYF"



5

Task 2 – Going to Target Depth

Your second task is to write a function expand

:: State -> [Rule] -> Int -> State that
takes an initial state, a set of rules, and a tar-
get depth. Using your apply function, it has to
apply the rules repeatedly in parallel until the
target depth is reached.

This function corresponds to going from
depth 0 to depth n. Test your function by call-
ing it with the following command:

expand "FX" [Rule ’X’ "XRYF", Rule ’Y’ "FXLY"] 2

This should again produce the following result:

"FXRYFRFXLYF"

Task 3 – Processing a Fractal

Your third task is to write a function
process :: Fractal -> [Command]

that takes a value of type Fractal and
produces a list of commands to draw the
fractal. Your function needs to first use
expand to get the state for the target
depth. Then it should use the function
of type Char -> Command of the fractal
to map the state into a list of values of
type Command.

This function corresponds to trans-
lating a fractal description into a list of turtle graphics commands. Test your
function by calling it with the following command:

main

This should produce a white-on-black version of the snowflake as shown on
Page 3, i.e., of three Koch curves put together. Also test your code using the
other .fdl files and include screenshots in your reports.



6

Task 4* – Support for Line Widths and Colors
The fractals look nice enough, but some colors and wider lines would make
them more pretty. Your challenge task is to extend the Fractal Descripton
language by the commands color and width where color gets a color name,
a color code or “random” as an argument while width gets a float.

In order to accomplish this, you need to read more about the functionality
of the Haskell Graphics Library:

http://hackage.haskell.org/package/HGL

Here is an example for a nicer dragon curve:

start F X

rule X -> X R Y F

rule Y -> F X L Y

length 3

depth 13

color random

width 2.0

cmd F fd

cmd X nop

cmd Y nop

cmd L lt 90

cmd R rt 90

Note that this task is optional and does not have to be solved for this
part of the project to be considered as passed.

http://hackage.haskell.org/package/HGL

