
DM519 Concurrent Programming

Chapter 4

Shared Objects &
Mutual Exclusion

!1

DM519 Concurrent Programming

Repetition (Finite State Processes; Fsp)

Finite State Processes (FSP) can be defined using:
P =
– x -> Q // action
– Q // other process variable
– STOP // termination
– Q | R // choice
– when (...) x -> Q // guard
– ... + {write[0..3]} // alphabet extension
– X[i:0..N] =x[N-i] -> P // process & action index
– BUFF(N=3) // process parameter

const N = 3 // constant definitions 
range R = 0..N // range definitions 
set S = {a,b,c} // set definitions

!2

range T = 0..3
BUFF = (in[i:T]->out[i]->BUFF).

DM519 Concurrent Programming

Repetition (Fsp)
FSP:

– P || Q // parallel composition
– a:P // process labelling (1 process/prefix)
– {…}::P // process sharing (1 process w/all prefixes)
– P / {x/y} // action relabelling
– P \ {…} // hiding
– P @ {…} // keeping (hide complement)
!

 Structure Diagrams:

a:BUFF b:BUFFa.out

TWOBUFF

outin
inoutin out

!3

||TWOBUF = (a:BUFF||b:BUFF)
 /{in/a.in,
 a.out/b.in,
 out/b.out}
 @{in,out}.

DM519 Concurrent Programming

Structure Diagrams - Resource Sharing

a:USER
printer

b:USER
printer

printer:
RESOURCE

acquire
release

PRINTER_SHARE

RESOURCE = (acquire->release->RESOURCE).
USER = (printer.acquire->use->printer.release->USER).

||PRINTER_SHARE =
 (a:USER || b:USER || {a,b}::printer:RESOURCE).

!4

DM519 Concurrent Programming

How To Create The Parallel Composed Lts

MAKE1 = (make->ready->STOP).
USE1 = (ready->use->STOP).
!
||MAKE1_USE1 = (MAKE1 || USE1).

!5

make ready

make

make

ready

ready

readyreadyready

use use use

0,0

0,1

0,2

1,0

1,2

1,1

2,0

2,2

2,1

For any state reachable from
the initial state (0,0), consider
the possible actions and draw
edges
!
to the corresponding new states
(i,j).
!
Remember to consider shared
actions.

DM519 Concurrent Programming

How To Create The Parallel Composed Lts

WORKDAY = HOME,  
HOME = (bus -> WORK),  
WORK = (dostuff-> WORK | bus -> HOME).  
 
ALSORUN = (bus -> run -> ALSORUN).  
 
||DAY = (WORKDAY || ALSORUN).

!6

For any state reachable from
the initial state (0,0), consider
the possible actions and draw
edges
!
to the corresponding new states
(i,j).
!
Remember to consider shared
actions.

0,0 1,1 1,0 0,1

DM519 Concurrent Programming

Chapter 4:
Shared Objects & Mutual Exclusion

uConcepts:

lProcess interference

lMutual exclusion

uModels:

lModel-checking for interference

lModelling mutual exclusion

uPractice:

lThread interference in shared objects in Java

lMutual exclusion in Java

lSynchronised objects, methods, and statements
!7

DM519 Concurrent Programming

4.1 Interference

People enter an ornamental garden through either of two
turnstiles. Management wishes to know how many are in the
garden at any time. (Nobody can exit).

The ”Ornamental Garden Problem ”:

Counter
012

!8

DM519 Concurrent Programming

4.1 Ornamental Garden Problem (Cont’d)

Java implementation:

 The concurrent program consists of:

 • two concurrent threads (west & east); and

 • a shared counter object

Counter

2

!9

DM519 Concurrent Programming

Class Diagram

counter

40 2020

!10

DM519 Concurrent Programming

Ornamental Garden Program

The go() method of the Garden  
applet…

…creates the shared Counter object & the Turnstile threads.

class Garden extends Applet {
 NumberCanvas counterD, westD, eastD;
 Turnstile east, west;
 ...
 private void go() {
 counter = new Counter(counterD);
 west = new Turnstile(westD,counter);
 east = new Turnstile(eastD,counter);
 west.start();
 east.start();
 }
}

!11

DM519 Concurrent Programming

The Turnstile Class

class Turnstile extends Thread {
 NumberCanvas display;
 Counter counter;
!
 public void run() {
 try {
 display.setvalue(0);
 for (int i=1; i<=Garden.MAX; i++) {
 Thread.sleep(1000);
 display.setvalue(i);
 counter.increment();
 }
 } catch (InterruptedException _) {}
 }
}

The Turnstile thread simulates periodic
arrival of visitors by invoking the counter
object’s increment() method every second

!12

DM519 Concurrent Programming

The Shared Counter Class

class Counter {
 int value;
 NumberCanvas display;
!!
 void increment() {
 value = value + 1;
 display.setvalue(value);
 }
}

The increment() method of the  
Counter class increments its internal  
value and updates the display.

!13

DM519 Concurrent Programming

Running The Applet

After the East and West turnstile threads each have
incremented the counter 20 times, the garden people counter
is not always the sum of the counts displayed.

Why?

39 2020

!14

DM519 Concurrent Programming

The Shared Counter Class
(Cont’d)

class Counter {
 int value;
 NumberCanvas display;
!!
 void increment() {
 value = value + 1;
 display.setvalue(value);
 }
}

aload_0 // push “this” onto stack
getfield #2 // get value of “this.value”
iconst_1 // push 1 onto stack
iadd // add two top stack elements
putfield #2 // put result into “this.value”

Thread switch?

!15

javac Counter.java
javap -c Counter > Counter.bc

DM519 Concurrent Programming

Concurrent Method Activation

Thus, threads east and west may be executing the code for
the increment method at the same time.

eastwest

program
counter program

counter

PC PC

Shared code:

Java method activation is not atomic!

Counter.class:

aload_0 // this
getfield #2 // x
iconst_1
iadd
putfield #2 // x

!16

DM519 Concurrent Programming

Pedagogification; The Counter Class (Cont’d)

class Counter {
 void increment() {
!
 value = value + 1;
!
 display.setvalue(value);
 }
}

!17

DM519 Concurrent Programming

Pedagogification; The Counter Class (Cont’d)

class Counter {
 void increment() {
 int temp = value; // read
 Simulate.HWinterrupt();
 value = temp + 1; // write
 display.setvalue(value);
 }
}

The counter simulates a hardware interrupt during an increment(),
between reading and writing to the shared counter value.

class Simulate { // randomly force thread switch!
 public static void HWinterrupt() {
 if (random()<0.5) Thread.yield();
 }
}

!18

DM519 Concurrent Programming

Running The Applet

Now the erroneous behaviour occurs almost all the time!

!19

DM519 Concurrent Programming

Garden Model
(Structure Diagram)

VAR: 
models read and write access to the shared counter value.

TURNSTILE: 
Increment is modelled inside TURNSTILE, since Java method
activation is not atomic (i.e., thread objects east and west may
interleave their read and write actions).

GARDEN

!20

DM519 Concurrent Programming

Ornamental Garden Model (Fsp)

const N = 4
range T = 0..N
!
VAR = VAR[0],
VAR[u:T] = (read[u] -> VAR[u] | write[v:T] -> VAR[v]).
!
TURNSTILE = (go -> RUN),
RUN = (arrive -> INCREMENT | end -> TURNSTILE),
INCREMENT = (value.read[x:T] -> value.write[x+1] -> RUN)
 +{value.write[0]}.
!
DISPLAY =(value.read[T]->DISPLAY)+{value.write[T]}.
!
||GARDEN = (east:TURNSTILE || west:TURNSTILE || display:DISPLAY
 || {east,west,display}::value:VAR)
 /{ go / {east,west}.go , end / {east,west}.end}.

α(VAR) ?

α(TURNSTILE) ?

α(value:VAR) ? α({east,west,display}::value:VAR) ?

α(east:TURNSTILE) ?

!21

α(display:DISPLAY) ?

DM519 Concurrent Programming

Checking For Errors - Animation

Scenario checking -
use animation to
produce a trace.

Is the model  
correct?

“Never send a human to 
do a machine’s job”
 - Agent Smith (1999)

!22

DM519 Concurrent Programming

Checking For Errors -
Compose With Error Detector

TEST = TEST[0],
!
TEST[v:T] = (when (v<N) west.arrive->TEST[v+1]
 |when (v<N) east.arrive->TEST[v+1]
 |end -> CHECK[v]),
!
CHECK[v:T] = (display.value.read[u:T] ->
 (when (u==v) right -> TEST[v]
 |when (u!=v) wrong -> ERROR)).

Exhaustive checking - compose the model with a TEST process
which sums the arrivals and checks against the display value:

!23

DM519 Concurrent Programming

Checking For Errors - Exhaustive Analysis

 ||TESTGARDEN = (GARDEN || TEST).

Use LTSA to perform an exhaustive search for ERROR:

Trace to property violation in TEST:
 go
 east.arrive
 east.value.read.0
 west.arrive
 west.value.read.0
 east.value.write.1
 west.value.write.1
 end
 display.value.read.1

 wrong

LTSA produces
the shortest
path to reach
the ERROR state.

!24

DM519 Concurrent Programming

Interference And Mutual Exclusion

Interference bugs are extremely difficult to locate.  

The general solution is:

 • Give methods mutually exclusive access to  
 shared objects.

!

Mutual exclusion can be modelled as atomic actions.

Destructive update, caused by the arbitrary interleaving of read
and write actions, is termed interference.

!25

DM519 Concurrent Programming

4.2 Mutual Exclusion In Java

class SynchronizedCounter extends Counter {
 SynchronizedCounter(NumberCanvas n) {
 super(n);
 }
 synchronized void increment() {
 super.increment();
 }
}

We correct the Counter class by deriving a class from it and
making its increment method synchronized:

Concurrent activations of a method in Java can be made
mutually exclusive by prefixing the method with the
keyword synchronized.

!26

DM519 Concurrent Programming

The Garden Class (Revisited)

If the fixit checkbox is ticked, the go() method  
creates a SynchronizedCounter:

class Garden extends Applet {
 private void go() {
 if (!fixit.getState())
 counter = new Counter(counterD);
 else
 counter = new SynchCounter(counterD);
 west = new Turnstile(westD,counter);
 east = new Turnstile(eastD,counter);
 west.start();
 east.start();
 }
}

!27

DM519 Concurrent Programming

Mutual Exclusion - The Ornamental Garden

Java associates a lock with every object.
!
The Java compiler inserts code to:
 • acquire the lock before executing a synchronized method
 • release the lock after the synchronized method returns.
!
Concurrent threads are blocked until the lock is released.

!28

DM519 Concurrent Programming

Java Synchronized Statement

class Turnstile{
 ...
 public void run() {
 ...

 synchronized(counter) {
 counter.increment();
 }
...

synchronized void increment() {
 super.increment();
}
synchronized void decrement() {
 super.decrement();
}

Synchronized methods:

Variant - the synchronized statement :

Use synch methods
whenever possible.

object reference

!29

DM519 Concurrent Programming

Java -> Java Bytecode

Method void m()
>> max_stack=3, max_locals=3 <<

!
 0 aload_0
 1 dup
 2 astore_1
 3 monitorenter
 4 aload_0
 5 dup
 6 getfield #2 <Field X.x:int>
 9 iconst_1
 10 iadd
 11 putfield #2 <Field X.x:int>
 14 aload_1
 15 monitorexit
 16 goto 24
 19 astore_2
 20 aload_1
 21 monitorexit
 22 aload_2
 23 athrow
 24 return

!
Exception table:
 from to target type
 4 16 19 any
 19 22 19 any

1 class X {
2 int x;
3 void m() {
4 synchronized(this) {
5 x++;
6 }
7 }
8 }

compile

!30

DM519 Concurrent Programming

Define a mutual exclusion LOCK process:

4.3 Modelling Mutual Exclusion

LOCK = (acq -> rel -> LOCK).

TURNSTILE = (go -> RUN),
RUN = (arrive -> INCREMENT | end -> TURNSTILE),
INCREMENT = (value.acq
 -> value.read[x:T]
 -> value.write[x+1]
 -> value.rel->RUN)+{value.write[0]}.

Modify TURNSTILE to acquire and release the lock:

||LOCKVAR = (LOCK || VAR).
…and compose it with the shared VAR in the Garden:

||GARDEN = (east:TURNSTILE || west:TURNSTILE || {east,west,display}::value:LOCKVAR)

!31

DM519 Concurrent Programming

Revised Ornamental Garden Model - Checking For
Errors

A sample trace:

Use LTSA to perform
an exhaustive check:
 “is TEST satisfied”?

 go
 east.arrive
 east.value.acq
 east.value.read.0
 east.value.write.1
 east.value.rel
 west.arrive
 west.value.acq
 west.value.read.1
 west.value.write.2
 west.value.rel
 end
 display.value.read.2
 right

!32

DM519 Concurrent Programming

Counter: Abstraction Using Action Hiding

We can abstract the details by hiding.

For SynchronizedCounter we hide
read, write, acquire, release
actions.

const N = 4
range T = 0..N
!
VAR = VAR[0],
VAR[u:T] = (read[u]->VAR[u]
 | write[v:T]->VAR[v]).
!
LOCK = (acquire->release->LOCK).
!
INCREMENT = (acquire->read[x:T]
 -> write[x+1]
 -> release->increment->INCREMENT)
 +{read[T],write[T]}.
!
||COUNTER = (INCREMENT||LOCK||VAR)@{increment}.

!33

DM519 Concurrent Programming

Counter: Abstraction Using Action Hiding

Minimised
LTS:

We can give a more abstract, simpler description of a COUNTER
which generates the same LTS:

This therefore exhibits “equivalent” behaviour, i.e., has the same
observable behaviour.

COUNTER = COUNTER[0]
COUNTER[v:T] = (when (v<N) increment -> COUNTER[v+1]).

!34

DM519 Concurrent Programming

Active & Passive Processes

!35

Comparing FSP and Java
– active processes : threads, e.g., TURNSTILE
– passive processes: shared objects, e.g., COUNTER
const N = 4
range T = 0..N
set VarAlpha = {value.{read[T],write[T],acquire,release}}
!
VAR = VAR[0], VAR[u:T] = (read[u]->VAR[u] | write[v:T]->VAR[v]).
LOCK = (acquire->release->LOCK).
||LOCKVAR = (LOCK || VAR).
!
TURNSTILE = (go -> RUN),
RUN = (arrive-> INCREMENT | end -> TURNSTILE),
INCREMENT = (value.acquire
 -> value.read[x:T]->value.write[x+1]
 ->value.release->RUN)+VarAlpha.
!
DISPLAY =(value.read[T]->DISPLAY)+{value.{write[T],acquire,release}}.
!
||GARDEN = (east:TURNSTILE || west:TURNSTILE || display:DISPLAY
 || {east,west,display}::value:LOCKVAR)
 /{go /{east,west}.go,
 end/{east,west}.end}.

DM519 Concurrent Programming

Java Memory Model

!36

public class NoVisibility {
 private static boolean ready;
 private static int number;
!
 private static class ReaderThread extends Thread {
 public void run() {
 while (!ready) {
 yield();
 }
 System.out.println(number);
 }
 }
!
 public static void main(String[] args) {
 new ReaderThread().start();
 number = 42;
 ready = true;
 }
}

DM519 Concurrent Programming

Synchronisation In Java Is Not Just Mutual
Exclusion; It’s Also About Memory Visibility

!37

y=1

lock M

x=1
unlock M

lock M

i=x

unlock M

j=y

Thread A

Thread B

Everything
before the
unlock on M

is visible to
everything
after the lock
on M

Without synchronisation, there is no
such guarantee.

Must be the same lock

DM519 Concurrent Programming

Summary

uConcepts

lprocess interference

lmutual exclusion

uModels

lmodel checking for interference

lmodelling mutual exclusion

uPractice

lthread interference in shared Java objects
lmutual exclusion in Java (synchronized objects/methods).

!38

