
Institut for Matematik og Datalogi
Syddansk Universitet

November 18, 2009
Peter Schneider-Kamp

Introduction to Computer Science
E09 – Week 10

Lecture: Monday, November 16

Jœrgen Bang-Jensen started to lecture on the theory of computation based
on Chapter 12.1 to 12.5.

Lecture: Wednesday, November 18

Jœrgen Bang-Jensen finished lecturing on computability and continued with
NP-complete problems and combinatorial optimization. The later is based
on the notes “Algorithmisk Kombinatorik - et datalogisk emne i matematik”
by Bjarne Toft (IMADA). These notes are available from Blackboard.

Lecture: Monday, November 23, 12-14 (U140)

Jœrgen Bang-Jensen will continue to lecture on combinatorial optimization
based on the notes of Bjarne Toft.

Lecture: Monday, November 30, 12-14

Marco Chiarandini will start to lecture on artificial intelligence based on
Chapter 11.

Lecture, Wednesday, December 2, 14-16

Marco Chiarandini will continue lecture on artificial intelligence based on
Chapter 11.

1



Discussion section: November 24, 10:15-12 (U37)

• Course book, Pages 610-611, Problems 38 and 41.

• Exercises in Chapter 1 of notes by Bjarne Toft: 1.4, 1.5, 1.6, 1.10, 1.13,
and 1.15.

• Exercises in Chapter 1 of notes by Bjarne Toft: 1.25 (only the version
which I called Kruskal’s algorithm in the lecture, that is, keep adding
the cheapest edge that can be added without introducing a cycle in the
set of chosen edges) and 1.26.

• Exercises in Chapter 2 of notes by Bjarne Toft: 2.2, 2.4 (”valens af
punkt v” means the number of edges with one end in v) and 2.9.

Lab: November 27, 10:15-12 (terminal room above U49)

• Experiments with (possibly) halting computations:
Consider the following computation of a sequence of integers: f0 := n
(the input value) and for t ≥ 1 set ft = ft−1/2 if ft−1 is even, set
ft = 3 ∗ ft−1 + 1 if ft−1 is odd and greater than 1, and finally stop if
ft = 1 holds. Denote this value of t by t(n). We may also view the
process above as defining the function t(n).

– Write a program in Java, Maple, Python or your favorite program-
ming language which given the input value n prints the values f(t)
until it becomes 1 and outputs t(n).

– Experiment with different input values for n to see how large t(n)
can become.

– Consider how you could make a table with values n, t(n), say for
n = 1 to n = 1000, with less work than simply looping through
all values of n and calculating t(n) for each of these without using
any knowledge obtained so far (e.g. what is t(n) if n is even?).

• Graph algorithms in Maple:

– Start maple in worksheet mode.

– Consult the manual for the GraphTheory package (find this via
the Help menu under ’manuals’).

2



– To build a graph with edge weights do the following: Load the
GraphTheory and RandomGraphs packages by typing

’with(GraphTheory):’ and then ’with(RandomGraphs):’. Here
and below it is understood that you always type return after each
Maple command.

– Build a (in this case complete) graph on 5 vertices and 10 edges by
typing ’G:=Graph(weighted, {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3},
{2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}})’.

– Assign random integer weights between 1 and 10 to the edges of
G by typing ’AssignEdgeWeights(G, 1 .. 10)’.

– Draw the graph G by typing ’DrawGraph(G)’.

– Find a minimum spanning tree T in G and draw it by typing ’T
:= MinimalSpanningTree(G)’ followed by ’DrawGraph(T)’.

– Find an optimal Traveling salesman tour in G by typing ’Travel-
ingSalesman(G)’.

– Compare the cost of the optimal Traveling salesman tour with the
cost of the optimal spanning tree.

– Consult the manual page for ’TravelingSalesman’ and try to draw
an optimal traveliong salesman tour.

– Repeat the experiment above with other graphs that you type in
yourselves.

– Build a bipartite graph B on 6 vertices (3 in each part) using the
method above.

– Consult the Maple package ’BipartiteMatching’.

– Find a maximum matching in B using the procedure ’BipartiteM-
atching’.

– Repeat this with a couple of other examples or try out other graph
packages in Maple.

3


