python

powered

DMb536
Introduction to Programming

Peter Schneider-Kamp

peterskl@imada.sdu.dk
http://imada.sdu.dk/~petersk/DM536/

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

SELECTING
DATA STRUCTURES

Reading and Cleaning Words

|. read file given as argument
break lines into words

strip whitespace & punctuation

O

convert to lower-case letters

" import module sys for command line arguments sys.argv

= Example: import sys; print sys.argv

" import module string for punctuation

= Example: import string; print string.punctuation
P P g P g-P

= use translate(None, deletechars) to remove punctuation

* Example: "Hello World!".translate(None, "ol")

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Word Frequency in E-Books

|. use program on Project Gutenberg e-book
skip over beginning & end of ebook (marked "**")
count total number of words

count number of times each word is used

o> W N

print 20 most frequently used words
= use Boolean flag to indicate when to start
= use list to gather all words (and count total number)

= use dictionary to count number of times each word is used

= use tuple comparison to sort words

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Optional Parameters

= have seen functions that take variable length argument list

= also possible to make some parameters optional
* in this case, default value has to be supplied by programmer
= Example:
def print_most_common(hist, num = 10):

t = most_common(hist)

print "The most common", num, "words are:"

for n, word in t[:num]:

print word, "\t", n

print_most_common(freq, 20)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Dictionary Subtraction

|. find all words that do NOT occur in other word list

= to this end, subtract dictionaries from each other
= ldea: new dictionary containing with keys only in first dict

= |Implementation:
def subtract(dl, d2):

d={
for key in dlI:
if key not in d2:
d[key] = None
return d

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Random Number Generation

= to work with random numbers, import module random

= Example: import random

= function random() returns random float from 0.0 to < 1.0

= Example: foriin range(10): print random.random()
* function randint(a, b) returns random integer in range(a,b+1)

= Example: foriin range(10): print random.randint(l,10)

= function choice(seq) returns random element of a sequence

= Example: random.choice("Slartibartfast")
random.choice([23, 42, -3.0])

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Random Words

|. choose random word from histogram according to frequency

* how to ensure random choice w.r.t. frequency!?
= ldea I: create list with n copies of word with frequency n
* |Implementation:
def random_word(h):

t=l

for word, n in h.items():

t.extend([word] * n)
return random.choice(t)

= works, but very inefficient!

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Random Words

* ldea 2: use list with cumulative sum of frequencies
= |Implementation:

def random_word(h):
words = h.keys(); sum =0; cum =[]
for word in words: sum += h[word]; cum.append(sum)
num = random.randint(l, cum[-1]); low = 0; high = len(cum)-|
while low < high:
mid = (low+high) / 2
if num <= cum[mid]: high = mid
elif num > cum[mid]: low = mid+|

return words[low]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Markov Analysis

|. generate more meaningful random texts

= word order in texts is not random

* markov analysis maps a finite number of words (prefix) to all
possible following words (suffix)

" how to represent the prefixes!?
= how to represent the collection of possible suffixes?

* how to represent the mapping from prefixes to suffixes?

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Data Structures

= for mapping, we clearly use a dictionary

= for prefixes, we need to be able to “shift” them (list?)
= we also need to use them as dictionary keys

= thus, we use tuples to present prefixes (+ slicing and “*”)

= for suffixes, we need to add elements (list! dictionary?)
= we also need to efficiently generate random word (list?)
= tradeoff space vs time

= dictionary uses less space and easy to add

= list uses less time for generating a word

= can change representation before generation

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging Hard Bugs

= bugs can be hard to find

= four popular strategies
|. reading: re-read your code, check that it is right!
running; make changes, experiment with outcome

ruminating: take time to think it over (and over)

o

retreating: revert to a known-to-be-good version

= often combination of these strategies needed

= always good to view debugging as scientific experiment

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

FILE HANDLING

Persistence

= persistent = keeping (some) data stored during runs
" transient = beginning from input data each time over

" most programs so far have been transient

= examples of persistent programs:
" operating systems
= web servers

* most app(lication)s on recent Android, iOS, and Mac OS X

= text files are easiest way to save some program state

= alternatively, program states can be saved in databases

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Writing to a File

= we know how to read a file using open(name)
= we can specify read/write mode using open(name, mode)
= Example: fl = open("anna_karenina.txt", "r")

f2 = open(“myfile.txt’,

= use method write(str) of file object to append string to file
= Example: f2.write("This is my first line!\n")
f2.write("This is my second line!\n")

= each invocation of write(str) will append, not overwrite!

= when you are finished with a file, please close() it
= Example: fl.close()

f2.close()

Format Operator

= values need to be converted to a string for use in write(str)
= for single value, the str(object) function can be used
= Example: f.write(str(42))

= alternatively, use format operator “%"”
= Example: fwrite("%d" % 42)

f.write("The answer is %d, my friend!" % 42)
= first argument format string, second argument value

= format sequence %d for integer, %g for float, %s for string

= for multiple values, use tuple as value
= Example: f.write("The %s is %g!" % ("answer", 42.0))

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Directories

= file are organized in directories
= every program has a current directory
= the current directory is used by default, e.g. for open(name)
= get current directory by importing getcwd() from os module
= Example: import os
print os.getcwd()
= change current working directory by using chdir(path)
= Example: os.chdir("..")
print os.getcwd()
= list contents of a given directory by using os.listdir(path)
= Example: print os.listdir("dm502")

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Filenames and Paths

= path = directory & file name
= relative paths start from current directory

= Example:
path| = "dm536/tools/anna_karenina.txt"

= absolute paths are independent from current directory
= Example:
path2 = "/Users/petersk/sdu/dm536/tools/anna_karenina.py"

= can be obtained from relative path using os.path.abspath(path)
= Example:
path3 = os.path.abspath(pathl)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Operations on Paths

= check whether a directory or file exists using os.path.exists
* Example: os.path.exists(pathl) == True

os.path.exists("no_name") == False

= check whether a path is a directory using os.path.isdir
* Example: os.path.isdir(pathl) == False
os.path.isdir("..") ==True

= check whether a path is a file using os.path.isfile
= Example: os.path.isfile(pathl) ==True

os.path.isfile("..") == False

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Traversing Directories

* build a path from directory and realtive path using os.path.join
= Example: path4 = os.path.join("..", "dm536")

= Case: recursively find all files in a directory
def find_files(dir):
for name in os.listdir(dir):
path = os.path.join(dir, name)
if os.path.isfile(path): # print file name
print path
else: # recursively search subdirectory
find_files(path)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Catching Exceptions

= file operations are error-prone

= Example: open("no_name") # raises |IOError

= good idea to avoid errors using os.path.exists etc.

= not possible to check all possible situations

" use try-except statement to handle error situations
= Example: try:

f = open(name)

lines = f.readlines()

except:
lines = ["ERROR"]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Databases

* import module anydbm to open (& possibly create) database
= Example: import anydbm
db = anydbm.open("phonebook.db", "c")
db["Schneider-Kamp, Peter"] = "65502327"

print db["Schneider-Kamp, Peter"]

= persistent, i.e., mapping still available after closing program
= Example: import anydbm

db = anydbm.open("phonebook.db", "c")

print db["Schneider-Kamp, Peter"]

= in principle works exactly like a dictionary

= BUT can only map strings to strings!

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Pickling

= import module pickle to translate objects into strings
* function dumps(obj) translates any object into a string
= Example: blocked = [6550, 555]

db["blocked"] = pickle.dumps(blocked)

* function loads(str) translates such a string into an object
= Example: my_blocked = pickle.loads(db["blocked"])

* dumps + loads results in a copy of the object
= Example: blocked == my blocked

blocked is my_blocked == False

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Shells and Pipes

= import module os for access to shells and pipes
= you can execute arbitrary shell commands using os.system

= Example: os.system("ls -I") # print current directory

" you can grab the output of commands using pipes
= Example: f= os.popen("ls -I")

print f.read()

= useful e.g.for reading a (g-)zipped files line by line
= Example: f= os.popen("gunzip -c test.gz")

for line in f.readlines(): print line

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Writing Modules

= any file containing Python code can be imported as module
= Example:
open("test.py", "w").write("def f(): return 42\nprint f()")
import test

= any code in module will be executed
= to avoid that, it is common to test whether a program is run
= Example: better test.py
def f():
return 42

if name_ ==" main_ "
print f()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging File Operations

= when working with files, whitespace can be hard to debug
= printing a string containing whitespace makes it invisible
= use built-in function repr(object) instead
= Example: s = "Hello\n\r\tWorld \t \t!"
print s

print repr(s)

= different operating systems use different line ends
= Linux & Mac OS X use "\n",Windows uses "\r\n"

= use a tool (e.g. dos2unix, unix2dos) to convert

= alternatively, write your own Python program ©

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

CLASSES & OBJECTS

User-Defined Types

" we want to represent points (X,y) in 2-dimensional space
= which data structure to use!
= use two variables x and y
= store coordinates in a list or tuple of length 2
= create user-defined type
= we can use Python’s classes to implement new types
= Example:

class Point(object):

represents a point in 2-dimensional space

print Point # class
p = Point() # create new instance of class Point

print p # instance

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Attributes

= using dot notation, you can assign values to instance variables
= Example: p.x=3.0
p.y = 4.0

Point
o > x—> 3.0
y—> 4.0

= instance variables are called attributes
= attributes can be assigned to and read like any variable
= Example: print "(%g, %g)" % (p.x, p.y)

distance = math.sqrt(p.x™2 + p.y™2)

print distance, "units from the origin”

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Representing a Rectangle

" rectangles can be represented in many ways, e.g.

= width, height, and one corner or the center

" two opposing corners
= here we choose width, breadth and the lower-left corner
= Example:

class Rectangle(object):
"represents a rectangle using attributes width, height, corner”

box = Rectangle() Rectangle |

box.width = 5.0 box —> width = > 5.0
box.height = 3.0 height - > 3.0
box.corner = p T b X > 3.0

y —> 4.0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Instances as Return Values

= functions can return instances
= Example: find the center point of a rectangle
def find_center(box):
p = Point()
p.x = box.corner.x + box.width / 2.0
p.y = box.cornery + box.height / 2.0
return p
box = Rectangle()
box.width = 5.0; box.height = 3.0
box.corner = Point()
box.corner.x = 3.0; box.cornery = 4.0

print find_center(box)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Objects are Mutable

= by assigning to attributes, an object is changed
= Example: update size of rectangle
box.width = box.width + 5.0
box.height = box.height + 3.0

= consequently, also functions can change object arguments

= Example:

def double_rectangle(box):
box.width *= 2

box.height *= 2
double_rectangle(box)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Copying Objects

= import module copy to make copies of objects
= Example: import copy

new = copy.copy(box)

_Rectangle | _Rectangle |
box — width —> 5.0 new — width —> 5.0
height —™ 3.0 height —™ 3.0
Point € — corner
corner —™ x—> 3.0
y—>4.0

= shallow copy, use copy.deepcopy(object) to also copy Point

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging User-Defined Types

" you can obtain type of an instance by using type(object)
= Example: print type(box)

= you can check if an object has an attribute using hasattr

= Example: hasattr(box, "corner") == True

" you can get a list of all attributes using dir(object)

* Example: dir(box)

= print__doc_ _and __module for more information!

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

CLASSSES & FUNCTIONS

Representing Time

= Example: user-defined type for representing time
class Time(object):

""represents time of day using hours, minutes, seconds™™"
time = Time()
time.hours = 13
time.minutes = 57

time.seconds = 42

Time

time > hours — > 13
minutes: > 57
seconds > 42

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Pure Functions

= pure function = does not modify mutable arguments
= Example: add two times
def add_time(tl, t2):
sum = Time()
sum.hours = tl.hours + t2.hours
sum.minutes = tl.minutes + t2.minutes
sum.seconds = tl.seconds + t2.seconds
return sum
time = add_time(time, time)

print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Modifiers

* modifiers = functions that modify mutable arguments
= Example: incrementing time
def increment(time, seconds):

time.seconds += seconds

increment(time, 86400)
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Modifiers

* modifiers = functions that modify mutable arguments
= Example: incrementing time
def increment(time, seconds):
time.seconds += seconds
minutes, time.seconds = divmod(time.seconds, 60)
time.minutes += minutes
time.hours, time.minutes = divmod(time.minutes, 60)
increment(time, 86400)

print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds)

= this was prototype and patch (or trial and error)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Prototyping vs Planning

= alternative to protyping is planned development
= high-level observation: time representable by just seconds
= Example: refactoring function working with time
def time_to_int(time):
return time.seconds + 60 * (time.minutes + 60 * time.hours)
def int_to_time(seconds):
time = Time(); minutes, time.seconds = divmod(seconds, 60)
time.hours, time.minutes = divmod(minutes, 60); return time
def add_time(tl, t2):

return int_to_time(time_to_int(tl) + time_to_int(t2))

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Prototyping vs Planning

= alternative to protyping is planned development
= high-level observation: time representable by just seconds
= Example: refactoring function working with time
def time_to_int(time):
return time.seconds + 60 * (time.minutes + 60 * time.hours)
def int_to_time(seconds):
time = Time(); minutes, time.seconds = divmod(seconds, 60)
time.hours, time.minutes = divmod(minutes, 60); return time
def increment(time, seconds):
t = int_to_time(seconds + time_to_int(time))
time.seconds = t.seconds; time.minutes = t.minutes

time.hours = t.hours

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Prototyping vs Planning

= alternative to protyping is planned development
= high-level observation: time representable by just seconds
= Example: refactoring function working with time
def time_to_int(time):
return time.seconds + 60 * (time.minutes + 60 * time.hours)
def int_to_time(seconds):
time = Time(); minutes, time.seconds = divmod(seconds, 60)
time.hours, time.minutes = divmod(minutes, 60); return time
def increment(time, seconds):

return int_to_time(seconds + time_to_int(time))

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging using Invariants

" invariant = requirement that is always true
= assertion = statement of an invariant using assert
= Example: check that time is valid
def valid_time(time):
if time.hours < 0 or time.minutes < 0 or time.seconds < 0:
return False
return time.minutes < 60 and time.seconds < 60
def add_time(tl, t2):
assert valid_time(tl) and valid_time(t2)
return int_to_time(time_to_int(tl) + time_to_int(t2))

* also useful to check before return value

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

CLASSES & METHODS

Object-Oriented Features

= object-oriented programming in a nutshell:
= programs consists of class definitions and functions
= classes describe real or imagined objects
" most functions and computations work on objects
= so far we have only used classes to store attributes

" i.e., functions were not linked to objects

* methods = functions defined inside a class definition
= first argument is always the object the method belongs to
= calling by using dot notation
= Example: "Slartibartfast".count("a")

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Printing Objects

= printing can be done by a normal function
= better done with a method
= Example:

class Time(object):

nmn n

represents time of day using hours, minutes, seconds
def print_time(time):

t = (time.hours, time.minutes, time.seconds)

print "%02dh %02dm %02ds" % t

def print_time(time):
t = (time.hours, time.minutes, time.seconds)
print "%02dh %02dm %02ds" % t

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Printing Objects

= printing can be done by a normal function
= better done with a method
= Example:

class Time(object):

nmn n

represents time of day using hours, minutes, seconds
def print_time(self):

t = (self.hours, self.minutes, self.seconds)

print "%02dh %02dm %02ds" % t

def print_time(time):
t = (time.hours, time.minutes, time.seconds)
print "%02dh %02dm %02ds" % t

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Printing Objects

= printing can be done by a normal function
= better done with a method

= Example:

class Time(object):

represents time of day using hours, minutes, seconds
def print_time(self):
t = (self.hours, self.minutes, self.seconds)
print "%02dh %02dm %02ds" % t
end =Time()
end.hours = 12; end.minutes = |5; end.seconds = 37
Time.print_time(end) # what really happens

end.print_time() # how to write it!

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incrementing as a Method

= Example: add increment as a method
class Time(object):

represents time of day using hours, minutes, seconds
def time_to_int(self):

return self.seconds + 60 * (self.minutes + 60 * self.hours)
def int_to_time(self, seconds):

minutes, self.seconds = divmod(seconds, 60)

self.hours, self.minutes = divmod(minutes, 60)
def increment(self, seconds):

return self.int_to_time(seconds + self.time_to_int())

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Comparing with Methods

* Example: addis_after as a method
class Time(object):

nmn "

represents time of day using hours, minutes, seconds
def time_to_int(self):

return self.seconds + 60 * (self.minutes + 60 * self.hours)
def int_to_time(self, seconds):

minutes, self.seconds = divmod(seconds, 60)

self.hours, self.minutes = divmod(minutes, 60)
def increment(self, seconds):

return self.int_to_time(seconds + self.time_to_int())
def is_after(self, other):

return self.time_to_int() > other.time_to_int()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Initializing Objects

= special method __init__ (self, ...) to create new objects

= usually first method written for any new class!
= Example: initialize Time objects using __init

class Time(object):

nmn n

represents time of day using hours, minutes, seconds

def _init__ (self, hours, minutes, seconds):

self.hours = hours

self.minutes = minutes

self.seconds = seconds
start = Time(12, 23, 42)
start = Time()

start.hours = |2; start.minutes = 23; start.seconds = 42

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

String Representation of Objects

= special method _ str__ (self) to convert objects to strings

= Example: print Time objects using __ str

class Time(object):

nmn ni

represents time of day using hours, minutes, seconds

def __init__ (self, hours, minutes, seconds):

self.hours = hours
self.minutes = minutes
self.seconds = seconds
def str__ (self):
t = (self.hours, self.minutes, self.seconds)
return "%dh %dm %ds" % t
print Time(7, 42, 23)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Representation of Objects

= special method _ repr__ (self) to represent objects
= Example: make Time objects more usable in lists

class Time(object):

represents time of day using hours, minutes, seconds
def str_ (self):

t = (self.hours, self.minutes, self.seconds)
return "%dh %dm %ds" % t

def repr__ (self):

t = (self.hours, self.minutes, self.seconds)
return "Time(%s, %s, %s)" % t

print [Time(7,42,23),Time(12, 23, 42)]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Representation of Objects

= special method _ repr__ (self) to represent objects
= Example: make Time objects more usable in lists

class Time(object):

nmn ni

represents time of day using hours, minutes, seconds
def as_tuple(self):
return (self.hours, self.minutes, self.seconds)
def str_ (self):
return "%dh %dm %ds" % self.as_tuple()
def _ repr__ (self):
return "Time(%s, %s, %s)" % self.as_tuple()
print [Time(7,42,23),Time(12, 23, 42)]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

