
DM550/DM857
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk

http://imada.sdu.dk/~petersk/DM550/
http://imada.sdu.dk/~petersk/DM857/

Lists vs Strings

§ string = sequence of letters
§ list = sequence of values

§ convert a string into a list using the built-in list() function
§ Example: list("Hej hop") == ["H", "e", "j", " ", "h", "o", "p"]

§ split up a string into a list using the split(sep) method
§ Example: "Slartibartfast".split("a") == ["Sl", "rtib", "rtf", "st"]

§ reverse operation is the join(sequence) method
§ Example: " and ".join(["A", "B", "C"]) == "A and B and C"

"".join(["H", "e", "j", " ", "h", "o", "p"]) = "Hej Hop"

June 20092

Objects and Values

§ two possible stack diagrams for a = "mango"; b = "mango"

§ we can check identity of objects using the is operator
§ Example: a is b == True
§ two possible stack diagrams for x = [23, 42]; y = [23, 42]

§ Example: x is y == False

June 20093

a "mango"
"mango"b

a "mango"
b

list

0 23
421

x
y

list

0 23
421

x
y

list

0 23
421

Aliasing

§ when assigning y = x, both variables refer to same object
§ Example: x = [23, 42, -3.0]

y = x
x is y == True

§ here, there are two references to one (aliased) object

§ fine for immutable objects (like strings)
§ problematic for mutable objects (like lists)
§ Example: y[2] = 4711

x == [23, 42, 4711]

§ HINT: when unsure, always copy list using y = x[:]

June 20094

list

0 23
421

x
y

2 -3.0

§ lists passed as arguments to functions can be changed
§ Example: tripling the first element

def triple_head(x):
x[:1] = [x[0]]*3

my_list = [23, 42, -3.0]
triple_head(my_list)

__main__

triple_head

List Arguments

June 20095

list

my_list 0 23
42
-3.0

1
2

x

§ lists passed as arguments to functions can be changed
§ Example: tripling the first element

def triple_head(x):
x[:1] = [x[0]]*3

my_list = [23, 42, -3.0]
triple_head(my_list)
my_list == [23, 23, 23, 42, -3.0]

__main__

triple_head

list

my_list 0 23
23
23

1
2

List Arguments

June 20096

x 3
4 -3.0

42

§ lists passed as arguments to functions can be changed
§ some operations change object

§ assignment using indices
§ append(object) method
§ extend(iterable) method
§ sort() method
§ del statement

§ some operations return a new object
§ access using slices
§ strip() method
§ “+” on strings and lists
§ “* n” on strings and lists

List Arguments

June 20097

Debugging Lists

§ working with mutable objects like lists requires attention!
1. many list methods return None and modify destructively

§ word = word.strip() makes sense
§ t = t.sort() does NOT!

2. there are many ways to do something – stick with one!
§ t.append(x) or t = t + [x]
§ use either pop, remove, del or slice assignment for deletion

3. make copies when you are unsure!
§ Example: …

sorted_list = my_list[:]
sorted_list.sort()
…

June 20098

DICTIONARIES

June 20099

Generalized Mappings

§ list = mapping from integer indices to values
§ dictionary = mapping from (almost) any type to values
§ indices are called keys and pairs of keys and values items

§ empty dictionaries created using curly braces “{}”
§ Example: en2da = {}

§ keys are assigned to values using same syntax as for sequences
§ Example: en2da["queen"] = "dronning"

print(en2da)

§ curly braces “{” and “}” can be used to create dictionary
§ Example: en2da = {"queen" : "dronning", "king" : "konge"}

June 200910

Dictionary Operations

§ printing order can be different: print(en2da)
§ access using indices: en2da["king"] == "konge"
§ KeyError when key not mapped: print(en2da["prince"])
§ length is number of items: len(en2da) == 2
§ in operator tests if key mapped: "king" in en2da == True

"prince" in en2da == False
§ keys() metod gives list of keys:

en2da.keys() == ["king", "queen"]
§ values() method gives list of values:

en2da.values() == ["konge", "dronning"]
§ useful e.g. for test if value is used:

"prins" in en2da.values() == False
June 200911

Dictionaries as Sets

§ dictionaries can be used as sets
§ Idea: assign None to all elements of the set
§ Example: representing the set of primes smaller than 20

primes = {2: None, 3: None, 5: None, 7: None, 11: None,
13: None, 17: None, 19: None}

§ then in operator can be used to see if value is in set
§ Example:

15 in primes == False
17 in primes == True

§ for lists, needs steps proportional to number of elements
§ for dictionary, needs (almost) constant number of steps

June 200912

Counting Letter Frequency

§ Goal: count frequency of letters in a string (histogram)
§ many possible implementations, e.g.:

§ create 26(+3?) counter variables for each letterl; use
chained conditionals (if … elif … elif …) to increment

§ create a list of length 26(+3?); increment the element at
index n-1 if the n-th letter is encountered

§ create a dictionary with letters as keys and integers as
values; increment using index access

§ all these implementations work (differently)
§ big differences in runtime and ease of implementation
§ choice of data structure is a design decision

June 200913

Counting with Dictionaries

§ fast and counts all characters – no need to fix before!
def histogram(word):

d = {}
for char in word:

if char not in d:
d[char] = 1

else:
d[char] += 1

return d
§ Example: h = histogram("slartibartfast")

h == {"a":3, "b":1, "f":1, "i":1, "l":1, "s":2, "r":2, "t":3}

June 200914

dict

"a" 3
1"b"

h

… …
"t" 3

Counting with Dictionaries

§ fast and counts all characters – no need to fix before!
def histogram(word):

d = {}
for char in word:

if char not in d:
d[char] = 1

else:
d[char] += 1

return d
§ access using the get(k, d) method: h.get("t", 0) == 3

h.get("z", 0) == 0

June 200915

dict

"a" 3
1"b"

x

… …
"t" 3

Traversing Dictionaries

§ using a for loop, you can traverse all keys of a dictionary
§ Example: for key in en2da:

print(key, en2da[key])

§ you can also traverse all values of a dictionary
§ Example: for value in en2da.values():

print(value)

§ finally, you can traverse all items of a dictionary
§ Example: for item in en2da.items():

print(item[0], item[1]) # key, value

June 200916

Reverse Lookup

§ given dict. d and key k, finding value v with v == d[k] easy
§ this is called a dictionary lookup
§ given dict. d and value v, finding key k with v == d[k] hard
§ there might be more than one key mapping to v (cf. example)
§ Possible implementation 1:
def reverse_lookup(d, v):

result = []
for key in d:

if d[key] == v:
result.append(key)

return result
§ returns empty list, when no key maps to value v

June 200917

Reverse Lookup

§ given dict. d and key k, finding value v with v == d[k] easy
§ this is called a dictionary lookup
§ given dict. d and value v, finding key k with v == d[k] hard
§ there might be more than one key mapping to v (cf. example)
§ Possible implementation 2:
def reverse_lookup(d, v):

for k in d:
if d[k] == v:

return k
raise ValueError

§ gives error when no key maps to value v

June 200918

Reverse Lookup

§ given dict. d and key k, finding value v with v == d[k] easy
§ this is called a dictionary lookup
§ given dict. d and value v, finding key k with v == d[k] hard
§ there might be more than one key mapping to v (cf. example)
§ Possible implementation 2:
def reverse_lookup(d, v):

for k in d:
if d[k] == v:

return k
raise ValueError, "value not found in dictionary"

§ gives error when no key maps to value v

June 200919

Dictionaries and Lists

§ lists cannot be keys, as they are mutable
§ list can be values stored in dictionaries
§ Example: inverting a dictionary
def invert_dict(d):

inv = {}
for key in d:

val = d[key]
if val not in inv:

inv[val] = [key]
else:

inv[val].append(key)
return inv

June 200920

Dictionaries and Lists

§ lists cannot be keys, as they are mutable
§ list can be values
§ Example: inverting a dictionary
def invert_dict(d):

inv = {}
for key in d:

val = d[key]
if val not in inv:

inv[val] = []
inv[val].append(key)

return inv
§ Example: print invert_dict(histogram("hello"))

June 200921

Dictionaries and Lists

§ Example: print invert_dict(histogram("hello"))
June 200922

dict

"e" 1
1"h"

x

"l" 2
"o" 1

dict

1
2

inv
list

0 "e"
"h"
"o"

1
2

list

0 "l"

Memoizing

§ Fibonacci numbers lead to exponentially many calls:
def fib(n):

if n in [0,1]: return n
return fib(n-1) + fib(n-2)

§ keeping previously computed values (memos) helps:
known = {0:0, 1:1}
def fib_fast(n):

if n in known:
return known[n]

res = fib_fast(n-1) + fib_fast(n-2)
known[n] = res
return res

June 200923

Global Variables

§ known is created outside fib_fast and belongs to __main__
§ such variables are called global
§ many uses for global variables (besides memoization)
§ Example 1: flag for controlling output
debug = True
def pythagoras(a,b):

if debug: print "pythagoras with a =d", a, " and b = d", b
result = math.sqrt(a**2 + b**2)
if debug: print "result of pythagoras:", result
return result

June 200924

Global Variables

§ known is created outside fib_fast and belongs to __main__
§ such variables are called global
§ many uses for global variables (besides memoization)
§ Example 2: track number of calls
num_calls = 0
def pythagoras(a,b):

global num_calls
num_calls += 1
return math.sqrt(a**2 + b**2)

§ gives UnboundLocalError as num_calls is local to pythagoras
§ declare num_calls to be global using a global statement

June 200925

Long Integers

§ Python uses 32 or 64 bit for int
§ this limits the numbers that can be represented:

§ 32 bit: from -2**31 to 2**31–1
§ 64 bit: from -2**63 to 2**63–1

§ for larger numbers, Python automatically uses long integers
§ Example:

fib(93) == 12200160415121876738

§ long integers work just like int
§ Example: 2**64 + 2**64 == 2**65

fib(100)**fib(20) # has 139016 digits :-o

June 200926

Debugging Larger Datasets

§ debugging larger data sets, simple printing can be too much
1. scale down the input – start with the first n lines; a good

value for n is a small value that still exhibits the problem
2. scale down the output – just print a part of the output; when

using strings and lists, slices are very handy
3. check summaries and types – check that type and len(…) of

objects is correct by printing them instead of the object
4. write self-checks – include some sanity checks, i.e., test

Boolean conditions that should definitely hold
5. pretty print output – even larger sets can be easier to

interpret when printed in a more human-readable form

June 200927

