
DM550 Introduction to Programming
Fall 2017 Re-re-exam Project (Java)

Department of Mathematics and Computer Science
University of Southern Denmark

July 2, 2018



2

Introduction
The purpose of this project is to try in practice the use of programming
techniques and knowledge about the programming language Java. Please
make sure to read this entire note before starting your work on this part of
the project. Pay close attention to the three sections below.

Exam Rules
This project is part of the re-re-exam for DM550. To pass the re-re-exam
this Java project (or the one from the ordinary exam or the re-exam) and
a Python project (from the re-re-exam or from the re-exam or form the
ordinary exam) have to be passed in order to pass the overall exam. This
project hast to be done individually.

Deliverables
A short project report (at least 6 pages without front page and appendix)
contain the following 6 sections has to be delivered:

• front page (course number, name, section, date of birth)

• specification (what the program is supposed to do)

• design (how the program was planned)

• implementation (how the program was written)

• testing (what tests you performed)

• conclusion (how satisfying the result is)

• appendix (complete source code)

The report has to be delivered as a single PDF file electronically using Black-
board’s SDU Assignment functionality. No printed copies are required. Do
not forget to include the complete source code!

Deadline

August 26, 2018, 23:59

Late deliveries cannot be accepted, so please plan your time accordingly.



3

The Problem

Your task in this part of the project is to write a SAT solver. A SAT solver is
a program that reads a propositional formula and determines whether there
is satisfying assignment of its variables. The propositional formula is repre-
sented in conjunctive normal form (CNF), i.e., as a conjunction of disjunctive
clauses. Here, each clause is a disjunction of literals. Each literal is either a
Boolean variables or a negated Boolean variable.

Example 1: The propositional formula (X1 ∨ ¬X2) ∧ ¬X1 is in CNF.

An assignment of variables to true and false satisfies a formula in con-
junctive normal form if it satisfies all clauses. An assignment satisfies a clause
if it satisfies at least one of its literals. An assignment satisfies a variable if
it assigns it to true, and it satisfies a negated variable if it assigns it to false.

Example 2: The formula from Example 1 is satisfiable. The only satisfying
assignment is the one that assigns both X1 and X2 to false. If we add the
clause X2 to the formula, we obtain (X1 ∨ ¬X2) ∧ ¬X1 ∧ X2, which is not
satisfiable. There are four possible assignments (both variables assigned to
true; X1 assigned to true and X2 assigned to false; X1 assigned to false and
X2 assigned to false; both variables assigned to false). The first two do not
satisfy the clause ¬X1 while the remaining two do not satisfy the clause X2.

The Input

For input to your program, the formulas in CNF are represented in a simpli-
fied DIMACS format. At the beginning of the file there can be lines starting
with the letter “c”. These have to be ignored as they contain only com-
ments. Then there is a line starting with the letter “p”, which defines the
characteristics of the formula.

Example 3: p cnf 2 3 signifies that the CNF has two variables X1 and X2

and consists of three clauses.

Each line following the “p” line contains one clause. The literals in a
clause are represented as integers, where i represents the variable Xi and −i
represents the negated variable ¬Xi. Each line is terminated by 0.

Example 4: The clause X1 ∨ ¬X2 would thus be represented as 1 -2 0.



4

Example 5: The unsatisfiable formula from Example 1 could be written as
follows:
c Example 1

p cnf 2 3

1 -2 0

-1 0

Example 6: The unsatisfiable formula from Example 2 could be written
as follows:
c Example 2

p cnf 2 3

1 -2 0

-1 0

2 0

The home page of the course contains a number of possible inputs to test
your program on.

The Output

The output of your solver is at least one line with either “s UNSATISFIABLE”
or “s SATISFIABLE”. If a formula with n variables is satisfiable, a line with
a satisfying assignment should be output. This line starts with the letter “v”
and lists n integers. The first integer is either 1 (if X1 is assigned to true) or
−1 (if X1 is assigned to false), the second 2 or −2, and so on.

Example 7: The output for the input from Example 6 should be as follows:
s UNSATISFIABLE

Example 8: The output for the input from Example 5 should be as fol-
lows:
s SATISFIABLE

v -1 -2



5

The Tasks

The following tasks are meant only as a guideline. Feel free to use a different
design.

1. Implement a method readCNF that reads a CNF in the simplified DI-
MACS format and stores it in an appropriate data structure. Hint:
consider to use collection classes for storing e.g. a list of lists.

2. Implement a method solve that takes a CNF in your internal repre-
sentation and outputs either null (if the formula is unsatisfiable) or
a variable assignment satisfying the formula (if the formula is satisfi-
able). Hint: The easiest way is to use a generate-and-test appraoch,
going systematically through all possible variable assignments. There
are 2n assignments for n variables.

3. Implement a method printResult that prints the output in the format
described above.


