
DM550 / DM857
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk

http://imada.sdu.dk/~petersk/DM550/
http://imada.sdu.dk/~petersk/DM857/

OBJECT-ORIENTED
PROGRAMMING IN JAVA

June 20092

Programming as Problem Solving

June 20093

Problem

Specification

Design

Implementation

Program

Customer

Product

analysis

choices

coding

testing

Simple Instructions

§ Administrative: import java.util.Scanner;

§ Input: s = new Scanner(System.in);
a = s.nextInt();
b = s.nextInt();

§ Arithmetic operations: c = Math.sqrt(a*a+b*b);
§ Output: System.out.println("Result: "+c);

§ That is basically ALL a computer can do.

June 20094

Simple Instructions

import java.util.Scanner;

s = new Scanner(System.in);
a = s.nextInt();
b = s.nextInt();
c = Math.sqrt(a*a+b*b);
System.out.println("Result: "+c);

June 20095

Simple Instructions

import java.util.Scanner;
public class Pythagoras {

public static void main(String[] as) {
s = new Scanner(System.in);
a = s.nextInt();
b = s.nextInt();
c = Math.sqrt(a*a+b*b);
System.out.println("Result: "+c);

} // main
} // Pythagoras

June 20096

Simple Instructions

import java.util.Scanner;
public class Pythagoras {

public static void main(String[] as) {
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
double c = Math.sqrt(a*a+b*b);
System.out.println("Result: "+c);

} // main
} // Pythagoras

June 20097

Combining Instructions

§ Sequence: <instr1>; <instr2>; <instr3>;
§ Conditional Execution: if (<cond>) {

<instr1>; <instr2>;
} else {

<instr3>; <instr4>; <instr5>;
}

§ Subprograms / Functions: <type> <function>(<argument>) {
<instr1>; <instr2>;

}
§ Repetition: while (<cond>) {

<instr1>; <instr2>; <instr3>;
}

June 20098

Executing Programs

§ Program stored in a file (source code file)
§ Program is compiled to machine-readable code (byte code)
§ Java Virtual Machine (JVM) executes byte code

June 20099

Source
Code

Input

java

Output

Byte
Codejavac

Debugging

§ Any reasonably complex program contains errors
§ Three types of errors (in Java)

§ Compiler Errors
§ Syntactic Errors public ssalc HelloWorld {}
§ Type Errors int a = new Scanner();

§ Runtime Errors int c = 42 / 0;

§ Semantic Errors int c = a*a+b*b;

§ Debugging is finding out why an error occurred
June 200910

VARIABLES, EXPRESSIONS
& STATEMENTS

June 200911

Values and Types

§ Values = basic data objects 42 23.0 "Hello!"
§ Types = classes of values int double String

§ Types need to be declared
§ <type> <var>; int answer;

§ Values can be printed:
§ System.out.println(<value>); System.out.println(23.0);

§ Values can be compared:
§ <value> == <value> -3 == -3.0

June 200912

Variables

§ variable = name that refers to value of certain type
§ program state = mapping from variables to values

§ values are assigned to variables using “=”:
§ <var> = <value>; answer = 42;

§ the value referred to by a variable can be printed:
§ System.out.println(<var>); System.out.println(answer);

§ the type of a variable is given by its declaration

June 200913

Primitive Types

Type Bits Range
§ boolean 1 {true, false}

§ byte 8 {-27 = -128, …, 127 = 27-1}

§ short 16 {-215 = -32768, …, 32767 = 215-1}

§ char 16 {'a', …,'z', '%', …}

§ int 32 {-231, …, 231-1}

§ float 32 1 sign, 23(+1) mantissa, 8 exponent bits

§ long 64 {-263, …, 263-1}

§ double 64 1 sign, 52(+1) mantissa, 11 exponent bits

June 200914

Reference Types

§ references types = non-primitive types
§ references types typically implemented by classes and objects

§ Example 1: String

§ Example 2: arrays (mutable, fixed-length lists)

June 200915

Variable Names

§ start with a letter (convention: a-z) or underscore “_”
§ contain letters a-z and A-Z, digits 0-9, and underscore “_”

§ can be any such name except for 50 reserved names:
abstract continue for new switch
assert default goto package synchronized
boolean do if private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const float native super while

June 200916

Multiple Assignment

§ variables can be assigned to different values of the same type:
§ Example: int x = 23;

x = 42;
§ Instructions are executed top-to bottom => x refers to 42

§ variables cannot be assigned to values of different type:
§ Example: int x = 23;

x = 42.0; // !ERROR!
§ only exception is if types are “compatible”:

§ Example: double x = 23.0;
x = 42; // :-)

June 200917

Operators & Operands

§ Operators represent computations: + * - / ++ --
§ Example: 23+19 day+month*30 2*2*2*2*2*2-22

§ Addition “+”, Multiplication “*”, Subtraction “-” as usual
§ there is no exponentiation operator to compute xy

§ need to use Math.pow(x, y) or write your own function power
static int power(int a, int b) {

if (b == 0) return 1; else return a*power(a,b-1);
}
§ Division “/” rounds down integers (differently from Python)

§ Example Java: 3/-2 has value -1
§ Example Python: 3/-2 has value -2

June 200918

Boolean Expressions

§ expressions of type boolean with value either true or false

§ logic operators for computing with Boolean values:
§ x && y true if, and only if, x is true and y is true
§ x || y true if (x is true or y is true)
§ !x true if, and only if, x is false

§ Java does NOT treat numbers as Boolean expressions J

June 200919

Expressions

§ Expressions can be:
§ Values: 42 23.0 "Hej med dig!"
§ Variables: x y name1234
§ built from operators: 19+23.0 x*x+y*y

§ grammar rule:
§ <expr> => <value> |

<var> |
<expr> <operator> <expr> |
(<expr>)

§ every expression has a value:
§ replace variables by their values
§ perform operations

June 200920

Increment and Decrement

§ abbreviation for incrementing / decrementing (like in Python)
§ Example: counter = counter + 1;

counter += 1;

§ in special case of “+1”, we can use “++” operator
§ Example: counter++;

§ two variants: post- and pre-increment
§ Example: int x = 42;

int y = x++; // x == 43 && y == 42
int z = ++y; // y == 43 && z == 43

§ same for decrementing with “--” operator

June 200921

Relational Operators

§ relational operators are operators, whose value is boolean

§ important relational operators are:
Example True Example False

§ x < y 23 < 42 'W' < 'H'
§ x <= y 42 <= 42.0 Math.PI <= 2
§ x == y 42 == 42.0 2 == 2.00001
§ x != y 42 != 42.00001 2 != 2.0
§ x >= y 42 >= 42 'H' >= 'h'
§ x > y 'W' > 'H' 42 > 42

§ remember to use “==” instead of “=” (assignment)!
June 200922

Conditional Operator

§ select one out of two expressions depending on condition

§ as a grammar rule:
<cond-op> => <cond> ? <expr1> : <expr2>

§ Example:
int answer = (1 > 0) ? 42 : 23;

§ useful as abbreviation for many small if-then-else constructs

June 200923

Operator Precedence

§ expressions are evaluated left-to-right
§ Example: 64 - 24 + 2 == 42

§ BUT: like in mathematics, “*” binds more strongly than “+”
§ Example: 2 + 8 * 5 == 42

§ parentheses have highest precedence: 64 - (24 + 2) == 38

§ Parentheses “(<expr>)”
§ Increment “++” and Decrement “--”
§ Multiplication “*” and Division “/”
§ Addition “+” and Subtraction “-”
§ Relational Operators, Boolean Operators, Conditonal, …

June 200924

String Operations

§ Addition “+” works on strings; “-”, “*”, and “/” do NOT
§ other operations implemented as methods of class String:
String s1 = "Hello "; String s2 = "hello ";
boolean b1 = s1.equals(s2); // b1 == false
boolean b2 = s1.equalsIgnoreCase(s2); // b2 == true
int i1 = s1.length(); // i1 == 5
char c = s1.charAt(1); // c == 'e’
String s3 = s1.substring(1,3); // s3.equals("el")
int i2 = s1.indexOf(s3); // i2 == 1
int i3 = s1.compareTo(s2); // i3 == -1
String s4 = s1.toLowerCase(); // s4.equals(s2)
String s5 = s1.trim(); // s5.equals("Hello")

June 200925

Formatting Strings

§ convert to string using format strings (like in Python)
§ Example:

System.out.println(String.format("%d", 42));
System.out.printf("%d\n", 42);

§ String.format(String s, Object... args) more general

§ format sequence %d for integer, %g for float, %s for string

§ for multiple values, use multiple arguments
§ Example:

System.out.printf("The %s is %g!", "answer", 42.0);

June 200926

Statements

§ instructions in Java are called statements

§ so far we know 3 different statements:
§ expression statements: System.out.println("Ciao!");
§ assignments “=”: c = a*a+b*b;
§ return statements: return c;

§ as a grammar rule:
<stmt> => <expr> |

<var> = <expr> |
return <expr>

June 200927

Comments

§ programs are not only written, they are also read

§ document program to provide intuition:
§ Example 1: c = Math.sqrt(a*a+b*b); // use Pythagoras
§ Example 2: int tmp = x; x = y; y = tmp; // swap x and y

§ all characters after the comment symbol “//” are ignored

§ multiline comments using “/*” and “*/”
§ Example: /* This comment

is very long! */

§ Javadoc comments using “/**” and “*/”
§ Example: /** This function rocks! */

June 200928

(Syntactic) Differences Java / Python

§ every statement is ended by a semi-colon “;”
§ Example: import java.util.Scanner;

§ indentation is a convention, not a must L
§ blocks of code are marked by curly braces “{” and “}”
§ Example: public class A {public static void main(String[]
args) {Scanner sc = new Scanner(System.in); int a = sc.nextInt();
System.out.println(a*a);}}

§ objects are created using “new”
§ Java variables require type declarations
§ Example: Scanner sc = null; int a = 0; int b; b = 1;

June 200929

