
DM550 / DM857
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk

http://imada.sdu.dk/~petersk/DM550/
http://imada.sdu.dk/~petersk/DM857/

IN & OUTPUT
USING STREAMS

June 20092

Streams

§ streams are ADTs for representing input and output
§ source for input can e.g. be files, keyboard, network resources
§ output can go to e.g. files, terminal, network resources
§ four categories of streams in java.io package:

§ byte streams are for machine-readable data
§ reading one unit is reading one byte (= 8 bits)

§ character streams are for human-readable data
§ reading one unit is reading one character (= 16 bits)
§ readers/writers translate 8-bit files etc. into 16-bit unicode

June 20093

Input Output

byte InputStream OutputStream

character Reader Writer

InputStream ADT: Specification

§ data = potentially infinite stream of bytes
§ operations are given by the following interface:
public interface InputStreamADT {

public int available(); // how much more can be read?
public void close(); // close the stream
public int read(); // next byte of the stream
public int read(byte[] b); // read n bytes into b and return n
public int read(byte[] b, int off, int len); // max len from b[off]
public long skip(long n); // skip n bytes

}
§ all input byte streams are subclasses of java.io.InputStream

June 20094

InputStream ADT: Example

§ Example (reading up to 1024 bytes from a file):
InputStream input = new FileInputStream(new File("test.txt"));
byte[] data = new byte[1024];
int readSoFar = 0;
do {

readSoFar += input.read(data, readSoFar, 1024-readSoFar);
} while (input.available() > 0 && readSoFar < 1024);
input.close();
System.out.println("Got "+readSoFar+" bytes from test.txt!");

§ if you think that is horrible …
§ … you now understand, why we used java.util.Scanner J

June 20095

OutputStream ADT: Specification

§ data = potentially infinite stream of bytes
§ operations are given by the following interface:
public interface OutputStreamADT {

public void close(); // close the stream
public void write(int b); // write b to the stream
public void write(byte[] b);// write b.length bytes from b
public void write(byte[] b, int off, int len); // len bytes from b[off]
public void flush(); // forces buffers to be written

}
§ all output byte streams are subclasses of java.io.OutputStream

June 20096

OutputStream ADT: Example

§ Example (copying a file):
InputStream in = new FileInputStream(new File("test.txt"));
OutputStream out = new FileOutputStream(new File("test.out"));
int total = 0;
byte[] block = new byte[4096];
while (true) {

int read = in.read(block);
if (read == -1) { break; }
out.write(block, 0, read);
total += read;

} in.close(); out.close();
System.out.println("Copied "+total+" bytes from test.txt!");

June 20097

Reader ADT: Specification

§ data = potentially infinite stream of characters
§ operations are given by the following interface:
public interface ReaderADT {

public boolean ready(); // input available?
public void close(); // close the stream
public int read(); // next character of the stream
public int read(char[] c); // read n characters into c and return n
public int read(char[] c, int off, int len); // max len from c[off]
public int read(CharBuffer target); // read into CharBuffer
public long skip(long n); // skip n characters

}
§ all input character streams are subclasses of java.io.Reader

June 20098

Reader ADT: Example

§ Example (reading characters from a file):
Reader input = new FileReader(new File("test.txt"));
StringBuffer buffer = new StringBuffer();
while (true) {

int ch = input.read();
if (ch == -1) { break; }
buffer.append((char)ch);

}
input.close();
System.out.println("Read the following content:");
System.out.println(buffer.toString());

§ less horrible … but we still prefer java.util.Scanner J
June 20099

Writer ADT: Specification

§ data = potentially infinite stream of characters
§ operations are given by the following interface:
public interface WriterADT {

public void close(); // close the stream
public void write(int c); // write one character to the stream
public void write(char[] c); // write c.length characters
public void write(char[] c, int off, int len); // len chars from c[off]
public void write(String s); // write s.length() characters
public void write(String s, int off, int len); // len chars from s at off
public void flush(); // forces buffers to be written

}
§ all output character streams are subclasses of java.io.Writer

June 200910

Writer ADT: Example

§ Example (copying a text file character by character):
Reader in = new FileReader(new File("test.txt"));
Writer out = new FileWriter(new File("test.out"));
while (true) {

int ch = in.read();
if (ch == -1) { break; }
out.write(ch);

}
in.close();
out.close();
System.out.println("Done!");

June 200911

Character vs Byte Streams

§ Java has classes to convert between character and byte streams
§ characters are converted according to specified char set
§ default char set is 16-bit unicode

§ InputStreamReader reads characters from byte stream
§ DataOutputStream can be used to write primitive types + String
§ OutputStreamWrite write characters to byte stream
§ DataInputStream can be used to read primitive types + String

June 200912

Input Output

byte -> char InputStreamReader DataOutputStream

char -> byte DataInputStream OutputStreamWriter

PrintWriter & PrintStream

§ classes that extend Writer and OutputStream
§ add comfortable methods for printing and formatting data
§ provide methods such as for example

§ print – like in System.out.print
§ println – like in System.out.println
§ printf – like in System.out.printf

§ in fact, System.out is an instance of PrintStream
§ Example (writing comfortably to a file):

File file = new File("test.out"); String name = "Peter";
PrintStream out = new PrintStream(new FileOutputStream(file));
out.printf("Hej %s! How are you?\n", name);
out.close();

June 200913

NETWORKING &
MULTI-THREADING

June 200914

Accessing Network Resources

§ like File represents files, URL represents network resources
§ Example 1 (downloading course web site into file):

URL url = new URL("http://imada.sdu.dk/~petersk/DM537/");
InputStream input = url.openStream();
OutputStream output = new FileOutputStream("dm537.html");
byte[] block = new byte[4096];
while (true) {

int read = input.read(block);
if (read == -1) { break; }
output.write(block, 0, read);

}
input.close(); output.close();

June 200915

Accessing Network Resources

§ like File represents files, URL represents network resources
§ Example 2 (downloading course web site into file):

URL url = new URL("http://imada.sdu.dk/~petersk/DM537/");
Reader in = new InputStreamReader(url.openStream());
PrintStream output = new PrintStream(

new FileOutputStream("dm537.html"));
BufferedReader input = new BufferedReader(in);
while (true) {
String line = input.readLine();
if (line == null) { break; }
output.println(line);

} input.close(); output.close();
June 200916

TCP/IP Sockets

§ URL provides high-level abstraction
§ for general TCP/IP connection, sockets are needed
§ once socket connection is established, normal byte streams
§ client-server model where server waits for client to connect
§ for sockets, IP adress and port number needed
§ Example: IP 130.225.157.85, Port 80 (IMADA web server)

§ listening sockets implemented by class ServerSocket
§ Example: ServerSocket ss = new ServerSocket(2342);

§ connection between client and server instance of Socket
§ Example: Socket sSock = ss.accept();

Socket sock = new Socket("127.0.0.1", 2342);
June 200917

Example: TCP/IP Server

public class MyServer {
public static void main(String[] args) throws IOException {

ServerSocket server = new ServerSocket(2343);
while (true) {

Socket sock = server.accept();
InputStream in = sock.getInputStream();
OutputStream out = sock.getOutputStream();
while (true) {

int read = in.read();
if (read == -1) { break; }
out.write(Character.toUpperCase((char)read));

} } } }
June 200918

Example: TCP/IP Client

public class MyClient {
public static void main(String[] args) throws IOException {

Socket sock = new Socket("127.0.0.1", 2343);
InputStream in = sock.getInputStream();
OutputStream out = sock.getOutputStream();
String userInput = new Scanner(System.in).nextLine();
StringBuffer result = new StringBuffer();
for (char ch : userInput.toCharArray()) {

out.write(ch);
result.append((char)in.read());

}
System.out.println(result); } }

June 200919

Example: Simple Chat Server

public class ChatServer {
public static void main(String[] args) throws IOException {

ServerSocket server = new ServerSocket(2343);
while (true) {

Socket sock = server.accept();
Scanner in = new Scanner(sock.getInputStream());
PrintStream out = new PrintStream(sock.getOutputStream());
while (true) {

System.out.println(in.nextLine());
out.println(new Scanner(System.in).nextLine());

}
} } }

June 200920

Example: Simple Chat Client

public class ChatClient {
public static void main(String[] args) throws IOException {

Socket sock = new Socket("127.0.0.1", 2343);
Scanner in = new Scanner(sock.getInputStream());
PrintStream out = new PrintStream(sock.getOutputStream());
while (true) {

out.println(new Scanner(System.in).nextLine());
System.out.println(in.nextLine());

}
}

}

June 200921

Theory and Practice

§ our client-server implementations work fine
§ BUT:

§ network connections are not reliable
§ there can be many clients
§ answering queries can be time consuming

§ multi-threading can solve these problems
§ Idea:

§ create a thread for each client connection
§ the server is immediately responsive
§ starving threads can be disposed of after some timeout

June 200922

Multi-Threading

§ threads can be started by creating instances of Thread
§ Example (two threads counting up to 1 000 000):
public class Counter extends Thread {

String name;
public Counter(String name) { this.name = name; }
public void run() {

for (int i=1; i<=1000000; i++) {
System.out.printf("%s: %d\n", name, i);

}
}
…

June 200923

Multi-Threading

§ Example (continued):
…
public static void main(String[] args) {

Counter c1 = new Counter("Fred");
Counter c2 = new Counter("George");
c1.start();
c2.start();

}
}
§ start() creates a new thread and runs the run() method

June 200924

Multi-Threaded Server

public class MultiServer {
public static void main(String[] args) throws IOException {

ServerSocket server = new ServerSocket(2343);
while (true) {

Socket sock = server.accept();
new MultiServerHandler(sock).start();

}
}

}

June 200925

Multi-Threaded Server

public class MultiServerHandler extends Thread {
private Socket sock;
public MultiServerHandler(Socket sock) {

this.sock = sock;
}
public void run() {

try {
Scanner in = new Scanner(sock.getInputStream());
PrintStream out = new PrintStream(sock.getOutputStream());
while (true) { out.println(in.nextLine().toUpperCase()); }

} catch (IOException e) {}
} }

June 200926

THE END

June 200927

