
DM550/DM857
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk

http://imada.sdu.dk/~petersk/DM550/
http://imada.sdu.dk/~petersk/DM857/

Project Qualification Assessment

§ first assessment on Monday, September 18, 12:15-14:00

§ 3 assessments in total
§ sum of points from all 3 assessments at least 50% of total

§ in class assessment using your own computer
§ please test BEFORE next Monday!
§ Blackboard multiple choice
§ Magic numbers generated using online python version at:
http://lynx.imada.sdu.dk/

June 20092

Code Café

§ manned Code Cafe for students
§ first time Wednesday, September 6
§ last time Wednesday, December 20
§ closed in Week 42 (efterårsferie)

§ Mondays, 15.00 – 17.00, Nicky Cordua Mattsson
§ Wednesdays, 15.00 – 17.00, Troels RisumVigsøe Frimer
§

§ Nicky and Troels can help with any coding related issues
§ issues have to be related to some IMADA course (fx this one)

June 20093

GETTING YOUR
HANDS DIRTY

June 20094

Accessing Web Services

§ any http URL can be retrieved using the requests module
§ install using: pip3 install requests

§ easy access to standard HTTP requests such as GET, POST, …

§ Retrieve a web:
import requests
requests.get("http://www.sdu.dk/")

§ Access a web service:
url="http://lynx.imada.sdu.dk/osrm/route/v1/driving/-73,40;-73,40.1"
print(requests.get(url).json()["routes"][0])

June 20095

Jelling Stones to Little Mermaid
import requests

db = "http://dbpedia.org/"
stones = "Jelling_stones"
mermaid = "The_Little_Mermaid_(statue)"

stones = requests.get(db+"data/"+stones+".json").json()[db+"resource/"+stones]
mermaid = requests.get(db+"data/"+mermaid+".json").json()[db+"resource/"+mermaid]

stones_long = str(stones["http://www.w3.org/2003/01/geo/wgs84_pos#long"][0]["value"])
stones_lat = str(stones["http://www.w3.org/2003/01/geo/wgs84_pos#lat"][0]["value"])
mermaid_long = str(mermaid["http://www.w3.org/2003/01/geo/wgs84_pos#long"][0]["value"])
mermaid_lat = str(mermaid["http://www.w3.org/2003/01/geo/wgs84_pos#lat"][0]["value"])

url = "http://lynx.imada.sdu.dk/osrm/route/v1/driving/"
res = requests.get(url+stones_long+","+stones_lat+";"+mermaid_long+","+mermaid_lat).json()
print(res["routes"][0]["distance"])

June 20096

CONDITIONAL EXECUTION

June 20097

Boolean Expressions

§ expressions whose value is either True or False

§ logic operators for computing with Boolean values:
§ x and y True if, and only if, x is True and y is True
§ x or y True if at least one of x and y is True
§ not x True if, and only if, x is False

§ Python also treats numbers as Boolean expressions:
§ 0 False
§ any other number True
§ Please, do NOT use this feature!

June 20098

Relational Operators

§ relational operators are operators, whose value is Boolean

§ important relational operators are:
Example True Example False

§ x < y 23 < 42 "World" < "Hej!"
§ x <= y 42 <= 42.0 int(math.pi) <= 2
§ x == y 42 == 42.0 type(2) == type(2.0)
§ x >= y 42 >= 42 "Hej!" >= "Hello"
§ x > y "World" > "Hej!" 42 > 42

§ remember to use “==” instead of “=” (assignment)!

June 20099

Conditional Execution

§ the if-then statement executes code only if a condition holds

§ grammar rule:
<if-then> => if <cond>:

<instr1>; …; <instrk>

§ Example: if x <= 42:
print("not more than the

answer")
if x > 42:

print("sorry - too much!")

June 200910

Control Flow Graph

§ Example: if x <= 42:
print("not more than the

answer")
if x > 42:

print("sorry - too much!")

June 200911

x <= 42

x > 42

print("not more …")

print ("sorry - too …")

True

False

True

False

Alternative Execution

§ the if-then-else statement executes one of two code blocks

§ grammar rule:
<if-then-else> => if <cond>:

<instr1>; …; <instrk>
else:

<instr’1>; …; <instr’k’>

§ Example: if x <= 42:
print("not more than the

answer")
else:

print("sorry - too much!")

June 200912

Control Flow Graph

§ Example: if x <= 42:
print("not more than the

answer")
else:

print("sorry - too much!")

June 200913

x <= 42 print("not more …")

print ("sorry - too …")

True

False

Chained Conditionals

§ alternative execution a special case of chained conditionals

§ grammar rules:
<if-chained> => if <cond1>:

<instr1,1>; …; <instrk1,1>
elif <cond2>:

…
else:

<instr1,m>; …; <instrkm,m>

§ Example: if x > 0: print("positive")
elif x < 0: print("negative")
else: print("zero")

June 200914

Control Flow Diagram

§ Example: if x > 0: print("positive")
elif x < 0: print("negative")
else: print("zero")

June 200915

x > 0

x < 0

print("positive")

print("negative")

True

False

True

False
print("zero")

Nested Conditionals

§ conditionals can be nested below conditionals:
x = float(input())
y = float(input())
if x > 0:

if y > 0: print("Quadrant 1")
elif y < 0: print("Quadrant 4")
else: print("positive x-Axis")

elif x < 0:
if y > 0: print("Quadrant 2")
elif y < 0: print("Quadrant 3")
else: print("negative x-Axis")

else: print("y-Axis")
June 200916

RECURSION

June 200917

Recursion

§ a function can call other functions
§ a function can call itself
§ such a function is called a recursive function

§ Example 1:
def countdown(n):

if n <= 0:
print("Ka-Boooom!")

else:
print(n, "seconds left!")
countdown(n-1)

countdown(3)

June 200918

Stack Diagrams for Recursion

__main__

countdown

countdown

countdown

countdown

June 200919

n è 3

n è 2

n è 1

n è 0

Recursion

§ a function can call other functions
§ a function can call itself
§ such a function is called a recursive function

§ Example 2:
def polyline(t, n, length, angle):

for i in range(n):
t.fd(length)
t.lt(angle)

June 200920

Recursion

§ a function can call other functions
§ a function can call itself
§ such a function is called a recursive function

§ Example 2:
def polyline(t, n, length, angle):

if n > 0:
t.fd(length)
t.lt(angle)
polyline(t, n-1, length, angle)

June 200921

Infinite Recursion

§ base case = no recursive function call reached
§ we say the function call terminates

§ Example 1: n == 0 in countdown / polyline

§ infinite recursion = no base case is reached
§ also called non-termination

§ Example:
def infinitely_often():

infinitely_often()

§ Python has recursion limit 1000 – ask sys.getrecursionlimit()

June 200922

Keyboard Input

§ so far we only know input()
§ what happens when we enter Hello?
§ what happens when we enter 42?

§ the input function can take one optional argument prompt
§ Example 1: a = float(input("first side: "))
§ Example 2: name = input("Your name:\n")
§ “\n” denotes a new line: print("Hello\nWorld\n!")

June 200923

Debugging using Tracebacks

§ error messages in Python give important information:
§ where did the error occur?
§ what kind of error occurred?

§ unfortunately often hard to localize real problem
§ Example:

def determine_vat(base_price, vat_price):
factor = base_price // vat_price
reverse_factor = 1 / factor
return reverse_factor - 1

print(determine_vat(400, 500))

June 200924

error
reported

real
problem

Debugging using Tracebacks

§ error messages in Python give important information:
§ where did the error occur?
§ what kind of error occurred?

§ unfortunately often hard to localize real problem
§ Example:

def determine_vat(base_price, vat_price):
factor = base_price / vat_price
reverse_factor = 1 / factor
return reverse_factor - 1

print(determine_vat(400, 500))

June 200925

FRUITFUL FUNCTIONS

June 200926

Return Values

§ so far we have seen only functions with one or no return
§ sometimes more than one return makes sense

§ Example 1:
def sign(x):

if x < 0:
return -1

elif x == 0:
return 0

else:
return 1

June 200927

Return Values

§ so far we have seen only functions with one or no return
§ sometimes more than one return makes sense

§ Example 1:
def sign(x):

if x < 0:
return -1

if x == 0:
return 0

return 1

§ important that all paths reach one return

June 200928

Incremental Development

§ Idea: test code while writing it
§ Example: computing the distance between (x1,y1) and (x2,y2)

def distance(x1, y1, x2, y2):
print("x1 y1 x2 y2:", x1, y1, x2, y2)

June 200929

Incremental Development

§ Idea: test code while writing it
§ Example: computing the distance between (x1,y1) and (x2,y2)

def distance(x1, y1, x2, y2):
print("x1 y1 x2 y2:", x1, y1, x2, y2)
dx = x2 - x1 # horizontal distance
print("dx:", dx)

June 200930

Incremental Development

§ Idea: test code while writing it
§ Example: computing the distance between (x1,y1) and (x2,y2)

def distance(x1, y1, x2, y2):
print("x1 y1 x2 y2:", x1, y1, x2, y2)
dx = x2 - x1 # horizontal distance
print("dx:", dx)
dy = y2 - y1 # vertical distance
print("dy:", dy)

June 200931

Incremental Development

§ Idea: test code while writing it
§ Example: computing the distance between (x1,y1) and (x2,y2)

def distance(x1, y1, x2, y2):
print("x1 y1 x2 y2:", x1, y1, x2, y2)
dx = x2 - x1 # horizontal distance
print("dx:", dx)
dy = y2 - y1 # vertical distance
print("dy:", dy)
dxs = dx**2; dys = dy**2
print("dxs dys:", dxs, dys)

June 200932

Incremental Development

§ Idea: test code while writing it
§ Example: computing the distance between (x1,y1) and (x2,y2)

def distance(x1, y1, x2, y2):
print("x1 y1 x2 y2:", x1, y1, x2, y2)
dx = x2 - x1 # horizontal distance
dy = y2 - y1 # vertical distance
dxs = dx**2; dys = dy**2
print("dxs dys:", dxs, dys)

June 200933

Incremental Development

§ Idea: test code while writing it
§ Example: computing the distance between (x1,y1) and (x2,y2)

def distance(x1, y1, x2, y2):
print("x1 y1 x2 y2:", x1, y1, x2, y2)
dx = x2 - x1 # horizontal distance
dy = y2 - y1 # vertical distance
dxs = dx**2; dys = dy**2
print("dxs dys:", dxs, dys)
ds = dxs + dys # square of distance
print("ds:", ds)

June 200934

Incremental Development

§ Idea: test code while writing it
§ Example: computing the distance between (x1,y1) and (x2,y2)

def distance(x1, y1, x2, y2):
print("x1 y1 x2 y2:", x1, y1, x2, y2)
dx = x2 - x1 # horizontal distance
dy = y2 - y1 # vertical distance
dxs = dx**2; dys = dy**2
ds = dxs + dys # square of distance
print("ds:", ds)

June 200935

Incremental Development

§ Idea: test code while writing it
§ Example: computing the distance between (x1,y1) and (x2,y2)

def distance(x1, y1, x2, y2):
print("x1 y1 x2 y2:", x1, y1, x2, y2)
dx = x2 - x1 # horizontal distance
dy = y2 - y1 # vertical distance
dxs = dx**2; dys = dy**2
ds = dxs + dys # square of distance
print("ds:", ds)
d = math.sqrt(ds) # distance
print(d)

June 200936

Incremental Development

§ Idea: test code while writing it
§ Example: computing the distance between (x1,y1) and (x2,y2)

def distance(x1, y1, x2, y2):
print("x1 y1 x2 y2:", x1, y1, x2, y2)
dx = x2 - x1 # horizontal distance
dy = y2 - y1 # vertical distance
dxs = dx**2; dys = dy**2
ds = dxs + dys # square of distance
d = math.sqrt(ds) # distance
print(d)

June 200937

Incremental Development

§ Idea: test code while writing it
§ Example: computing the distance between (x1,y1) and (x2,y2)

def distance(x1, y1, x2, y2):
print("x1 y1 x2 y2:", x1, y1, x2, y2)
dx = x2 - x1 # horizontal distance
dy = y2 - y1 # vertical distance
dxs = dx**2; dys = dy**2
ds = dxs + dys # square of distance
d = math.sqrt(ds) # distance
print(d)
return d

June 200938

Incremental Development

§ Idea: test code while writing it
§ Example: computing the distance between (x1,y1) and (x2,y2)

def distance(x1, y1, x2, y2):
dx = x2 - x1 # horizontal distance
dy = y2 - y1 # vertical distance
dxs = dx**2; dys = dy**2
ds = dxs + dys # square of distance
d = math.sqrt(ds) # distance
return d

June 200939

Incremental Development

§ Idea: test code while writing it
§ Example: computing the distance between (x1,y1) and (x2,y2)

def distance(x1, y1, x2, y2):
dx = x2 - x1 # horizontal distance
dy = y2 - y1 # vertical distance
return math.sqrt(dx**2 + dy**2) # use Pythagoras

June 200940

Incremental Development

§ Idea: test code while writing it

1. start with minimal function
2. add functionality piece by piece
3. use variables for intermediate values
4. print those variables to follow your progress
5. remove unnecessary output when function is finished

June 200941

Composition

§ function calls can be arguments to functions
§ direct consequence of arguments being expressions

§ Example: area of a circle from center and peripheral point

def area(radius):
return math.pi * radius**2

def area_from_points(xc, yc, xp, yp):
return area(distance(xc, yc, xp, yp))

June 200942

Boolean Functions

§ boolean functions = functions that return True or False
§ useful e.g. as <cond> in a conditional execution
§ Example:

def divides(x, y):
if y // x * x == y: # remainder of integer division is 0

return True
return False

June 200943

Boolean Functions

§ boolean functions = functions that return True or False
§ useful e.g. as <cond> in a conditional execution
§ Example:

def divides(x, y):
if y % x == 0: # remainder of integer division is 0

return True
return False

June 200944

Boolean Functions

§ boolean functions = functions that return True or False
§ useful e.g. as <cond> in a conditional execution
§ Example:

def divides(x, y):
return y % x == 0

June 200945

Boolean Functions

§ boolean functions = functions that return True or False
§ useful e.g. as <cond> in a conditional execution
§ Example:

def divides(x, y):
return y % x == 0

def even(x):
return divides(2, x)

June 200946

Boolean Functions

§ boolean functions = functions that return True or False
§ useful e.g. as <cond> in a conditional execution
§ Example:

def divides(x, y):
return y % x == 0

def even(x):
return divides(2, x)

def odd(x):
return not divides(2, x)

June 200947

Boolean Functions

§ boolean functions = functions that return True or False
§ useful e.g. as <cond> in a conditional execution
§ Example:

def divides(x, y):
return y % x == 0

def even(x):
return divides(2, x)

def odd(x):
return not even(x)

June 200948

