
DM550/DM857
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk

http://imada.sdu.dk/~petersk/DM550/
http://imada.sdu.dk/~petersk/DM857/

STRINGS

June 20092

Strings as Sequences

§ strings can be viewed as 0-indexed sequences

§ Examples:
"Slartibartfast"[0] == "S"
"Slartibartfast"[1] == "l"
"Slartibartfast"[2] == "Slartibartfast"[7]
"Phartiphukborlz"[-1] == "z"

§ grammar rule for expressions:
<expr> => … | <expr1>[<expr2>]

§ <expr1> = expression with value of type string
§ index <expr2> = expression with value of type integer
§ negative index counting from the back

June 20093

Length of Strings

§ length of a string computed by built-in function len(object)

§ Example:
name = "Slartibartfast"
length = len(name)
print(name[length-4])

§ Note: name[length] gives runtime error

§ identical to write name[len(name)-1] and name[-1]
§ more general, name[len(name)-a] identical to name[-a]

June 20094

Traversing with While Loop

§ many operations go through string one character at a time
§ this can be accomplished using

§ a while loop,
§ an integer variable, and
§ index access to the string

§ Example:
index = 0
while index < len(name):

letter = name[index]
print(letter)
index = index + 1

June 20095

Traversing with For Loop

§ many operations go through string one character at a time
§ this can be accomplished easier using

§ a for loop and
§ a string variable

§ Example:
for letter in name:

print(letter)

June 20096

Generating Duck Names

§ What does the following code do?

prefix = "R"
infixes = "iau"
suffix = "p"
for infix in infixes:

print(prefix + infix + suffix)

§ … and greetings from Andebyen!

June 20097

String Slices

§ slice = part of a string
§ Example 1:

name = "Phartiphukborlz"
print(name[6:10])

§ one can use negative indices:
name[6:-5] == name[6:len(name)-5]

§ view string with indices before letters:

June 20098

P h a r t i p h u k b o r l z

0 1 2 3 4 1
5

1
3

95 6 7 8 1
0

1
1

1
2

1
4

String Slices

§ slice = part of a string
§ Example 2:

name = "Phartiphukborlz"
print(name[6:6]) # empty string has length 0
print(name[:6]) # no left index = 0
print(name[6:]) # no right index = len(name)
print(name[:]) # guess ;)

§ view string with indices before letters:

June 20099

P h a r t i p h u k b o r l z

0 1 2 3 4 1
5

1
3

95 6 7 8 1
0

1
1

1
2

1
4

Changing Strings

§ indices and slices are read-only (immutable)
§ you cannot assign to an index or a slice:

name = "Slartibartfast"
name[0] = "s"

§ change strings by building new ones
§ Example 1:

name = "Slartibartfast"
name = "s" + name[1:]

§ Example 2:
name = "Anders And"
name2 = name[:6] + "ine" + name[6:]

June 200910

Searching in Strings

§ indexing goes from index to letter
§ reverse operation is called find (search)
§ Implementation:

def find(word, letter):
index = 0
while index < len(word):

if word[index] == letter:
return index

index = index + 1
return -1

§ Why not use a for loop?

June 200911

Looping and Counting

§ want to count number of a certain letter in a word
§ for this, we use a counter variable

§ Implementation:
def count(word, letter):

count = 0
for x in word:

if x == letter:
count = count + 1

return count
§ Can we use a while loop here?

June 200912

String Methods

§ methods = functions associated to a data structure
§ calling a method is called method invocation
§ dir(object): get list of all methods of a data structure
§ Example:

name = "Slartibartfast"
print(name.lower())
print(name.upper())
print(name.find("a"))
print(name.count("a"))
for method in dir(name):

print(method)
help(name.upper)

June 200913

Using the Inclusion Operator

§ how to find out if string contained in another string?
§ Idea: use a while loop and slices

def contained_in(word1, word2):
index = 0
while index+len(word1) <= len(word2):

if word2[index:index+len(word1)] == word1:
return True

index = index+1
return False

§ Python has pre-defined operator in:
print("phuk" in "Phartiphukborlz")

June 200914

Comparing Strings

§ string comparison is from left-to-right (lexicographic)

§ Example 1:
"slartibartfast" > "phartiphukborlz"

§ Example 2:
"Slartibartfast" < "phartiphukborlz"

§ Note: string comparison is case-sensitive
§ to avoid problems with case, use lower() or upper()

§ Example 3:
"Slartibartfast".upper() > "phartiphukborlz".upper()

June 200915

Debugging String Algorithms

§ beginning and end critical, when iterating through sequences
§ number of iterations often off by one (obi-wan error)
§ Example:

def is_reverse(word1, word2):
if len(word1) != len(word2): return False
i = 0
j = len(word2)
while j > 0:

if word1[i] != word2[j]: return False
i = i + 1; j = j - 1

return True

June 200916

Debugging String Algorithms

§ beginning and end critical, when iterating through sequences
§ number of iterations often off by one (obi-wan error)
§ Example:

def is_reverse(word1, word2):
if len(word1) != len(word2): return False
i = 0
j = len(word2) - 1
while j > 0:

if word1[i] != word2[j]: return False
i = i + 1; j = j - 1

return True

June 200917

Debugging String Algorithms

§ beginning and end critical, when iterating through sequences
§ number of iterations often off by one (obi-wan error)
§ Example:

def is_reverse(word1, word2):
if len(word1) != len(word2): return False
i = 0
j = len(word2) - 1
while j >= 0:

if word1[i] != word2[j]: return False
i = i + 1; j = j - 1

return True

June 200918

Debugging String Algorithms

§ beginning and end critical, when iterating through sequences
§ number of iterations often off by one (obi-wan error)
§ Example:

def is_reverse(word1, word2):
if len(word1) != len(word2): return False
i = 0
j = len(word2)
while j > 0:

if word1[i] != word2[j-1]: return False
i = i + 1; j = j - 1

return True

June 200919

