
DM550/DM857
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk

http://imada.sdu.dk/~petersk/DM550/
http://imada.sdu.dk/~petersk/DM857/

TUPLES

June 20092

Tuples as Immutable Sequences

§ tuple = immutable sequence of values
§ like lists, tuples are indexed by integers

§ tuples can be enclosed in parentheses “(” and “)”
§ Example: t1 = "D", "o", "u", "g", "l", "a", "s"

t2 = (65, 100, 97, 109, 115)
t3 = 42, # or (42,) - but not (42)

§ tuples can be created from sequences using tuple(iterable)
§ Example: t1 == tuple("Douglas")

tuple(["You", 2]) == ("You", 2)

June 20093

Tuples as Immutable Sequences

§ tuple = immutable sequence of values
§ like lists, tuples are indexed by integers

§ tuples can be accessed using indices and slices
§ Example: t = "D", "o", "u", "g", "l", "a", "s"

t[3] == "g"
t[1:3] == ("o", "u")

§ tuples cannot be changed, but they can be concatenated
§ Example: u = ("d",) + t[1:]

June 20094

Tuple Assignment

§ remember, how to exchange two values:
§ Solution 1 (new variable): z = y; y = x; x = z
§ Solution 2 (parallel assign.): x, y = y, x

§ now, we see that this is a tuple assignment
§ assignment to a tuple is assignment to each tuple element
§ works not only with other tuple, but with any sequence
§ Example:

x, y, z = [23, 42, -3.0]
name = "Peter Schneider-Kamp"
first, last = name.split()

June 20095

Tuples as Return Values

§ useful to return more than one value in a function
§ but functions only return one value
§ tuples can be used to contain multiple values
§ Example 1: built-in function divmod(x,y)

t = divmod(10, 3)
print(t)
quot, rem = divmod(101, 17)

§ Example 2: extract username, hostname, and domain
def decompose(email):

username, rest = email.split("@")
rest = rest.split(".")
return username, rest[0], ".".join(rest[1:])

June 20096

Variable-Length Argument Tuples

§ functions can take a variable number of arguments
§ arguments are passed as one tuple (gather)
§ Example 1: function that works similar to print statement

def printf(*args): # * indicates variable arguments
for arg in args: # iterates through tuple

print(arg,end="") # prints one argument
print() # prints new line

§ Example 2: prints all arguments n times
def printn(n, *args):

for arg in args * n:
print(arg)

June 20097

Tuples instead of Arguments

§ tuples cannot directly be used instead for normal parameters
§ Example:

t = (42, 23)
print(divmod(t)) # gives TypeError

§ using “*” we can declare that a tuple should be scattered
§ Example:

print(divmod(*t)) # prints (1, 19)

June 20098

Lists and Tuples

§ built-in function zip() combines two sequences
§ Example 1:

zip([1, 2, 3], ["c", "b", "a"]) == [(1, "c"), (2, "b"), (3, "a")]
§ Example 2:

zip("You", "suck!") == [("Y", "s"), ("o", "u"), ("u", "c")]

§ iteration through list of tuples using tuple assignment
§ Example:

t = [(1, "c"), (2, "b"), (3, "a")]
for num, ch in t:

print("we have paired", num, "and", ch)

June 20099

Lists and Tuples

§ with zip(), for loop, and tuple assignment we can iterate
through two sequences in parallel

§ Example 1: sum of product of elements (dot product)
def dot_product(x, y):

res = 0
for a, b in zip(x, y):

res += a*b
return res

dot_product([1, 4, 3], [4, 5, 6])
§ Example 2: the same shorter …
def dot_product(x, y):

return sum(map(lambda x:x[0]*x[1], zip(x, y)))

June 200910

Dictionaries and Tuples

§ dictionaries return a list of tuples with the items() method
§ Example: d = {"a" : 3, "b" : 2, "c" : 1}

d.items() == [("a", 3), ("c", 1), ("b", 2)]

§ tuples can also be used to create new dictionary using dict()
§ Example: t = [("a", 3), ("c", 1), ("b", 2)]

dict(t) == {"a" : 3, "b" : 2, "c" : 1}

§ combine with zip() for easy dictionary generation
§ Example: d = dict(zip("abcdefg", range(7,0,-1)))

§ with tuple assignment and for loop, easy traversal
§ Example: for key, val in d.items(): print(key, val)

June 200911

Dictionaries and Tuples

§ tuples can be used as dictionary keys (they are immutable)
§ Example: p = {}; first = "Peter"; last = "Schneider-Kamp"

p[last, first] = 65502327
§ traversal by for loop and tuple assignment
§ Example 1: for last, first in p: print(first, last, p[last, first])
§ Example 2: for (last, first), num in p.items(): print(last, first, num)

June 200912

dict

*p

tuple

0 "Schneider-Kamp"
1 "Peter"

65502327

Dictionaries and Tuples

§ tuples can be used as dictionary keys (they are immutable)
§ Example: p = {}; first = "Peter"; last = "Schneider-Kamp"

p[last, first] = 65502327
§ traversal by for loop and tuple assignment
§ Example 1: for last, first in p: print(first, last, p[last, first])
§ Example 2: for (last, first), num in p: print(last, first, num)

June 200913

dict

"Schneider-Kamp", "Peter"p 65502327

Comparing Tuples

§ comparing tuples same as comparing any sequence
§ like with strings, sequences are compared lexicographically
§ Example: (3,) > (2, 2, 2)

(1, 2, 3, 4, 5) < (1, 2, 3, 5,5)
§ tuples can be used to sort lists after arbitrary criteria
§ Example: sort list of words after their length, shortest last
def sort_by_length(words):

t = []; res = []
for word in words: t.append((len(word), word))
t.sort(reverse=True)
for length, word in t: res.append(word)
return res

June 200914

Comparing Tuples

§ comparing tuples same as comparing any sequence
§ like with strings, sequences are compared lexicographically
§ Example: (3,) > (2, 2, 2)

(1, 2, 3, 4, 5) < (1, 2, 3, 5,5)
§ tuples can be used to sort lists after arbitrary criteria
§ Example: sort list of words after their length, shortest last
def sort_by_length(words):

t = map(lambda x: (len(x), x), words)
t.sort(reverse=True)
return map(lambda pair: pair[1], t)

June 200915

Sequences of Sequences

§ most sequences can contain other types of sequences
§ string is an exception, as it only contains characters
§ can always use a list of characters instead of string
§ lists usually preferred to tuples (they are mutable)
§ in some situtations, tuples more often used:

1. tuples are more “easy” to construct, e.g. return n, n**2
2. tuples can be dictionary keys (they are immutable)
3. tuples are safer due to “aliasing”, so use them e.g. as

sequence arguments to functions
§ methods sort() and reverse() not available for tuples
§ use functions sorted(iterable) and reversed(iterable) instead

June 200916

Debugging Shape Errors

§ lists, dictionaries, and tuples are data structures
§ combining this, we obtain compound data structures
§ this gives rise to new errors, so called shape errors
§ a shape error is when the structure of the compound data

structure does not fit its use
§ Example: d = {("Schneider-Kamp", "Peter") : 65502327}

for last, first, number in d.items(): print(number)
§ use structshape module for debugging
§ available from http://thinkpython.com/code/structshape.py
§ Example: from structshape import structshape

structshape(d) == "dict of 1 tuple of 2 str->int"

June 200917

SELECTING
DATA STRUCTURES

June 200918

Reading and Cleaning Words

1. read file given as argument
2. break lines into words
3. strip whitespace & punctuation
4. convert to lower-case letters

§ import module sys for command line arguments sys.argv
§ Example: import sys; print(sys.argv)

§ import module string for punctuation
§ Example: import string; print(string.punctuation)

§ use translate(dict) to remove punctuation
§ Example: "Hello World!".translate({ord("o"):"",ord("l"):""})

June 200919

Word Frequency in E-Books

1. use program on Project Gutenberg e-book
2. skip over beginning & end of ebook (marked "***")
3. count total number of words
4. count number of times each word is used
5. print 20 most frequently used words

§ use Boolean flag to indicate when to start

§ use list to gather all words (and count total number)

§ use dictionary to count number of times each word is used

§ use tuple comparison to sort words

June 200920

