
DM550/DM857
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk

http://imada.sdu.dk/~petersk/DM550/
http://imada.sdu.dk/~petersk/DM857/

SELECTING
DATA STRUCTURES

June 20092

Reading and Cleaning Words

1. read file given as argument
2. break lines into words
3. strip whitespace & punctuation
4. convert to lower-case letters

§ import module sys for command line arguments sys.argv
§ Example: import sys; print(sys.argv)

§ import module string for punctuation
§ Example: import string; print(string.punctuation)

§ use translate(dict) to remove punctuation
§ Example: "Hello World!".translate({ord("o"):"",ord("l"):""})

June 20093

Word Frequency in E-Books

1. use program on Project Gutenberg e-book
2. skip over beginning & end of ebook (marked "***")
3. count total number of words
4. count number of times each word is used
5. print 20 most frequently used words

§ use Boolean flag to indicate when to start

§ use list to gather all words (and count total number)

§ use dictionary to count number of times each word is used

§ use tuple comparison to sort words

June 20094

Markov Analysis

1. generate more meaningful random texts

§ word order in texts is not random
§ markov analysis maps a finite number of words (prefix) to all

possible following words (suffix)

§ how to represent the prefixes?

§ how to represent the collection of possible suffixes?

§ how to represent the mapping from prefixes to suffixes?

June 20095

Data Structures

§ for mapping, we clearly use a dictionary

§ for prefixes, we need to be able to “shift” them (list?)
§ we also need to use them as dictionary keys
§ thus, we use tuples to present prefixes (+ slicing and “+”)

§ for suffixes, we need to add elements (list? dictionary?)
§ we also need to efficiently generate random word (list?)
§ tradeoff space vs time

§ dictionary uses less space and easy to add
§ list uses less time for generating a word
§ can change representation before generation

June 20096

Debugging Hard Bugs

§ bugs can be hard to find

§ four popular strategies
1. reading: re-read your code, check that it is right!
2. running: make changes, experiment with outcome
3. ruminating: take time to think it over (and over)
4. retreating: revert to a known-to-be-good version

§ often combination of these strategies needed
§ always good to view debugging as scientific experiment

June 20097

Optional Parameters

§ have seen functions that take variable length argument list

§ also possible to make some parameters optional
§ in this case, default value has to be supplied by programmer
§ Example:
def print_most_common(hist, num = 10):

t = most_common(hist)
print "The most common", num, "words are:"
for n, word in t[:num]:

print word, "\t", n
print_most_common(freq, 20)

June 20098

Dictionary Subtraction

1. find all words that do NOT occur in other word list

§ to this end, subtract dictionaries from each other
§ Idea: new dictionary containing with keys only in first dict
§ Implementation:
def subtract(d1, d2):

d = {}
for key in d1:

if key not in d2:
d[key] = None

return d

June 20099

Random Number Generation

§ to work with random numbers, import module random
§ Example: import random

§ function random() returns random float from 0.0 to < 1.0
§ Example: for i in range(10): print(random.random())

§ function randint(a, b) returns random integer in range(a,b+1)
§ Example: for i in range(10): print(random.randint(1,10))

§ function choice(seq) returns random element of a sequence
§ Example: random.choice("Slartibartfast")

random.choice([23, 42, -3.0])

June 200910

Random Words

1. choose random word from histogram according to frequency

§ how to ensure random choice w.r.t. frequency?
§ Idea 1: create list with n copies of word with frequency n
§ Implementation:
def random_word(h):

t = []
for word, n in h.items():

t.extend([word] * n)
return random.choice(t)

§ works, but very inefficient!

June 200911

Random Words

§ Idea 2: use list with cumulative sum of frequencies
§ Implementation:
def random_word(h):

words = h.keys(); sum = 0; cum = []
for word in words: sum += h[word]; cum.append(sum)
num = random.randint(1, cum[-1]); low = 0; high = len(cum)-1
while low < high:

mid = (low+high) // 2
if num <= cum[mid]: high = mid
elif num > cum[mid]: low = mid+1

return words[low]

June 200912

FILE HANDLING

June 200913

Persistence

§ persistent = keeping (some) data stored during runs
§ transient = beginning from input data each time over

§ most programs so far have been transient

§ examples of persistent programs:
§ operating systems
§ web servers
§ most app(lication)s on recent Android, iOS, and Mac OS X

§ text files are easiest way to save some program state
§ alternatively, program states can be saved in databases

June 200914

Writing to a File

§ we know how to read a file using open(name)
§ we can specify read/write mode using open(name, mode)
§ Example: f1 = open("anna_karenina.txt", "r")

f2 = open(“myfile.txt", "w")

§ use method write(str) of file object to append string to file
§ Example: f2.write("This is my first line!\n")

f2.write("This is my second line!\n")
§ each invocation of write(str) will append, not overwrite!

§ when you are finished with a file, please close() it
§ Example: f1.close()

f2.close()
June 200915

Format Operator

§ values need to be converted to a string for use in write(str)
§ for single value, the str(object) function can be used
§ Example: f.write(str(42))

§ alternatively, use format operator “%”
§ Example: f.write("%d" % 42)

f.write("The answer is %d, my friend!" % 42)
§ first argument format string, second argument value
§ format sequence %d for integer, %g for float, %s for string

§ for multiple values, use tuple as value
§ Example: f.write("The %s is %g!" % ("answer", 42.0))

June 200916

Directories

§ file are organized in directories
§ every program has a current directory
§ the current directory is used by default, e.g. for open(name)
§ get current directory by importing getcwd() from os module
§ Example: import os

print(os.getcwd())
§ change current working directory by using chdir(path)
§ Example: os.chdir("..")

print(os.getcwd())
§ list contents of a given directory by using os.listdir(path)
§ Example: print(os.listdir("dm502"))

June 200917

Filenames and Paths

§ path = directory & file name
§ relative paths start from current directory
§ Example:
path1 = "dm536/tools/anna_karenina.txt"

§ absolute paths are independent from current directory
§ Example:
path2 = "/Users/petersk/sdu/dm536/tools/anna_karenina.py"

§ can be obtained from relative path using os.path.abspath(path)
§ Example:
path3 = os.path.abspath(path1)

June 200918

Operations on Paths

§ check whether a directory or file exists using os.path.exists
§ Example: os.path.exists(path1) == True

os.path.exists("no_name") == False

§ check whether a path is a directory using os.path.isdir
§ Example: os.path.isdir(path1) == False

os.path.isdir("..") == True

§ check whether a path is a file using os.path.isfile
§ Example: os.path.isfile(path1) == True

os.path.isfile("..") == False

June 200919

CLASSES & OBJECTS

June 200920

User-Defined Types

§ we want to represent points (x,y) in 2-dimensional space
§ which data structure to use?

§ use two variables x and y
§ store coordinates in a list or tuple of length 2
§ create user-defined type

§ we can use Python’s classes to implement new types
§ Example:
class Point(object):

"""represents a point in 2-dimensional space"""
print(Point) # class
p = Point() # create new instance of class Point
print(p) # instance

June 200921

Attributes

§ using dot notation, you can assign values to instance variables
§ Example: p.x = 3.0

p.y = 4.0

§ instance variables are called attributes
§ attributes can be assigned to and read like any variable
§ Example: print("(%g, %g)" % (p.x, p.y))

distance = math.sqrt(p.x**2 + p.y**2)
print (distance, "units from the origin")

June 200922

p
Point

x 3.0
y 4.0

§ rectangles can be represented in many ways, e.g.
§ width, height, and one corner or the center
§ two opposing corners

§ here we choose width, height and the lower-left corner
§ Example:
class Rectangle(object):

"represents a rectangle using attributes width, height, corner"
box = Rectangle()
box.width = 5.0
box.height = 3.0
box.corner = p corner

Point

x 3.0
y 4.0

box
Rectangle

width 5.0
height 3.0

Representing a Rectangle

June 200923

Instances as Return Values

§ functions can return instances
§ Example: find the center point of a rectangle
def find_center(box):

p = Point()
p.x = box.corner.x + box.width / 2.0
p.y = box.corner.y + box.height / 2.0
return p

box = Rectangle()
box.width = 5.0; box.height = 3.0
box.corner = Point()
box.corner.x = 3.0; box.corner.y = 4.0
print(find_center(box))

June 200924

Objects are Mutable

§ by assigning to attributes, an object is changed
§ Example: update size of rectangle

box.width = box.width + 5.0
box.height = box.height + 3.0

§ consequently, also functions can change object arguments
§ Example:

def double_rectangle(box):
box.width *= 2
box.height *= 2

double_rectangle(box)

June 200925

Copying Objects

§ import module copy to make copies of objects
§ Example: import copy

new = copy.copy(box)

§ shallow copy, use copy.deepcopy(object) to also copy Point

June 200926

corner
Point

x 3.0
y 4.0

box
Rectangle

width 5.0
height 3.0

corner

new
Rectangle

width 5.0
height 3.0

Debugging User-Defined Types

§ you can obtain type of an instance by using type(object)
§ Example: print(type(box))

§ you can check if an object has an attribute using hasattr
§ Example: hasattr(box, "corner") == True

§ you can get a list of all attributes using dir(object)
§ Example: dir(box)

§ print __doc__ and __module__ for more information!

June 200927

CLASSSES & FUNCTIONS

June 200928

Representing Time

§ Example: user-defined type for representing time
class Time(object):
"""represents time of day using hours, minutes, seconds"""

time = Time()
time.hours = 13
time.minutes = 57
time.seconds = 42

June 200929

time
Time

hours 13
minutes 57
seconds 42

Pure Functions

§ pure function = does not modify mutable arguments
§ Example: add two times
def add_time(t1, t2):
sum = Time()
sum.hours = t1.hours + t2.hours
sum.minutes = t1.minutes + t2.minutes
sum.seconds = t1.seconds + t2.seconds
return sum

time = add_time(time, time)
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds)

June 200930

Modifiers

§ modifiers = functions that modify mutable arguments
§ Example: incrementing time
def increment(time, seconds):

time.seconds += seconds

increment(time, 86400)
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds)

June 200931

Modifiers

§ modifiers = functions that modify mutable arguments
§ Example: incrementing time
def increment(time, seconds):

time.seconds += seconds
minutes, time.seconds = divmod(time.seconds, 60)
time.minutes += minutes
hours, time.minutes = divmod(time.minutes, 60)
time.hours + = hours

increment(time, 86400)
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds)

§ this was prototype and patch (or trial and error)
June 200932

Prototyping vs Planning

§ alternative to prototyping is planned development
§ high-level observation: time representable by just seconds
§ Example: refactoring function working with time
def time_to_int(time):

return time.seconds + 60 * (time.minutes + 60 * time.hours)
def int_to_time(seconds):

time = Time(); minutes, time.seconds = divmod(seconds, 60)
time.hours, time.minutes = divmod(minutes, 60); return time

def add_time(t1, t2):
return int_to_time(time_to_int(t1) + time_to_int(t2))

June 200933

Prototyping vs Planning

§ alternative to protyping is planned development
§ high-level observation: time representable by just seconds
§ Example: refactoring function working with time
def time_to_int(time):

return time.seconds + 60 * (time.minutes + 60 * time.hours)
def int_to_time(seconds):

time = Time(); minutes, time.seconds = divmod(seconds, 60)
time.hours, time.minutes = divmod(minutes, 60); return time

def increment(time, seconds):
t = int_to_time(seconds + time_to_int(time))
time.seconds = t.seconds; time.minutes = t.minutes
time.hours = t.hours

June 200934

Prototyping vs Planning

§ alternative to protyping is planned development
§ high-level observation: time representable by just seconds
§ Example: refactoring function working with time
def time_to_int(time):

return time.seconds + 60 * (time.minutes + 60 * time.hours)
def int_to_time(seconds):

time = Time(); minutes, time.seconds = divmod(seconds, 60)
time.hours, time.minutes = divmod(minutes, 60); return time

def increment(time, seconds):
return int_to_time(seconds + time_to_int(time))

June 200935

Debugging using Invariants

§ invariant = requirement that is always true
§ assertion = statement of an invariant using assert
§ Example: check that time is valid
def valid_time(time):

if time.hours < 0 or time.minutes < 0 or time.seconds < 0:
return False

return time.minutes < 60 and time.seconds < 60
def add_time(t1, t2):

assert valid_time(t1) and valid_time(t2)
return int_to_time(time_to_int(t1) + time_to_int(t2))

§ also useful to check before return value

June 200936

