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Abstract. Over the last years, more and more sport related data are
being collected, stored, and analyzed to give valuable insights. Football
is no exception to this trend. An important way of identifying a team’s
“style” of play is through analyzing passing sequences. However, pass-
ing sequences either concentrate on the specific players involved or the
structure of passes and ignore where these sequences took place. In this
paper, we focus on identifying frequent passing zone subsequences that
lead to created or conceded goal scoring opportunities. We partition the
pitch into a set of disjoint zones and apply sequential pattern mining.
Our experimental study on the 2020/21 Danish Superliga season shows
that our method is able to predict goal scoring opportunities better than
random subsequences that occurred, in median, 99.5% of the cases.

1 Introduction

During the last years, the analysis of data from professional football has attracted
a lot of attention. A hot topic in the football world is a team’s “style” of play.
There are numerous styles that teams commonly have, including: possession,
high pressing, and direct play. How teams try to score or concede goals is a
defining factor in their style of play, as, ultimately, the goal of a game of football
is to try to score more goals than the other team. Towards this direction, there
have been some efforts for analysing offensive and defensive strategies [3,13,18].
However, most of them focus on plain statistical analysis, which could ignore
hidden patterns that might exist in the data and that could be identified by
more knowledge discovery techniques on tracking data, such as clustering [12,17]
and outlier detection [15,21]. A popular way of analysing the style of play of
a team is through its passing sequences [1,6], where a passing network gets
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constructed, which is a graph where the nodes represent the players and the
edges the passes between players. Nevertheless, this approach concentrates on
the identity of the players involved in passing sequences rather than on roles [14]
or on the structure of the passes risks to capture only a partial representation
of a team’s play style. Flow motifs [9], which are sequences of three consecutive,
uninterrupted passes involving a maximum of four distinct players, where labels
represent distinct players without identity, try to overcome this limitation by
focusing on the structure of a passing sequence. To exemplify, let us consider
a passing sequence 2–4–2–4, where player 2 passes to player 4, player 4 passes
back to player 2 and player 2 back to player 4. The corresponding flow motif
is ABAB. Then, 4–2–4–5 (the next consecutive 3 passes) turns into ABAC. On
the other hand, flow motifs disregard the area on the pitch where the passing
sequence took place, which might give us significant insight.

Motivated by these previous works, we also focus on identifying frequent
passing sequences that lead to created or conceded goal scoring opportunities.
However, rather than considering individual players we consider areas on the
pitch from where the passes occur. To achieve this, we partition the pitch into a
set of disjoint zones and utilize these zones to discover frequent zone subsequences
that lead to a created or conceded goal scoring opportunity, as illustrated in
Fig. 1. The rest of the paper is organized as follows, in Sect. 2 we formally define
the problem, in Sect. 3 we provide details about our methodology and in Sect. 4
we present the findings of our study. Finally, in Sect. 6 we conclude and discuss
about future directions of our work.

Fig. 1. Visualisation of Brøndby IF’s top 3 most frequent zone subsequences that lead
to a goal-scoring opportunities.

2 Problem Definition

Definition 1 (Tracking Data). The tracking data T of a game consist of a
sequence of semantically enriched timestamped locations 〈p1, p2, . . . , pN 〉, where
N is the number of samples. Each data point pi, i ∈ [1, N ] consists of a tuple
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pi = (xi, yi, zi, ti, tpi), where xi, yi, zi designate the position of the ball in the
pitch, ti the timestamp, and tpi the team in possession of the ball at time ti.

Definition 2 (Tracking Subsequence). A tracking subsequence Ti,j, i < j,
is a subsequence 〈pi, . . . , pj〉 of T that contains all semantically enriched times-
tamped locations of the ball between ti and tj.

Definition 3 (Event Data). Each game consists of a set of events E = {e1, e2,
. . . , eM}. Each event ej for j ∈ [1,M ] consists of a tuple ej = (xj , yj , tj , etj),
where xj , yj denote the x and y coordinates, tj the timestamp, and etj ∈ ET the
event type.

The set of event types ET contains different kinds of events, such as pass, foul
or interception. These events can be grouped into two large groups, i.e., events
that change the possession of the ball, called CPE , e.g., an interception or a
successful tackle, and events that do not change the possession, called nCPE .
Clearly, CPE ∩ nCPE = ∅. Thus ET = CPE ∪ nCPE . We assume that the
tracking and event data have been aligned (see later for details), that is, the
timestamp and coordinates of every event ej ∈ E have been matched with
exactly one data point from the tracking data T . We break the large sequence of
tracking and event data that correspond to an entire game into smaller portions,
each portion corresponding to a ball possession by a team, by utilizing CPE .

Definition 4 (Possession Subsequences). The collection of ball possessions
for a specific team is denoted by PS = {ps1, ps2, . . . , psQ}. Each psk corresponds
to a tracking subsequence Tik,jk of T with etik , etjk ∈ CPE and etl ∈ nCPE for
all l ∈ [ik + 1, jk − 1].

We are interested not in all possessions but only in those leading to a goal scoring
opportunity. Such events are possession for a team ending with them scoring a
goal, winning a penalty, or taking a shot on goal that did not end in a goal.

Definition 5 (Goal Scoring Opportunity Subsequences). The collection
of ball possessions that lead to a goal scoring opportunity is denoted by GSO =
{gso1, gso2, . . . , gsoR}. GSO is a subset of PS, GSO ⊆ PS, and for each gsok,
k ∈ [1, R], R < Q, it is etjk ∈ {Goal, Penalty, ShotOnGoal}.

Several knowledge extraction techniques, such as sequential pattern mining,
would not benefit by the exact position of the ball at a specific timestamp.
For this reason, we decided to ignore the temporal dimension and consider only
the sequence of ball positions. Furthermore, we chose to abstract the spatial
dimension at a higher level by partitioning the pitch in a set of zones.

Definition 6 (Pitch Partitioning). A pitch can be considered to consist of
a set of zones P = {z1, z2, . . . , zS}, where each zi ∈ P is a rectangle defined
by (zidi, lxi, lyi, hxi, hyi), with zidi being the zone identifiers and lxi, lyi and
hxi, hyi being the coordinates of the lower and higher corners, respectively. It
holds that ∩i∈[1,S]zi = ∅ and ∪i∈[1,S]zi covers the whole pitch.
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Now, by spatially overlapping each psk ∈ gsom ∈ GSO with P , we can
remove the exact spatial position and replace it with the zone id. Furthermore,
we can remove the exact timestamp and keep only the sequence of zones. Finally,
we can eliminate successive duplicate zone appearances. By doing so, we result
in having zone sequences instead of opportunity possessions.

Definition 7 (Goal Scoring Opportunity Zone Sequence). Formally, a
zone sequence zs ∈ ZS is defined as zs = {zid1, zid2, . . . , zid |zs|}, where zid i 	=
zid j∀i, j ∈ [1, |zs |]. It is obvious that ∀gsom ∈ GSO we get a zsm ∈ ZS.

Each goal scoring opportunity zone sequence zs ∈ ZS is a string of identifiers
(e.g., integer numbers) for which we distinguish substrings and subsequences.

Definition 8 (Zone Substring). A zone substring zsi,j of zs = 〈zid1, zid2, . . . ,
zid �〉 is defined as 〈zid i, zid i+1, . . . , zid j〉, that is, the set of consecutive elements
from zs between position i ≥ 1 and position j ≤ �, where i ≤ j.

Definition 9 (Zone Subsequence). A zone subsequence zs ′ consists of 〈zsi,j

, zsk,l, . . . zsm,n〉, with i ≤ j < k ≤ l < m ≤ n, can be defined as a set of zone
substrings contained in zs.

Definition 10 (Support). For a collection of zone sequences of goal scoring
opportunities, ZS = {zs1, zs2, . . . , zsR}, the support of a zone subsequence zs ′ is
defined as support(zs′,ZS ) = |{zs ∈ ZS | zs′ is a subsequence of zs}|/R.

We can now formalize our problem as follows.

Definition 11 (Frequent Zone Subsequence Discovery). Given a set T
of tracking data, a set E of event data, a pitch partitioning P and a mini-
mum support threshold τ , our task is to retrieve from the collection of zone
sequences of goal scoring opportunities, ZS, the set ZS∗ of zones subsequences
with support above the threshold τ , that is, to determine ZS∗ = {zs ′ | ∃ zs ∈
ZS , zs′ is subsequence of zs ∧ support(zs ′,ZS ) ≥ τ}.

3 Methodology

In Fig. 2 we summarize the methodology that we used to tackle the problem
defined in Sect. 2. Initially, we perform a preprocessing step to align the event
and tracking data. Subsequently, we utilize the enriched tracking data to extract
the goal scoring opportunity subsequences GSO . The pitch partitioning step can
be performed either successively or in parallel with the GSO extraction step,
depending on whether the partitioning is data-driven or not. Next, the GSOs
are compressed into Zone Sequences. Finally, the Frequent Zone Subsequences
are discovered by preforming Sequential Pattern Mining on the Zone Sequences.
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Fig. 2. Overview of the methodology.

3.1 Tracking Data

The actual tracking data utilized in this paper were provided by ChyronHego,
which used the TRACAB Image Tracking System [2] to track the location of
players, referees, and the ball (at a frequency 25 Hz) during matches for the
Danish Superliga during the 2020/21 season. In our case we utilized only the
location of the ball. Each tuple of the dataset consists of (1) x, (2) y, (3) z, (4)
the speed, (5) the team in possession and (6) the ball status (ball in play or not).
For our analysis, we used only the attributes that are defined in Definition 1 and
the tuples where the ball is in play.

3.2 Event Data

The event data for each match are created by the company Opta. It should be
noted that the Opta event data are not automated but created manually by peo-
ple who are assigned to watch a game live. Each tuple of the event data consisting
of (1) an id, (2) a type id, (3) period id (1st or 2nd half), (4) t (the timestamp),
(5) x, (6) y (7) player id, (8) team id, (9) outcome, and (10) qualifiers (addi-
tional detail about an event). At this point, we should mention that every shot
taken throughout a match has a qualifier that states the expected goal value
(xG) for that shot. The expected goal value, xG, is a measure of the quality of a
scoring opportunity based on the probability of a shot being performed from a
particular position during a particular passage of play. The model used by Opta
takes many different variables into account when predicting this probability of
a shot leading to a goal [4]. It uses logistic regression with the response variable
being whether a shot resulted in a goal or not. From these values, it is possible
to get a decent idea as to how likely a shooting opportunity is to end in a goal.

3.3 Data Alignment

As already mentioned, the event data were manually annotated and for this
reason there might exist inconsistencies between the event data and the tracking
data. For the analysis of these data, it was necessary to align these two datasets
and in order to achieve this we utilized the work done by Kuzmicki [8], where
the events are divided into four categories (sub-problems): (1) state-changing
events, (2) pass events, (3) duels, and (4) recovery events. The state-changing
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events are those when the ball goes out of play and becomes inactive, such as
throw-ins and goalkicks. Pass events consist of passes or clearances, while duels
are situations in which two players on opposing teams compete for the ball such
as in headers or tackles. Finally, recovery events consist of events where the ball
is recovered by a team, such as interceptions and goalkeeper claims. The method
from [8] first aligns state-changing events, then looks at the times between state-
changing events, where the ball is in play, and aligns the pass events. Finally, it
aligns duels and then recovery events.

To align the state-changing events, the times in the tracking data when the
status of the ball goes from alive to dead were considered and aligned with the
corresponding state-changing events that were within two seconds, according to
the timestamps in the event data. The event-types that are aligned in this man-
ner are, throw-ins and goalkicks (outs), corners, offsides, fouls, goals, game/half
starting, and game/half ending. Once the state-changing events are aligned, to
align the passes, two sequences were extracted between every state-changing
event when the ball is in play, one from the tracking and one from the event.
From the event data, the sequence of pass performers between the state-changing
events were looked at, and from the tracking data, the sequence of ‘ball posses-
sors’ were extracted, where a ‘ball possessor’ is a person that is within 1.5 m of
the ball during any frame between the two state-changing events, as defined by
Kuzmicki. These two sequences are then aligned using the Needleman-Wunsch
algorithm [10]. The event-types that are aligned in this manner are, passes, off-
side passes, clearances, shot misses, shots that hit the post, saves by goalkeepers,
and ball touches. Some of these events obviously aren’t actually passes, but they
can be aligned using the same principle. After the state-changing events and
passes have been aligned, the events where duels occur are aligned. For duel
events, there are two events in the event data, one for each player involved. To
align these events, the distances between both players and the ball are calcu-
lated, and the frame where the minimum sum of these distances occurs is aligned
with the two events. Finally, for the alignment of the recovery events, the time-
frame between events where these events can occur, is much smaller, due to the
other events already previously being aligned. The recovery events are aligned by
looking at these timeframes, and aligning the instant that the ball comes within
1.5 m of the player doing the event. Some events get misaligned in the process
of the sequence alignment, this can happen for a number of reasons, the event
data assigned an event to the wrong player, an event was recorded in the event
data that never occurred, or an event occurred but was never recorded in the
event data. Kuzmicki added an enrichment process to the alignment where he
corrected some of the mismatched events and also added other event-types. The
correction of some of the events is based on the assumption that the tracking
data is more accurate than the event data, as the tracking is automated and the
event is manual.
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3.4 Extraction of Goal Scoring Opportunities

To extract the goal scoring opportunities we follow a slightly different approach
than the one defined in Definition 5. More specifically, we rely on a previous
work [5]. Accordingly, an expected goal value, xG, greater than or equal to 0.33
constitutes a “big chance” for a team. Hence, we considered as goal scoring
opportunities only sequences with xG above this threshold.

Fig. 3. Selected pitch partitioning, overlapped with the centroids produced by k-means.

Goals that occur from set pieces, i.e., corners, free kicks, do not produce very
interesting sequences, as they contain either just a cross into the box or a shot,
and the team is not really in physical control of the ball when it is in the air after
being crossed. Therefore, even if it is estimated that approximately 30–40% of
all goals in professional football are from set pieces [20], nevertheless, we decided
to exclude all set pieces from our analysis.

3.5 Pitch Partitioning

Once the goal-scoring opportunity sequences have been extracted, the next step
is to see what areas of the pitch the ball passes through during these sequences.
Different ways of partitioning the pitch have been proposed [7,19] and any of
them could be used here. For this work, we decided to use a similar method
to the one proposed in [16] because it includes the “half spaces” that are of
particular interest to football coaches. However, we changed the defensive third
into 3 zones instead of 5, as there are substantially fewer passes in these areas,
thus, yielding 28 instead of 30 zones. We also decided to flip the numbers so
that a team’s defensive areas are the lower numbers and attacking areas are the
higher, always. The selected pitch partitioning can be seen in Fig. 3. However,
other disjoint pitch partitioning solutions can be applied seamlessly, since this
is orthogonal to our problem.

An alternative approach was to use the data in the goal-scoring opportunity
sequences to infer the areas of the pitch from where passes are most frequently
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performed. We pooled the coordinates of every pass from all teams’ goal-scoring
opportunity sequences to get a generalised idea of all pass locations. We actually
utilized this approach to verify the selected partitioning by applying the k-means
clustering method (with k = 28). The results illustrated in Fig. 3 showed that,
even though the partitioning selected above and the zones produced by the k-
means approach are not perfectly aligned, they have a striking similarity, since
most of the zones only contain one cluster centroid.

3.6 Sequential Pattern Mining

Finally, we apply a Sequential Pattern Mining algorithm to extract the most Fre-
quent Zone Subsequences. For this purpose, we utilized the PrefixSpan sequential
pattern mining algorithm [11]. The algorithm is a depth first search (DFS) algo-
rithm that mines for subsequences instead of substrings. As defined in Sect. 2, the
actual difference between subsequences and substrings is that a substring is a
set of consecutive zones, while a subsequence is a set similar to a substring, with
the difference that it allows for zone “gaps”. The reason for using subsequences
instead of substrings is that the process of identifying frequent subsequences is
less constrained than the process of identifying frequent substrings, hence it will
produce more frequent patterns to analyse, yielding more robust results.

4 Experimental Study

Our experimental assessment is as follows. Initially, we apply our methodology
and extract the Frequent Zone Subsequences, both for created and conceded goal
scoring opportunities. Then, we calculate an accuracy measure to assess how
accurate the sequential patterns found are for predicting goal-scoring opportu-
nities for each team. Finally, this accuracy measure is compared to frequently
occurring zone subsequences that are randomly extracted from the dataset. The
length of these subsequences is equal to the length of the discovered frequent
zone subsequences that lead to a goal scoring opportunity. These subsequences
represent those that are commonly found during a match, and hence comparing
their accuracy against the one of the discovered Frequent Zone Subsequences
unveils how unlikely it is for a random subsequence to achieve better accuracy
than the discovered Frequent Zone Subsequences.

We split the data into a training set and a test set. Thus, for each team’s zone
sequences of goal-scoring opportunities throughout the whole season, a training
set ZS train is extracted consisting of 70% of these sequences. In this training set,
the frequent zone subsequences ZS∗ are extracted for each team. The remaining
30% are then used as the test set ZS test, which is used to test if the frequent zone
subsequences ZS∗ from the training set ZS train actually appear in the unseen
test set zone sequences as goal-scoring opportunities.

We measure the accuracy of ZS∗ as the percentage of the number of sequences
from ZS test that contain at least one sequence from ZS∗ as subsequence, over
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the total number of sequences in the test set. More formally, for a team the
accuracy of its ZS∗ can be defined as

Accuracy =
|{zs ∈ ZStest | ∃ ẑs ∈ ZS∗, ẑs is subsequence of zs}|

|ZStest| . (1)

Fig. 4. Accuracy of created vs conceded GSO (a) bar chart and (b) scatter plot.

The accuracy results for both created and conceded GSOs are depicted in
Fig. 4. The x-axis of Fig. 4(a) shows the teams sorted from left to right according
to their final ranking, while the y-axis reports the accuracy for both created and
conceded goals. The median overall accuracy is 0.333, but it is hard to interpret
if this is a “good” accuracy.

Figure 4(b) illustrates how each team performs in terms of accuracy, both
for created and conceded GSOs. For example, we can clearly see that Lyngby is
the dominant team in terms of conceded GSO accuracy and in terms of created
GSO accuracy. This can be interpreted as an indication that this specific team
plays in a predictable way both offensively and defensively, which led to poor
performance as the final ranking of this team was second to last. On the other
hand, Vejle, which seems to be one of the most unpredictable teams finished
third from the bottom. A possible explanation to these opposite results for the
two teams might be the different number of sequences that led to a GSO in the
test set, which affects the denominator of Eq. 1.

To deal with this, we tried to measure how much “better”, in terms of accu-
racy, ZS∗ performs in the test set, in comparison to a set of random subse-
quences ZS∗ drawn from each team’s top 500 most frequent zone subsequences
that occurred throughout the season extracted from all possession sequences PS
(hence, irrespective of whether they ended in a GSO). We construct the empir-
ical distribution of the accuracy of 100 random subsequences ZS∗ as follows.
For each team, we repeat 100 times the sampling of a set of subsequences ZS∗

of the same size as ZS∗ from the 500 subsequences. Let B be the set of the
sampled ZS∗. Then, for each random sample ZS∗ ∈ B, the accuracy on the test
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set ZS test is calculated. From these 100 accuracy values we derive the empiri-
cal distribution as illustrated in Fig. 5. The likelihood of the accuracy of ZS∗

is then the fraction of the samples from B that have a lower accuracy. A value
of the likelihood close to zero indicates that the frequent zone subsequence is
exceptional.

Fig. 5. (a) Distribution of accuracy for Brondby’s random subsequences (the pink line
is the accuracy of ZS∗) and (b) likelihood of the accuracy of ZS∗.

Figure 5(a), shows the distribution of the accuracy of random sequences along
with the accuracy achieved (pink line) by the discovered frequent zone subse-
quences that lead to a GSO . Figure 5(b), depicts the likelihood value for each
team both for created and conceded GSOs. We can see that most of the teams
achieve a likelihood value close to zero. In addition, we can observe that the
median likelihood value is 0.005 = 0.5%, indicating that the frequent zone sub-
sequences from the proposed methodology lead to exceptionally high accuracy.
Regarding Lyngby and Vejle, we can observe that Lyngby’s extracted frequent
zone subsequences are significant, since it has an l-value close to zero both for
conceded and created opportunities. On the other hand, Vejle has a high value
for created opportunities, which means that the extracted frequent zone subse-
quences for created opportunities are not so “trustworthy” and we should not
base our analysis on them.

5 Style of Play for the Top-2 Teams

In this section we focus on the top-2 teams individually and use their frequent
zonal subsequences from goal-scoring opportunity sequences, as well as their
frequent pass locations during these sequences, to get an idea as to what “style”
of play each team has.

The winners of the league during the Danish Superliga 2020/21 season were
Brøndby IF (BIF). Over the course of the season, they created the most goal-
scoring opportunities, 67, and they conceded the second-least, 43, for teams in
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Fig. 6. Top 3 most frequent zone subsequences that lead to a goal-scoring opportunities
of (a) Brøndby IF and (b) Midtjylland.

Fig. 7. Quadtree on passes made by (a) Brøndby IF and (b) Midtjylland.

the Championship round. From the analysis of the significance of their frequent
subsequences on these chances, presented in the previous section, it was seen that
their observed accuracy was significantly better than their random accuracies for
their created opportunities, but not for their conceded opportunities.

This suggests that the top-3 frequent subsequences from created goal-scoring
opportunities found for BIF over the course of the season were highly significant
in explaining how they created opportunities. The top 3 frequent subsequences
found in all these goal-scoring opportunity sequences can be seen in Fig. 6(a). It
should be noted that because the sequences are subsequences, which allow gaps,
the visualisation does not necessarily perfectly show the exact path for each
subsequence. In Fig. 7(a), the areas where most passes occurred during goal-
scoring opportunities are visualised, using the Quadtrees method of splitting
the pitch to show the most dense areas.

Combining the two figures showing the frequent subsequences and the pass
densities, it appears that BIF tend to create a lot of their opportunities down the
middle of the pitch with passes starting from their own half. They also appear to
make a lot of use of the “half-spaces” 25 and 27, with a lot of passes occurring in
both. Interestingly, there are 2 frequent subsequences attacking down the right
side of the pitch, but not an abundance of passes actually occur here, perhaps
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suggesting that BIF play passes through this part of the pitch a lot, but don’t
actually make that many passes in them. The high density of passes just inside
their own half on the right also indicate this. Indeed, BIF had a lot of shots after
fast breaks, which would explain the sequences from the right, which indicate
that BIF counterattacked down this side a lot during the season. Overall, the
majority of BIF’s passes during the sequences occur in their own half of the
pitch, which could suggest that they are a patient team that enjoy building
attacks from the back, but are also capable of quick counterattacks.

The second-placed team over the season was FC Midtjylland (FCM). Dur-
ing the season, they created the third most goal-scoring opportunities, 62, and
they conceded the joint second-least, 43, for teams in the Championship round.
Analysing the significance of FCM’s frequent subsequences from goal-scoring
opportunity sequences, their subsequences for created chances were not found to
be significant, but the subsequences for their conceded were. The fact that their
observed accuracy was not found to be significant could indicate that FCM are a
more unpredictable team than others when creating chances, as they have many
different areas of the pitch that they look to attack from. FCM’s top 3 frequent
zonal subsequences from goal-scoring opportunities can be seen in Fig. 6(b).

As FCM’s frequent subsequences were not found to be significant to how they
create chances, there should be less emphasis on looking at these to define how
they try to create goal-scoring opportunities. From the Quadtrees split of their
passes, as it can be seen in Fig. 7(b), many of their passes occur down the two
sides of the pitch, on the wings. FCM’s passes are also located much more in the
opponent’s half of the pitch compared to Brøndby IF, this could indicate that
FCM are a much higher pressing team, gaining success from creating chances
when winning the ball in the opponent’s half. Overall, FCM seem to be a team
that have a lot of variation in how they attack, with their frequent subsequences
not being significant, and they appear to emphasise intricate passing in the
opponent’s half of the pitch in order to create chances. Indeed, FCM has a very
dynamic attack with players constantly changing positions, and that they tend
to dominate matches with a lot of possession and high pressure.

6 Conclusions and Future Work

We focused on identifying frequent passing zone subsequences that lead to created
or conceded goal scoring opportunities. We proposed a methodology, consisting
of (1) a preprocessing step that aligns event and tracking data, (2) the extraction
of goal scoring opportunities, (3) the partitioning of the pitch into a set of zones,
(4) the extraction of zone sequences, and (5) the discovery of frequent zone sub-
sequences. The results indicate that our method is able to perform better than
random subsequences that occurred, in median, 99.5% of the cases.

For the future, we plan to cross validate the results on different settings of
training and test sets, either by using k-fold cross validation, or by using the
first round as a training set and trying to predict the second round. Moreover,
we plan to perform some sensitivity analysis with respect to the value of xG.
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Furthermore, we would like to work on a good methodology of data-driven pitch
partitioning. Finally, we plan to use a spatial sequence similarity measure for
the calculation of accuracy, instead of the containment presented in Eq. 1.

References

1. Barbosa, A., Ribeiro, P., Dutra, I.: Similarity of football players using passing
sequences. In: Brefeld, U., Davis, J., Van Haaren, J., Zimmermann, A. (eds.) MLSA
2021. CCIS, vol. 1571, pp. 51–61. Springer, Cham (2021). https://doi.org/10.1007/
978-3-031-02044-5 5

2. ChryonHego: TRACAB optical tracking product information sheet. Technical
report, ChryronHego (2019). https://chyronhego.com/wp-content/uploads/2019/
01/TRACAB-PI-sheet.pdf

3. Fernandez-Navarro, J., Fradua, L., Zubillaga, A., Ford, P.R., McRobert, A.P.:
Attacking and defensive styles of play in soccer: analysis of Spanish and English
elite teams. J. Sports Sci. 34(24), 2195–2204 (2016)

4. Gregory, S.: Expected Goals in Context (2017). https://www.statsperform.com/
resource/expected-goals-in-context/

5. Hernanz, J.: How good is Driblab’s Expected Goals (xG) model? (2021). https://
www.driblab.com/analysis-team/how-good-is-driblabs-expected-goals-xg-model/

6. Hughes, M., Franks, I.: Analysis of passing sequences, shots and goals in soccer. J.
Sports Sci. 23(5), 509–514 (2005)

7. Kim, J., James, N., Parmar, N., Ali, B., Vučković, G.: The attacking process in
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