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ABSTRACT
Detecting outliers in traffic flow measurements on intersections
can be helpful to infer correlation patterns in traffic networks. Re-
cent approaches have proven the effectiveness of LOF-based out-
lier detection when applied over traffic flow probability distribu-
tions. However, these approaches used distance metrics based on
the Bhattacharyya coefficient when calculating probability distri-
bution similarity. Consequently, the limited expressiveness of the
Bhattacharyya coefficient restricted the accuracy of the methods.
The crucial deficiency of the Bhattacharyya distance metric is its
inability to compare distributions with non-overlapping sample
spaces over the domain of natural numbers. Traffic flow inten-
sity varies greatly, which results in numerous non-overlapping
sample spaces, rendering metrics based on the Bhattacharyya
coefficient inappropriate. In this work, we address this issue by
exploring alternative distance metrics and showing their appli-
cability in a massive real-life traffic flow data set from 26 vital
intersections in The Hague. The results on these data collected
from 272 sensors for more than two years show various advan-
tages of the Earth Mover’s distance both in effectiveness and
efficiency.

1 INTRODUCTION
Efficiently directing traffic within major cities can alleviate in-
conveniences caused by traffic congestion which, among others,
impact the local economy and aggravate air pollution. Under-
standing dependencies in the traffic network can help traffic
management decisions. By examining not only traffic flow, i.e.,
the amount of traffic within a given interval, but the distribution
of the flow over a given number of intervals, we can determine
novel correlations between occurrences of abnormal flow distri-
butions (outliers) within intersections. The benefit of using flow
distributions rather than single flow measurements is a more ro-
bust insight into the traffic flow. Combined with an outlier-based
correlation between traffic intersections, we can discover depen-
dencies of significant changes in the traffic flow of individual
traffic intersections. Uncovering such correlations of abnormal
traffic flow between traffic intersections provides interpretable
values that can be helpful when planning traffic redirection to
alleviate the propagation of traffic congestion.
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Determining outliers of flow distributions was done by Dje-
nouri et al. [11] using an adaption of the local outlier factor (LOF)
algorithm. The algorithm used the Bhattacharyya distance metric
to measure distances between distributions. The deficiency of
the Bhattacharyya distance for comparing discrete probability
distributions, such as traffic flow distributions, becomes evident
when comparing two flow distributions that have no overlap
between the sets of discrete measurements defining their sample
spaces. In such a case, the Bhattacharyya distance is undefined.
Undefined distances are not an issue for the Hellinger distance, a
metric, which in the case of discrete distributions is, based on the
Bhattacharyya coefficient, as the Bhattacharyya distance also is.
Kullback-Leibler divergence is a popular similarity measure that
also handles the issue well. Though, as the Hellinger distance, it
has an upper bound, which we will show impacts its accuracy
in the context of using it as a metric for local outlier detection.
A perhaps slightly naive way of measuring distances between
distributions could be to consider distributions as vectors and
determine their squared Euclidean distance. This method has
no apparent upper bound. However, since the flow distributions
define a probability space, the upper bound is 2. Furthermore,
it is unable to determine the lateral displacement of two distri-
butions with non-overlapping sample spaces. That is, it cannot
tell how far apart the sample spaces of the distributions are from
each other. The Earth Mover’s Distance (EMD) can address this
final issue by determining distances between distributions by,
figuratively speaking, considering one of them as piles of earth
and the other one as holes in the ground. The distance is then
the energy needed to distribute the piles of earth into the holes.

Recent approaches [10, 11, 13] have proven the effectiveness
of LOF-based outlier detection when applied over traffic flow
probability distributions. In particular, we extend in this paper
the method by Djenouri et al. [11] and compare the suitability of
the five previously mentioned metrics for determining flow dis-
tribution outliers using data from sensors in traffic intersections
of The Hague. We then solidify the benefits of this approach by
using the most effective metric, EMD, to determine the corre-
lation of outlier occurrences within these intersections. These
correlations are compared with the naively obtained correlations
based on traffic flow intensities to highlight how remarkable
correlations can be obtained by using flow distribution outliers.

In the remainder of this paper Section 2 provides a brief
overview of related work. Definitions of flow probability dis-
tributions, the selected set of metrics, and the local outlier factor



algorithm are in Section 3, together with the definition of effec-
tiveness. In Section 4 we apply the method to traffic intensity data
obtained from various intersections in The Hague. We analyze
several aspects of the metrics. We then compare our best method
against a recent proposal and conclude with an example of use of
our method for generating new insights from the real-life data set
at hand. Section 5 summarizes the main results and outlines the
work still to be done in the realm of flow probability distributions
for use in density-based outlier detection.

2 RELATEDWORK
Traffic flow analysis to study congestion is a critical area of
research in the development of an efficient movement infras-
tructure [1, 23]. Aside from the classic forecasting methods from
statistics [19], modeling traffic flow has been done using fuzzy
logic and neural networks [2, 22]. Some models are based on
sensors placed in the road, while other studies have used trackers
on vehicles to model the traffic flow. In this study, the traffic data
was collected by sensors placed in the lanes nearby intersections.
In [8] different types of sensors are compared.

One definition of an outlier given by V. Barnett and T. Lewis
is that it is “an observation (or a set of observations) which
appears to be inconsistent with the remainder of that set of
data” [3]. There have been several studies on outlier detection
in a generalized setting [28]. Some studies within application
scenarios [12, 21], compare local outlier detection techniques on
spatial data, as we do in this study. Also, many algorithms have
been developed to detect outliers in traffic flow [6, 15, 17, 24, 26].
However, all these methods focus on single value outliers, none
handles flow distribution outliers.

Djenouri et al. [11] introduced the notion of flow probability
density (FPD) and used an adaptation of the local outlier factor
(LOF) algorithm [7] to calculate the FPD-LOF. In these calcula-
tions, they used the Bhattacharyya distance [5] as a similarity
metric between distributions, noting that other metrics could be
used as well. The FPD-LOF approach to determine distribution
outliers has been used in [13] to enhance the effectiveness of a
long short-term memory model. In a successive study, Djenouri
et al. [9] showed that better results to determine outliers in flow
distributions can be achieved by using an adaptation of the 𝑘NN
algorithm in place of the LOF algorithm and the Kullback-Leibler
(KL) divergence in place of the Bhattacharyya distance. A study
by Bazan et al. [4] in the field of image classification, indicated
that, when comparing as dissimilarity measure: KL divergence,
Bhattacharyya distance, 𝜒2 statistic and Earth Mover’s Distance’s
(EMD), the most effective turns out to be EMD. Other studies in
the field of image classification, e.g. [4, 20, 27], have established
similar results for EMD.

3 DEFINITIONS
3.1 Flow Probability Distributions
We consider a set of intersections I in an urban road network.
At each intersection 𝐼 ∈ I there are multiple sensors (e.g., one on
each lane) collecting data in form of number of vehicles passed
in a time interval of duration 𝛿 . For a sensor 𝑠 of an intersection
𝐼 ∈ I, we denote the limited sequence of data collected in the
set of ordered timestamps 𝑇 = {𝑡1, . . . , 𝑡𝑛} each at a distance 𝛿
from the previous, as ⟨𝑚𝑠,𝑡1 , . . . ,𝑚𝑠,𝑡𝑛 ⟩. Each value𝑚𝑠,𝑡𝑖 , 𝑡𝑖 ∈ 𝑇 ,
indicates the number of vehicles passed in the interval of duration
𝛿 starting at timestamp 𝑡𝑖 and ending at 𝑡𝑖+1, i.e., the interval
[𝑡𝑖 , 𝑡𝑖+1). For each such sequence of data we can calculate its
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Figure 1: T partitioned into 120 subsets. Each sector repre-
sents a window with a time span of one hour and each in-
ner circular band represents a different working day. The
figure is for illustrative purposes only since in our exper-
iments we consider T partitioned into 24 × 7 windows.

empirical probability distribution, that we call in this context flow
probability distribution, FPD and given by the relative frequency
of occurrences of some specific measurement 𝑥 ∈ N0 in the
sequence of 𝑛 measurements collected in𝑇 . Formally, for a sensor
𝑠 ∈ 𝐼 ∈ I and its measurements at timestamps 𝑇 = {𝑡1, . . . , 𝑡𝑛}
the FPD for 𝑥 ∈ N0 is given by:

FPD(𝑥) = 1
𝑛

𝑛∑
𝑖=1

𝐼
(
𝑚𝑠,𝑡𝑖 = 𝑥

)
(1)

where 𝐼 (𝐸) is the indicator of event 𝐸. We can interpret the FPD
as a zero-indexed vector of length 𝑝 = 1 + max

{
𝑚𝑠,𝑡𝑖 | 𝑡𝑖 ∈ T

}
,

i.e., we bound 𝑥 in Eq. (1) by the highest value observed. In such
an FPD-vector, 𝑋 , an index, 𝑖 , corresponds to the observed value,
while the value at the index, 𝑋𝑖 , represents the relative frequency
of 𝑖 . An FPD spans a time frame of 𝑛 · 𝛿 . In most of our experi-
ments, we will set 𝛿 to 5 minutes and 𝑛 = 12 thus an FPD spans
an hour. However, our interest will be in comparing FPDs asso-
ciated to different sensors from I and different sets 𝑇 . We will
consider a long-time horizon made of a large number of consec-
utive timestamps T all at distance 𝛿 from the preceding one and
we will subdivide T in subsets 𝑇1,𝑇2, . . . of equal size 𝑛. Fig. 2
shows an example of traffic intensities and their corresponding
FPDs. When comparing two FPD-vectors of different lengths, we
use zero padding to extend the length of the shorter vector.

3.2 Distance functions
For two zero indexed vectors of size 𝑝 , representing FPDs, 𝑋 and
𝑌 , we can define the following alternative distance functions or
metrics:

• Squared Euclidean distance is:

Dist𝐸 (𝑋,𝑌 ) =
𝑝−1∑
𝑖=0

(𝑋𝑖 − 𝑌𝑖 )2 (2)



• Kullback-Leibler divergence adapted to FPDs such that
lower values are given to more similar distributions and
vice versa, as seen in [9]:

DistKL (𝑋,𝑌 ) =
𝑝−1∑
𝑖=0

𝑋𝑖 ln
(

2𝑋𝑖
𝑋𝑖 + 𝑌𝑖

)
(3)

• Bhattacharyya distance:

Dist𝐵 (𝑋,𝑌 ) = − ln(𝐵𝐶 (𝑋,𝑌 )) (4)

with:

𝐵𝐶 (𝑋,𝑌 ) =
𝑝−1∑
𝑖=0

√
𝑋𝑖𝑌𝑖 (5)

as the Bhattacharyya coefficient. If 𝐵𝐶 is 0, then the dis-
tance is undefined. In this paper, we handle this by defin-
ing the distance as infinite, however, as we shall see, this
introduces problems when calculating FPD-LOF scores.

• Hellinger distance:

Dist𝐻 (𝑋,𝑌 ) =
√

1 − 𝐵𝐶 (𝑋,𝑌 ) (6)

• Earth Mover’s Distance:

Dist𝑊1 (𝑋,𝑌 ) =
𝑝−1∑
𝑖=0

| EMD𝑖 |, where: (7)

EMD𝑖 =

{
0 𝑖 = 0
𝑋𝑖−1 + EMD𝑖−1 −𝑌𝑖−1 𝑖 ≥ 1

(8)

which corresponds to the First Wasserstein distance[18] for
one-dimensional and discrete probability distributions.

The Euclidean distance Dist𝐸 measures the distance between
the two points in the space [0, 1]𝑝 represented by the FPD-vectors.
The Kullback-Leibler divergence is described as the information
gained about a distribution 𝑌 by observing a distribution 𝑋 . The
adaptation of the divergence in DistKL is similar but in opposite
direction. That is ln(2)—themaximal value for any FPD-vectors𝑋
and 𝑌 in Eq. (3)—signifies no information-gain from the observa-
tion, and zero mean complete information about the distribution
is achieved. The metrics using the Bhattacharyya coefficient,
Dist𝐵 and Dist𝐻 , can be thought of as angle-based due to the
similarity between 𝐵𝐶 and the dot product, and the relation be-
tween the dot product of two vectors and their angle. The First
Wasserstein distance Dist𝑊1 takes into account the horizontal
offset, i.e., the indices of the vector, between the mass represented
by the corresponding values.

We say that two FPDs have no overlap if the two corresponding
FPD-vectors, 𝑋 and 𝑌 , both of length 𝑝 have no overlapping
values, i.e., ∀𝑖 ∈ {0 . . . 𝑝 − 1} it holds that 𝑋𝑖 > 0 ⇒ 𝑌𝑖 = 0 and
𝑋𝑖 > 0 ⇒ 𝑌𝑖 = 0.

Some distances achieve their theoretical maximum on non-
overlapping FPD vectors. Let𝑋 = ⟨0, 0, 0, 0, 1⟩ and𝑌 = ⟨0, 0, 0, 1, 0⟩
be two particular non-overlapping FPD-vectors.Dist𝐸 (𝑋,𝑌 ) yields
2, which is its maximum. Dist𝐾𝐿 (𝑋,𝑌 ) also yields its maximum,
which is ln(2). The Bhattacharyya coefficient 𝐵𝐶 (𝑋,𝑌 ) becomes
0 andDist𝐵 (𝑋,𝑌 ) = − ln(0), which is undefined.We correct these
cases setting Dist𝐵 (𝑋,𝑌 ) = ∞, which is its maximum. As we will
see later, these cases are detrimental to our goals. The Hellinger
distance does not suffer from this issue since Dist𝐻 (𝑋,𝑌 ) gives
1; its maximum value, when 𝐵𝐶 (𝑋,𝑌 ) = 0. However, Dist𝐻 and
Dist𝐾𝐿 are not able to discriminate FPDs vectors with no overlaps
even if the FPDs differ significantly in terms of mean and variance.
For example, let 𝑍 = ⟨.5, .5, 0, 0, 0⟩ be another FPDs vector non-
overlapping with𝑋 and𝑌 . Then, Dist𝐾𝐿 (𝑋,𝑍 ) = Dist𝐾𝐿 (𝑌, 𝑍 ) =

Table 1: Distances calculated using Dist𝐸 (left) and DistW1

(right).

X Y Z

X 0.0 2.0 1.5
Y 2.0 0.0 1.5
Z 1.5 1.5 0.0

X Y Z

X 0.0 1.0 4.5
Y 1.0 0.0 3.0
Z 4.5 3.0 0.0

ln 2 and Dist𝐻 (𝑋,𝑍 ) = Dist𝐻 (𝑌, 𝑍 ) = 1. The Euclidean distance
is able to discriminate these cases. Tab. 1 reports the symmetric
matrix of distances among 𝑋,𝑌, 𝑍 . Distances by DistE indicate
that 𝑋 and 𝑌 are further apart than 𝑋 and 𝑌 but this does not
seem a good assessment since 𝑌 is horizontally closer to 𝑋 than
it is to 𝑍 . In other terms, under Dist𝐸 FPDs with low variance
will appear to be more distant from FPDs with high variance. As
also shown in Tab. 1, DistW1 brings another approach to these
cases, and is able to differentiate by taking into account the lateral
distance of the distributions.

3.3 Local Outlier Factor
The local outlier factor (LOF) [7] assigns to each data point 𝑋
from a metric space a score indicating the degree of outlierness
for that point. It is based on the local density of the 𝑘 nearest
points, 𝑁𝑘 (𝑋 ). With the metrics defined above the space made
of probability distributions becomes a metric space and we can
define the LOF for probability distributions in the same way as
LOF is defined in [7]. Using one of the distance functions𝐷𝑖𝑠𝑡 , let
𝐷𝑖𝑠𝑡𝑘 (𝑋 ) be the distance from a point𝑋 , now a probability distri-
bution, to its𝑘th nearest point, i.e.,𝐷𝑖𝑠𝑡𝑘 (𝑋 ) = max{𝐷𝑖𝑠𝑡 (𝑋,𝑂) |
𝑂 ∈ 𝑁𝑘 (𝑋 )}. The reachability distance for a point𝑋 with respect
to point 𝑌 is then:

reach-dist𝑘 (𝑋,𝑌 ) = max{Dist𝑘 (𝑌 ), 𝐷𝑖𝑠𝑡 (𝑋,𝑌 )} (9)

The local reachability density of 𝑋 is:

lrd𝑘 (𝑋 ) = 1/
(∑

𝑌 ∈𝑁𝑘 (𝑋 ) reach-dist𝑘 (𝑋,𝑌 )
𝑘

)
(10)

which gives the local outlier factor for 𝑋 :

LOF𝑘 (𝑋 ) =
∑
𝑌 ∈𝑁𝑘 (𝑋 )

lrd𝑘 (𝑌 )
lrd𝑘 (𝑋 )

𝑘
(11)

In the original paper [7], it is noted that the LOF-score varies
with the value of 𝑘 . To ensure statistical stability, it is recommend
using at least 10 as the minimum value for 𝑘 . This provides a
lower bound on the number of elements needed to form a cluster.
Likewise, setting an upper bound on 𝑘 of 35 indicates the maxi-
mum number of elements near a cluster that could potentially be
outliers. Thus, they suggest comparing the results for different
values of 𝑘 when calculating the scores and taking the maximum
of them. Consequently, we defined the local outlier factor for a
point, 𝑋 , to be:

LOF(𝑋 ) = max{FPD − LOF𝑘 (𝑋 ) | 𝑘 ∈ {10, 15, . . . , 35}}. (12)

3.4 LOF for flow probability distributions
We denote by FPD-LOF the LOF when applied to a collection of
flow probability distributions introduced in Sec. 3.1. The collec-
tions of FPDs that we will consider are derived as follows.

We first partition the timestamps of T into disjoint subsets,
𝑇1,𝑇2, . . . each consisting of 𝑛 consecutive timestamps. Then we
group these subsets into collections, which we call windows (see



Fig. 1). A window𝑊 contains any 𝑇𝑖 from T where it holds that
the timestamps of 𝑇𝑖 are within the window span given by a
particular time of the day and day of the week. For example, a
window could contain all timestamps between 08:00 and 09:00 of
all Mondays present in our data. See Fig. 2. For a sensor 𝑠 and for
some window𝑊 we calculate the FPD-vectors for each 𝑇𝑖 ∈𝑊 .
Then, for this collection of FPD vectors derived from a window
we calculate the FPD-LOF. The pseudocode of this procedure is
in Listing 1.

Listing 1: Pseudocode for the calculation of FPD-LOF
scores of the FPD vectors associated to a window𝑊 and
sensor 𝑠. The function calculateLOFs returns the LOFs us-
ing Eq. (12).
FPD -LOF(𝑠, 𝑊 )

FPDs = []
for 𝑇𝑖 in 𝑊

FPDs.push(FPD -vector(𝑠, 𝑇𝑖 ))
p = FPDs.length ()
Let M be a p×p matrix of zeroes
for i in {0..p}

for j in {i+1..p}
M[i,j] = M[j,i] = dist(FPDs[i], FPDs[j])

LOFs = calculateLOFs(M)
return LOFs

3.5 Measuring effectiveness
We are interested in assessing how effective the distance metrics
are in the calculations of FPD-LOFs. Since we have no ground
truth about outliers, we will assume that measurements from
sensors located in different lanes of the same intersection will
have outliers at approximately the same time. If, for instance, one
traffic lane is congested, several drivers may consequently switch
lanes. It might not always be the case that outliers co-occur in
all sensors within the same intersection. However, when this is
the case, the FPD-LOFs of all the sensors should indicate this.

With these assumptions we define the effectiveness of a dis-
tance metric at an intersection 𝐼 ∈ I by comparing the temporal
overlap of the outliers between sensors in an intersection within
the same window. More precisely, let 𝑋𝑠,𝑖 be the FPD vector asso-
ciated to a set of timestamps 𝑇𝑖 from𝑊 . For example, if𝑊 is the
window from 8 to 9 on Mondays 𝑋𝑠,1 could be the FPD vector
associated to the first Monday of the year, i.e., 2020-01-06, 𝑋𝑠,2
the one associated to the second, i.e., 2020-01-13, 𝑋𝑠,3 the one
associated to the third, i.e., 2020-01-20, and so forth. Let also
𝑋

(1)
𝑠 , 𝑋

(2)
𝑠 , ..., 𝑋

(𝑛)
𝑠 be the FPD vectors sorted in decreasing order

of their FPD-LOF scores within𝑊 and let 𝛼 (𝑋 ( 𝑗)
𝑠 ) be the date to

which 𝑋 ( 𝑗)
𝑠 is associated. In the previous example, if 𝑋𝑠,2 had the

largest FPD-LOF score in𝑊 , 𝑋𝑠,3 the second largest, and 𝑋𝑠,1 the
third one, then 𝛼 (𝑋 (1)

𝑠 ) =2020-01-13, 𝛼 (𝑋 (2)
𝑠 ) =2020-01-20,

𝛼 (𝑋 (3)
𝑠 ) =2020-01-06. Finally, let 𝑂𝑠,ℎ = ∪ℎ

𝑗=1{𝛼 (𝑋
( 𝑗)
𝑠 )}. We

can now define the effectiveness of a given metric on an inter-
section 𝐼 with sensors 𝑠1, 𝑠2, . . . 𝑠ℓ for a window𝑊 with 𝑛 FPDs
as:1

𝑒 (𝐼 ) = 1
𝑛

𝑛∑
ℎ=1

��𝑂𝑠1,ℎ ∩𝑂𝑠2,ℎ ∩ · · · ∩𝑂𝑠ℓ ,ℎ
��

ℎ
. (13)

1The effectiveness 𝑒 should be parameterized also by the metric and the window.
However, for the sake of lighter notation we do not make this explicit. The reference
will be clear from the text.

In the running example, if we have another sensor 𝑟 with𝛼 (𝑋 (1)
𝑟 ) =

2020-01-20, 𝛼 (𝑋 (2)
𝑟 ) = 2020-01-13, 𝛼 (𝑋 (3)

𝑟 ) = 2020-01-06,
then 𝑒 (𝐼 ) = 1/3(0 + 1 + 1) = 2/3. As exposed earlier, Dist𝐵 might
be unable to determine a valid FPD-LOF for some sensor at some
𝑇𝑖 . In this case, to ensure that the sensors used for calculating 𝑒
are the same for all metrics, we remove the sensor where Dist𝐵
fails also in the calculations of 𝑒 for the other metrics. Finally, we
determine the overall effectiveness of the metric:

𝑒 =
1
|I |

∑
𝐼 ∈I

𝑒 (𝐼 ). (14)

4 ANALYSIS
In this section, we set out to assess the FPD outlier detection
with the different metrics and to exemplify the insights that the
method can generate in a real-life context.

We implemented everything in Python,2 using Pandas [25]
and Numpy [14] for most parts. For the Dist𝑊1 calculations we
used the implementation available in the submodule stats of
SciPy [16].

4.1 Data set
Evaluation of the metrics was performed on data from 26 in-
tersections of The Hague, shown in Fig. 4, collected during the
time-frame from January 2018 to April 2020. Each intersection
contains from 7 to 21 relevant sensors, thus we considered in
total 272 sensors.

In addition, we had data on tweets about traffic accidents
and events in and around The Hague. For the accidents the data
available were a timestamp of the occurrence and a brief textual
description of the location and severity. The severity of the acci-
dent was indicated by a priority of 1 to 5. A priority of 1 indicates
personal injury, a priority of 2-3 indicates injury to property, a
priority of 4-5 indicates events such as a demonstration, a water
leak, etc. For the events we had information about the type of
event, e.g., ‘large barbeque’, ‘outdoor concert’, etc., the start and
end date of the event, and its approximate latitude and longitude.
Finally, we had data on holidays. For each date from January 2018
to August 2019 we had indication on whether it was a ’school
holiday’ or ’other holiday’.

We focused on the window from 08:00 to 09:00 on Mondays.
Therefore, each of the 272 sensors yielded up to 113 FPDs cor-
responding to the 113 Mondays occurring from January 2018 to
April 2020. Each FPD was derived from 12 measurements, one
every 5 minutes. In fact, to avoid issues with missing measure-
ments, we considered only the FPDs where at least one of the
measurements was a value strictly larger than zero. We chose
this particular time and day because of the usually high traffic
intensity, thus only few zeros are present in the data and only few
FPDs had to be discarded. Each sensor had finally after removal
still at least 100 FPDs.

4.2 Maximal distances
For each distancemetric introduced earlier, we examined 1,993,942
distances. For only one metric, Dist𝑊1 , we do not know a theoret-
ical upper bound on the distance between two FPDs. Hence, we
cannot say if it ever reached its upper bound. For the others we
observed the following. The calculatedDist𝐸 were nevermaximal,
i.e., equal to two. Dist𝐵 , Dist𝐻 and DistKL were maximal 13066
of the times, i.e., the distance was infinite, 1 or ln(2), respectively.
2Source code is available at: https://anonymous.4open.science/r/2243

https://anonymous.4open.science/r/2243


Figure 2: (a) Measurements in a window spanning 08:00 to 09:00 onMondays in the period 2019-09-16 to 2019-03-16.White
indicates the highest traffic intensity in thewindow and black indicates a traffic intensity of 0, i.e., no cars passed the sensor
at the given point in time. (b) The corresponding FPDs of (a) where the four shades ranging from black to white represent
FPD(𝑥) of 0, 1/12, 2/12, and 3/12, respectively.

Proportionally, this corresponds to 0.6% of the distance pairs
examined for a metric. The maximal distances were distributed
among 72 sensors. On these sensors the maximal distance was
achieved between 43 and 129 (with median of 56) times in the
calculations for all pairwise distances between FPDs associated
to a sensor. Note that in the LOF calculations, having infinite
distances can result in LOF scores that are infinite, and hence
make it impossible to compare the outlierness of points. It can
also result in undefined LOF scores (Eq. 12) when a point 𝑋 has
lrd𝑘 (𝑋 ) = ∞ and another point𝑂 ∈ 𝑁𝑘 (𝑋 ) also has lrd𝑘 (𝑂) = ∞.
When calculating FPD-LOF, we looked at neighborhood sizes, 𝑘 ,
up to 35. Thus, we could expect a high number of maximal dis-
tances occurring in an affected sensor would impact FPD-LOFs.
Indeed, for FPD-LOFs calculated using Dist𝐵 approximately 0.5%
FPD-LOFs were infinite, which is a clear indication against the
use of Dist𝐵 in the context of LOF. The effect on FPD-LOFs of
hitting the maximal distance with DistKL and Dist𝐻 is harder
to determine, since the maximum value is finite and hence ulti-
mately absorbed in the calculations with other values, but it still
might negatively influence the results with a lack of sensitivity.

4.3 Variance of FPD-LOF scores
When using the LOF algorithm, two approaches for determining
whether a point is an outlier are commonly used. One is based
on a “pollution” parameter, that is, a fixed number of points to
consider as outliers given by the highest LOF scores. The other
approach is based on a fixed threshold 𝜖 for the LOF score, and
any point with a score above 𝜖 is considered outlier. Usually,
inliers have a score of around 1, while higher values indicate the
degree of outlierness for the corresponding FPDs. However, for
determining a threshold we need to consider the variation of the
FPD-LOF scores from Eq. (12). As we sawwithDist𝐵 the FPD-LOF
scores turn out sometimes infinite consequently making variance
infinite. Beside this peculiar case with Dist𝐵 , we observed the
highest variance between scores based on Dist𝑊1 . Usually, a high
variance is beneficial because it makes it easier to find a suitable
value for 𝜖 , since it is not as sensitive as it is for LOF scores with
low variance. Thus—as we will see later—finding a good value
for the threshold on this metric is not a problem.

4.4 Effectiveness
In Fig. 3, we show the effectiveness 𝑒 (𝐼 ) for each metric on the
26 intersections. The overall effectiveness 𝑒 is reported in Tab. 2.

Figure 3: Effectiveness 𝑒 (𝐼 ) of the metrics for all intersec-
tions 𝐼 ∈ I.

Higher values of 𝑒 (𝐼 ) and 𝑒 indicate better performance. Hence,
Dist𝑊1 is more effective in nearly all intersections and overall.

Trying to explain the difference in effectiveness among the
intersections evident in Fig. 3, we studied the impact of the length
of the FPD vectors and of the number of sensors in the calcu-
lations of 𝑒 (𝐼 ). A correlation analysis throughout the different
intersections indicated that: i) there is a slight positive impact on
the effectiveness of the metrics when the FPDs have more values;
ii) there is a considerable negative impact when the number of
sensors in an intersection increase. Clearly, with more sensors it
becomes more difficult to have large set intersections in Eq. (13).

4.5 Computational cost
In Tab. 2, we report also the computation times to calculate the
overall effectiveness 𝑒 from Eq. (13) on a system with 8 × Intel
Core i7-4770 CPU @ 3.40GHz processor and 16 GB of RAM.
We see that the computation times vary considerably with the
metrics and that Dist𝑊1 leads to the fastest computations, up to
half of the time of Dist𝐾𝐿 .

4.6 Co-occurrence with events
The number of times outliers co-occur with holidays, 𝜌H , and
with tweets on traffic accidents, 𝜌A , is reported in Tab. 2. More
precisely, let us say that an intersection 𝐼 ∈ I has an outlier
at a given date, if any of its sensors has an outlier with respect
to a fixed threshold, 𝜖 , for FPD-LOF score of at least 1.3. Let
𝐷 (𝐼 ) denote the set of dates where at least one sensor of inter-
section 𝐼 has an outlier, and let X denote either the set of dates



Table 2: Computation times (user CPU time) for calculat-
ing 𝑃 , i.e., the performance averaged over all 26 intersec-
tions. In total, 272 sensors each with at least 100 FPDs
have been processed. 𝜌H and 𝜌A are number of outliers
co-occurred with holidays and tweet events, respectively.

Metric 𝑒 𝑇𝑖𝑚𝑒 𝜌H 𝜌A

Dist𝐵 0.0636 63 min 02 s 318 195
DistKL 0.0945 88 min 26 s 244 109
Dist𝐻 0.0956 58 min 46 s 99 14
Dist𝐸 0.0957 59 min 41 s 488 206
Dist𝑊1 0.1380 46 min 35 s 594 282

Figure 4: Locations of a subset of traffic intersections in
The Hague.

that are holidays, H , or that are accidents announced with a
tweet within 08:00 and 09:00 on Mondays, A. We then define
the number of outliers co-occurring with one of such events as
𝜌X =

∑
𝐼 ∈𝐼 |𝐷 (𝐼 ) ∩ X|. Note that for A we do not take into ac-

count the location with respect to the intersections, assuming
that it may affect anywhere in the network.

It is difficult to interpret these values. The value 𝜌H tells how
many outliers occur in a holiday and we conjecture that on a
Monday, which is a holiday, the traffic flow between 8 and 9 will
be low. So 𝜌H should indicate the ability of the approach with
the given metric to detect as outlier FPDs of exceptional low flow
intensity. On the contrary, the value of 𝜌A should indicate the
ability of the approach to detect outlier FPDs with exceptional
high flow intensity, as it is expected that in the case of accidents
traffic jams arise. Thus, we can interpret the results as indicating
that Dist𝑊1 can find most of these outliers and that it is the best
at discovering outliers of both types. However, we desist from
making an assessment on the values of 𝜌H and 𝜌A in absolute
terms since without a ground truth it is not possible to give a
reliable estimate about how many outliers we should have found.
If 10 out of 113 Mondays in our data are holidays we should have
approximately 10 · 272 outliers detected but not all those might
be outliers. On the other side, classifying everything as outliers
would cover all 10 · 272 but would not be very useful.

4.7 Comparison with kNN-FPD
In [9], Djenouri et al. used an adaptation of the 𝑘NN algorithm to
find FPD-outliers. They show that 𝑘NN-FPD with Dist𝐾𝐿 outper-
forms in terms of percentage of detected outliers FPD-LOF with
Dist𝐵 . Here, we compare their 𝑘NN-FPD against FPD-LOF with
Dist𝑊1 , having determined that Dist𝑊1 is both more effective and
more efficient than all other metrics in an FPD-LOF approach.

Since we are interested in outliers caused by unusually high
traffic intensity instead of those caused by noisy readings or
sensor dropouts, we constructed a synthetic data set where inlier-
FPDs had traffic flow values sampled from a uniform distribu-
tion U{500, 600} and outlier-FPDs had values sampled from
U{550, 650}. We let 10% of the 100 FPDs be outliers and the
rest, inliers. Each FPD had a sample size of 10.

The 𝑘NN-FPD with DistKL classifies an FPD as an outlier if the
distance to its 𝑘th nearest neighbor is above a specified threshold
𝜖 . For a fair comparison, we modify our LOF approach for FPD
such that it also depends on 𝑘 , that is, stopping the calculations at
Eq. (11) rather than Eq. (12). Thus, in the FPD-LOF with Dist𝑊1 ,
𝑘 represents the neighborhood size in the 𝐿𝑂𝐹𝑘 calculations and
the method classifies as outlier an FPD if its LOF score from
Eq. (11) is above a threshold 𝜖 . The AUC-ROC curves on the
synthetic data for the𝑘NN-FPD and FPD-LOFmethods are shown
in Fig. 5.

First, we observe that FPD-LOF yields a better precision: the
highest ROC-AUC score achieved by 𝑘NN-FPD is 0.972 while
FPD-LOF achieves ROC-AUC scores of 1.0 with the right param-
eters. Even for the worst performing 𝜖 value, FPD-LOF reaches
a maximal ROC-AUC score of 0.967. Second, FPD-LOF gives a
stable classification of outliers for a wide range of 𝜖-values when
𝑘 is above 17. Thus, the method is rather robust with respect
to the parameters and tuning them is relatively easy compared
to 𝑘NN-FPD, where the two parameters 𝑘 and 𝜖 are highly in-
terdependent and good performance is achieved only in narrow
space.

Indeed, calibrating 𝑘NN-FPD seem an intricate task. Assume
we have a set of points where no distance between two points
in the set is similar. When we increase 𝑘 in the 𝑘NN-FPD algo-
rithm, then the distance to the 𝑘th nearest neighbor will increase
correspondingly. Hence it follows that 𝜖 must also be increased
to correctly classify points. Thus the two parameters needs to be
balanced with respect to each other. In the synthetic data used
for Fig. 5, outliers are high-intensity traffic flows and therefore
have some homogeneousness, i.e., their mutual distances are less
than their distance to the inliers. When this is the case, 𝑘 should
be set such that it is at least as high as the number of expected
outliers. Otherwise, outliers would be classified as inliers. On
the other hand, if 𝑘 is too high, then the distance to the 𝑘NN
for inliers increases, which would result in classifying inliers as
outliers. The choice of 𝜖 depends on which distance metric is
being used. Also, 𝜖 needs to reflect the minimum distance we
would expect between an outlier and an inlier. Thus, we need
to have a deep understanding of the distance metric used. Using
DistKL somewhat alleviates this problem since it is bound to the
interval [0; 1]. However, finding the exact value that separates
outliers from inliers is still hard. These shortcomings do not seem
to appear in the FPD-LOF approach that seems more robust to
the choice of the distance metric and the values of 𝑘 . Moreover,
it can be easily made even more robust with the use of Eq. (12).



Figure 5: AUC-ROC performance of 𝑘NN-FPD (left) and FPD-LOF (right) for various values of 𝑘 and 𝜖.

Figure 6: Craw shows the correlation coefficients based
on traffic flow intensities and Coutlier shows those based
on FPD-LOF. 279 sensors were used so sensor names are
omitted to avoid cluttering the axes. However, sensors are
grouped along the axes based on the intersection they be-
long to. The tiny black dots signify that two sensors do
not have any valid measurements in common, so no cor-
relation could be determined.

4.8 FPD-LOF based correlation analysis
We use FPD-LOF with Dist𝑊1 to determine structural dependen-
cies in the road network. In other terms, we wish to gain insights
of the kind: if we detect a traffic jam in intersection A, then there
will also soon be a jam arising in intersection B. We describe how
to carry out this analysis with the FPD-LOF for outliers approach,
and we show that the result can be quite different from what
would be otherwise achieved by a more traditional analysis based
on raw traffic intensity data.

We applied the FPD-LOF analysis of Eq. (12) to 24 × 7 win-
dows, that is, every hour of every weekday. We required that
all measurements of an FPD must be valid and excluded sensors
where one or more windows had less than 100 valid FPDs. Thus,
the resulting data is a table with rows indexed by timestamps
and columns indexed by sensor names. The cells in the table are
the FPD-LOF values. Finally, we calculated correlations between
the sensors. For comparison, we calculated the correlation of
raw data between the sensors. Since we only used a subset of
the data for the FPD-LOF correlation, we extracted the raw data
corresponding to the timestamps and sensors previously used.

We show the obtained correlation matrices for the FPD-LOF
approach and for the raw data approach denoted by Coutlier and
Craw , respectively, in Fig. 6. Generally, Coutlier gives stronger
correlations than Craw .

Focusing on the rankings of the correlations relative to their
approach, we found, in general, that Craw yielded higher corre-
lations for sensors in proximity of each others, whereas Coutlier
was able to find strong correlations also among sensors not in
immediate proximity of each other. This observation might not
be immediately apparent from Fig. 6, but it was revealed by exam-
ining more in detail the locations of the sensors. For example, a
pair of sensors from different intersections having a high ranking
under both approaches, is made of the sensors both named ‘081’
in intersections ’K556’ and ’K559’. The two sensors turn out to
be both located in the street Lozerlaan (see Fig. 4) in the trait
connecting the same lane between the two intersections, just 2
minutes of travel apart. Thus, the strong correlation for this pair
is not surprising. However, Coutlier shows that sensor ‘081’ of
intersection ‘K556’ is also strongly correlated with sensor ‘111’
of intersection ‘K702’. These intersections are 15-20 minute apart
and hence the finding can be more instructive.

Correlations based on FPD-LOFs and those based on traffic
intensity measures have evident semantic differences and the
calculated correlation coefficients underline this difference. Using
the FPD-LOF approach, outliers may propagate from one sensor
to another within an hour since we use hourly measurements
when creating the FPDs. In such a case, the correlation between
the sensors will be higher. A correlation of similar causation will
not occur when using raw data to determine sensor correlation.
First and foremost, there is no notion of outliers, and secondly,
the correlation leaves no room for temporal displacement since
correlation is determined laterally. Conclusively, the FPD-LOF
correlation provides a unique insight into traffic flow patterns.

5 CONCLUSION
5.1 Summary
We compared distance functions Dist𝐵 , Dist𝐻 , Dist𝐸 , DistKL and
Dist𝑊1 in the context of FPD outlier detection. We defined a
measure for the effectiveness of these metrics and found that
Dist𝑊1 is the most effective and also the most efficient to use
in large data sets. Our measure of effectiveness is biased by the
number of sensors in each intersection and by the average length
of the FPDs vectors but the influence seems to be the same on all
metrics thus not affecting the conclusion.

Assuming holidays would cause abnormal decrease of traffic
flows in The Hague on Mondays between 8 and 9, and that traf-
fic accidents would cause an abnormal increase of traffic flows,
we observed that LOF with Dist𝑊1 was able to find these differ-
ent types of FPD outliers more often than with other metrics
evaluated.



The interpretability of the distances given by Dist𝑊1 is a fur-
ther factor of appeal, since it provides a way of explaining the
changes in the distribution of traffic flow. On the contrary we
highlighted the shortcomings of metrics with upper bounds on
the distance values. Specifically, we estimated that the upper
bound on these metrics influenced 0.5% of the measurements
in our real-life data. We also argued that Dist𝐸 biases distances
by the individual variances of the FPDs rather than their vari-
ance relative to each other, thus making also this distance less
appealing.

We also compared a LOF approach to a 𝑘NN approach for de-
termining FPD outliers. The results showed that FPD-LOF using
DistW1 outperforms 𝑘NN-FPD in terms of precisely classifying
outliers generated by higher intensity flows. Furthermore, FPD-
LOF is robust to parameter tuning providing best results for
𝑘 > 17 and 𝜖 ∈ [1.2; 1.8).

Finally, we showed the usefulness of FPD-LOFs for determin-
ing dependencies between sensors in the road network. In partic-
ular, the FPD-based outlier approach turns out to provide more
instructive insights than a more naive approach of correlating
raw traffic intensity data.

5.2 Further Research
Having established the utility of Earth Mover’s distance in the
context of determining flow distribution outliers and correlating
them with tweets on traffic incidents,

It would be interesting examining the location of the outliers
and their correlated accidents. Moreover it would be interest-
ing enlarging the study to other windows, i.e., beside the one
occurring between 08:00 and 09:00 on Mondays.

It is very possible that the 𝑘NN approach for outlier detection
of [9] can be improved by replacing the Kullback-Leibler diver-
gence with the Earth Mover’s distance. The apparent drawback
of the 𝑘NN approach to outlier detection persists, though. How-
ever, our results indicate the approach will produce more stable
results.

Outliers found using FPD-LOF with DistW1 could possibly en-
hance the performance of recurrent neural networks for predict-
ing traffic flow outliers even further than what has been shown
in [13]. In the FPD-LOF-based correlation analysis, we have re-
stricted ourselves to correlate outlier FPDs appearing within the
same window. It would be interesting to add also adjacent win-
dows since this might discover dependencies temporally and
spatially farther apart. Having discovered spatial and temporal
dependencies through the FPD-LOF-based correlation analysis,
we could test these insights in predictive tasks. However, it might
first be instructive to look deeper into the correlation analysis
proposed. For example, we need to assess whether the high corre-
lations reported are meaningful or caused by many inliers whose
LOF values are close to 1.0. In this regard, an alternative approach
to calculating correlation would be interesting. Specifically, trans-
forming the LOF scores into binary values indicating whether an
FPD is an outlier or not.

Finally, we should investigate the effect of the amount of data
on the outlier analysis. Too little data might make the detec-
tion too sensitive while too much data might make outliers less
anomalous and hence not detectable.
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