Access Graphs Results for LRU versus FIFO
under Relative Worst Order Analysis*

Joan Boyar, Sushmita Gupta, and Kim S. Larsen

University of Southern Denmark, Odense, Denmark
{joan,sgupta,kslarsen}@imada.sdu.dk

Abstract. Access graphs, which have been used previously in connec-
tion with competitive analysis to model locality of reference in paging,
are considered in connection with relative worst order analysis. In this
model, FWF is shown to be strictly worse than both LRU and FIFO
on any access graph. LRU is shown to be strictly better than FIFO on
paths and cycles, but they are incomparable on some families of graphs
which grow with the length of the sequences.

1 Introduction

The term online algorithm [4] is used for an algorithm that receives its input
as a sequence of items, one at a time, and for every item, before knowing the
subsequent items, must make an irrevocable decision regarding the current item.

The most standard measure of quality of an online algorithm is competitive
analysis [17,22,20]. This is basically the worst case ratio between the perfor-
mance of the online algorithm compared to an optimal offline algorithm which
is allowed to know the entire input sequence before processing it and is assumed
to have unlimited computational power.

Though this measure is very useful and has driven much research, researchers
also observed problems [22] with this measure from the beginning: many algo-
rithms obtain the same (poor) ratio, while showing quite different behavior in
practice. The paging problem is one of the prime examples of these difficulties.
The paging problem is the problem of maintaining a subset of a large number
of pages in a much smaller, faster cache with space for a limited set of k£ pages.
Whenever a page is requested, it must be brought into cache if it is not already
there. In order to make room for such a page, another page currently in cache
must be evicted. Therefore, an online algorithm for this problem is often referred
to as an eviction strategy.

For a number of years, researchers have worked on refinements or additions
to competitive analysis with the aim of obtaining separations between different
algorithms for solving an online problem. Some of the most obvious and well-
known paging algorithms are the eviction strategies LRU (Least-Recently-Used)
and FIFO (First-In/First-Out). One particularly notable result has been the

* Partially supported by the Danish Council for Independent Research.

separation of LRU and FIFO via access graphs. Access graphs were introduced
in [5] with the aim of modelling the locality of reference that is often seen in
real-life paging situations [10,11]. An access graph is an undirected graph with
all pages in slow memory as vertices. Given such a graph, one then restricts the
analysis of the performance of an algorithm to sequences respecting the graph,
in the sense that any two distinct, consecutive requests must be neighbors in
the graph. Important results in understanding why LRU is often observed to
perform better than FIFO in practice were obtained in [5,9], showing that on
some access graphs, LRU is strictly better than FIFO, and on no access graph
is it worse; all these previous results are with respect to competitive analysis.

Attempts have been made to define new generally-applicable performance
measures and to apply measures defined to solve one particular problem more
generally to other online problems. A collection of alternative performance mea-
sures is surveyed in [12]. Of the alternatives to competitive analysis, relative
worst order analysis [6] and extra resource analysis [19] are the ones that have
been successfully applied to most different online problems. See [13] for examples
of online problems and references to relative worst order analysis results resolving
various issues that are problematic with regards to competitive analysis.

Paging has been investigated under relative worst order analysis in [7]. Sepa-
rations were found, but LRU and FIFO were proven equivalent, possibly because
locality of reference is necessary to separate these two paging algorithms. We ap-
ply the access graph technique to relative worst order analysis. Note that the
unrestricted analysis in [7] corresponds to considering a complete access graph.

Overall, our contributions are the following. Using relative worst order analy-
sis, we confirm the competitive analysis result [5] that LRU is better than FIFO
for path access graphs. Since these two quality measures are so different, this
is a a strong indicator of the robustness of the result. Then we analyze cycle
access graphs, and show that with regards to relative worst order analysis, LRU
is strictly better than FIFO. Note that this does not hold under competitive
analysis. The main technical contribution is the proof showing that on cycles,
with regards to relative worst order analysis, FIFO is never better than LRU.
Clearly, paths and cycles are the two most fundamental building blocks, and fu-
ture detailed analyses of any other graphs type will likely build on these results.

The standard example of a very bad algorithm with the same competitive
ratio as LRU and FIFO is FWF, which is shown to be strictly worse than both
LRU and FIFO on any access graph (containing a path of length at least k+ 1),
according to relative worst order analysis. Using relative worst order analysis,
one can often obtain more nuanced results. This is also the case here for general
access graphs, where we establish an incomparability result.

None of the algorithms we consider require prior knowledge of the underlying
access graph. This issue was pointed out in [15] and [16] in connection with the
limitations of some of the access graph results given in [5, 14, 18] and the Markov
paging analogs in [21].

As relative worst order analysis is getting more established as a method for
analyzing online algorithms, it is getting increasingly important that the the-

oretical toolbox is extended to match the options available when carrying out
competitive analysis. Recently, in [13], list factoring [1, 3] was added as an analyt-
ical tool when using relative worst order analysis on list accessing problems [22,
2], and here we demonstrate that access graphs can also be included.

After a preliminary section, we prove that LRU is never worse than FIFO
on paths or cycles. Then we establish separation results, showing that LRU is
strictly better than FIFO on paths and cycles of length at least k£ + 1 and that
both algorithms are strictly better than FWF on any graph containing a path of
length at least k4 1. The last result proves the incomparability of LRU and FIFO
on general access graphs, using a family of graphs where the size is proportional
to the length of the request sequence. We conclude with some open problems
regarding determining completely for which classes of graphs LRU is better than
FIFO. Some of the proofs have been omitted due to space constraints. They can
be found in the full version [8].

2 Preliminaries

The paging problem is the problem of processing a sequence of page requests with
the aim of minimizing the number of page faults. Pages reside in a large memory
of size N, but whenever a page is requested, it must also be in the smaller cache
of size k < N. If it is already present, we refer to this as a hit. Otherwise, we
have a fault and must bring the page into cache. Except for start-up situations
with a cache that is not full, this implies that some page currently in cache must
be chosen to be evicted by a paging algorithm.

If A is a paging algorithm and I an input sequence, we let A(I) denote the
number of faults that A incurs on I. This is also called the cost of A on I.

An important property of some paging algorithms that is used several times
in this paper is the following:

Definition 1. An online paging algorithm is called conservative if it incurs at
most k page faults on any consecutive subsequence of the input containing k or
fewer distinct page references.

The algorithms, Least-Recently-Used (LRU) and First-In/First-Out (FIFO)
are examples of conservative algorithms. On a page fault, LRU evicts the least
recently used page in cache and FIFO evicts the page which has been in cache
the longest. Flush-When-Full (FWF), which is not conservative, evicts all pages
in cache whenever there is a page fault and its cache is full.

An input sequence of page requests is denoted I = (ry,ro,... ,r|[|). We use
standard mathematical interval notation to denote subsequences. They can be
open, closed, or semi-open, and are denoted by (74, 7p), [Ta; 75, (a, 6], OF [, 7).
If S is a set of pages, we call a request interval S-free if the interval does not
contain requests to any elements of S. We use the following notation for graphs.

Definition 2. The path graph on N vertices is denoted Py and a cycle graph
on N wvertices is denoted C. A walk is an ordered sequence of vertices where

consecutive vertices are either identical or adjacent in the graph. A path is a
walk in which every vertex appears at most once. The length of a walk W is the
number of (not necessarily distinct) vertices in it, denoted by |W|. The set of
distinct vertices in a walk W is denoted by {W}.

Definition 3. An access graph G = (V, E) is a graph whose vertex set corre-
sponds to the set of pages that can be requested in a sequence. A sequence is said
to respect an access graph, if the sequence of requests constitutes a walk in that
access graph.

In the relative worst order analyses carried out in this paper, permutations
play a key role. We introduce some notation for this and then present the stan-
dard definition of the relative worst order quality measure.

For an algorithm A, Ay (I) is the cost of the algorithm A on the worst
reordering of the input sequence I, i.e., Ay (I) = max, A(o(l)), where o is a
permutation on |I| elements and o (I) is a reordering of the sequence I.

Definition 4. For any pair of paging algorithms A and B, we define

c(A,B) = sup{c|3b: VI: Aw(I) > cBw(I) — b} and
cu(A,B) = inf{c|3b: VI: Aw(I) <cBw(I)+ b}

If (A, B) > 1 or ¢ (A, B) < 1, the algorithms are said to be comparable and
the relative worst order ratio WRy g of algorithm A to B is defined. Otherwise,
WRa B is undefined. If c;(A,B) > 1, then WRop = ¢, (A, B) and if ¢, (A, B) <1,
then WRa g = ¢;(A,B).

If WRa g < 1, algorithms A and B are said to be comparable in A’s favor.
Similarly, if WRa g > 1, the algorithms are said to be comparable in B’s favor.

When we use this measure to compare algorithms on a given access graph
G, we use the notation A, (I) to denote the cost of A on a worst permutation
of I that respects G. Similarly, we use WRKE to denote the relative worst order
ratio of algorithms A and B on the access graph G.

Finally, let Worst(I, G, A) denote the set of worst orderings for the algorithm
A of I respecting the access graph G, i.e., any sequence in Worst(I, G, A) is a
permutation of I respecting G, and for any I € Worst(I, G, A), A(I) = A§(I).

3 Paths

In [5, Theorem 13], it has been shown that if the access graph is a tree, then
LRU is optimal among all online algorithms. Furthermore, in the case of path
graphs, LRU matches the performance of an optimal offline algorithm.

Theorem 1. For all I respecting the path Py, LRULY (I) < FIFOLY ().

Proof. Consider any sequence I respecting Py. Let I’ be a worst ordering for
LRU among the permutations of I respecting Py. Then, using LRU’s optimality
on trees for the first inequality, LRUTY (I) = LRU(I') < FIFO(I) < FIFO{Y (I).

O

4 Cycles

Almost this entire section is leading up to a proof that for all I respecting
the access graph Cl, LRU‘?VN (I) < FIFO?VN (I). Notice that this theorem is
not trivial, since there exist sequences respecting the cycle access graph where
FIFO does better than LRU. Consider, for example, the cycle on four vertices
Cy = (1,2,3,4), k = 3, and the request sequence I = (2,1,2,3,4,1). With this
sequence, at the request to 4, LRU evicts 1 and FIFO evicts 2. Thus, FIFO does
not fault on the last request and has one fault fewer than LRU. Note that on
the reordering, I’ = (1,2,2,3,4,1), LRU still faults five times, but FIFO does
too. This is the transformation which would be performed in Lemma 3 below,
combined with the operation in the proof of Lemma 1 to reinsert requests which
have been removed. Note that this is not a worst ordering for LRU, since LRU
and FIFO both fault six times on I = (1,2,3,4,1,2).

Each of the results leading up to the main theorem in this section is aimed
at establishing a new property that we may assume in the rest of the section.
Formally, these results state that if we can prove our end goal with the new
assumption, then we can also prove it without. Thus, it is just a formally correct
way of phrasing that we are reducing the problem to a simpler one. Some of the
sequence transformations we perform in establishing these properties also remove
requests, in addition to possibly reordering. The following general lemma allows
us to do this in all of these specific cases.

Lemma 1. Assume we are given an access graph G, a sequence I respecting G,
and a sequence I1ry € Worst(I,G,LRU). We write I gy as the concatenation
of three subsequences (I1,I5,13). Let I' be (I, I}, I3), where I} can be any sub-
sequence (not necessarily of the same length as Is) such that I' still respects G.
Assume that LRU incurs at least as many faults on I} as on Iy, and the cache
content, including information concerning which pages are least recently used, is
exactly the same just after I in I' as after Iy in I ry. Assume further that I
is obtained from Iy by removing some requests and/or reordering requests, and
that {I} = {I'}. Then, I' € Worst(I',G,LRU), and if LRU(I") < FIFO$ (I"),
then LRUS, (I) < FIFOS,(I).

By repeatedly removing the 7 — 1 hits in a sequence of j consecutive requests
to the same page, we establish the following property:

Property 1. In proving for any access graph G, any sequence I respecting GG, and
any Irry € Worst(I, G, LRU) that LRU(Iry) < FIFO$,(I), we may assume
that It,ru has no consecutive requests to the same page.

We give a collection of definitions enabling us to describe how a request
sequence without consecutive requests to the same page behaves on the cycle.

Definition 5.

— An arc is a connected component of a cycle graph. As a mathematical object,
an arc is the same as a path (in this section), but refers to a portion of Cy,
rather than a part of the walk defined by a request sequence.

— One can fix an orientation in a cycle so that the concepts of moving in a
clockwise or anti-clockwise direction are well-defined. We refer to a walk as
being uni-directional if each edge is traversed in the same direction as the
previous, and abbreviate this u-walk.

— A request r; in the request sequence is a turn if the direction changes at that
vertex, i.e., if r; is neither the first nor the last request and r;_1 = r;11. The
vertex requested is referred to as a turning point.

— When convenient we will represent a request sequence I by its turn sequence,

T = <A17’01,A2,'U2, .o ,Az,’l)z>,

where T =1, v, is simply the last request of the sequence, all the other v;’s
are the turns of the request sequence, and all the A;’s are u-walks. Thus,
for all i < z, either A; C A;4q or Ajp1 C Ay We refer to a turn v; as
a clockwise (anti-clockwise) turn if the A;11 goes in the clockwise (anti-
clockwise) direction.

— Two turns are said to be opposite if they are in different directions.

— If for some i < z, |A;11U{viy1}| > k, then v; is an extreme turn. Otherwise,
v; 48 a trivial turn.

Most of the above is obvious terminology about directions around the circle.
The last definition, on the other hand, is motivated by the behavior of the paging
algorithms that we analyze. Not surprisingly, it turns out to be an important
distinction whether or not the cache will start evicting pages before turning back.
We treat this formally below.

We now reduce our problem to sequences without trivial turns.

Lemma 2. Assume Property 1. For the access graph Cy, assume that for any
I and I1ry € Worst(I, Cn,LRU), where Iry has no trivial turns, we have that
LRU(I ry) < FIFOLYN (I). Then, for any I, LRUSGN (I) < FIFOSY (I).

We have now established the following property:
Property 2. We may assume that a worst ordering for LRU has no trivial turns.

Lemma 3. Assume Properties 1-2. For the access graph Cy, assume that for
any sequence I and Igy € Worst(I, Cn,LRU), where I1ry has turn sequence
(A1, v1, A2, v9,..., AL, v,) and Yi: |A;| > k — 1, we have that LRU(ILry) <
FIFO$N (I). Then, for any I, LRUSYN (I) < FIFOSN (T).

Proof. By Property 2, we may assume that there are no trivial turns. Thus, we
already know that for any ¢, 1 < i < z, the result holds.

If |A1| < k—1, then we replace Iy ry by I{ gy = (v1, A2, ...) . This preserves
the number of faults in the subsequence (v1, As) compared with (A1, vq, As),
and since |Az| > k — 1, LRU is in the same state after processing Ay in Ij py; as
it was in processing Irry. By Lemma 1, we can use Ij zy- O

We have now established the following property:

Property 3. We may assume that a worst ordering for LRU is of the form
(A1,v1, A2, v9,...,A,,v,) where Vi: |A;| >k —1.

If the first three properties hold for some sequence, I, then it is easy to see
that the number of turns determines how many hits LRU has on I.

Proposition 1. If I has the form of Property 8 and contains no repeated re-
quests to the same page, then LRU has exactly (z — 1)(k — 1) hits on I.

Next we show that we may assume that in a worst ordering for LRU, there
is no turn which is followed by a full cycle in the opposite direction.

Definition 6. Let u, v, and w be three distinct consecutive vertices on Cn. We
refer to I as having an overlap if I can be written as (..., u,v,u, Byw,v,...). If
I does not have an overlap, we refer to I as overlap-free.

Lemma 4. Assume Properties 1-3. For the access graph Cy, assume that for
any I and Iyry € Worst(I, Cy, LRU), where ILry is overlap-free, we have that
LRU(I ry) < FIFOGY (I). Then, for any I, LRUGN (I) < FIFOSY (I).

Proof. Let It gy € Worst(I, Cy,LRU). If I gy has an overlap, we show that by
reordering while respecting C'y an overlap-free sequence with at least as many
faults can be constructed.

Assume that Ity has an overlap and consider a first occurrence of a vertex
u in Ipry such that I1ry contains the pattern (..., u,v', u, B,w,v?,...), where
u, v, and w are consecutive vertices on Cpy. The superscripts on v are just for
reference, i.e., v and v? are the same vertex.

We define I’ = (... ,u,v',w, BR u,v%,...), where BT denotes the walk B,
reversed. Clearly, I’ respects Cy. We now argue that I’ incurs no more faults
than Iy gry. Clearly, there is a turn at v!' in Iyry. If there is also a turn at v2,
then we have effectively just removed two turns. Then Proposition 1 implies that
It ru cannot be a worst ordering. Thus, we can assume there is no turn at v2.

In the transformation, we are removing the turn at v' and introducing one
at v2. Thus, since in the sequence Itry all u-walks between turns contained at
least k — 1 vertices, this is still the case after the transformation in I’, except
possibly for the u-walk from the newly created turn at v? to the next turn in
the sequence. Let x denote such a next turn.

If the u-walk between v and z has at least k—1 vertices, then the transformed
sequence has the same number of turns, all u-walks between turns contain at
least k — 1 vertices, and therefore I, ry and I’ have the same number of hits
(and faults). In addition, the state of the caches after treating Iy,gry up to z and
I’ up to = are the same.

If that u-walk contains fewer than k — 1 vertices, we consider the next turn y
after x. Since there are at least k — 1 vertices in between x and y, we must pass
v on the way to y.

Thus, consider Iyry = (..., u, v, u, B,w,v? By, z, Ba,v3, Bs,y,...), having
turns at v!, 2, and y, versus I’ = (..., u,v', w, B u,v? By, x, By,v3, Bs,y,...),
where there are turns at v2, z, and y.

Comparing (..., u,v',u, B,w,v?) with (..., u,v!,w, BF, u,v?), both of them
have least k — 1 vertices on any u-walk between two turns, and the latter has
one fewer turns. Thus, by Proposition 1, it has & — 1 fewer hits.

By assumption, By has fewer than k — 1 vertices. Thus, comparing I,gy and
I’ up to and including x, I’ has at least as many faults.

In I1ry, (Ba,v®) must all be hits, so up to and including v3, I’ has at least
as many faults.

Since the u-walk leading to v! in I’ contains at least k — 1 vertices (not
including v'), and since the u-walk going from v? to y goes in the same direction,
the requests in (Bs,y) must all be faults in I'.

Thus, we have shown that there are at least as many faults in I’ as in I1ry.
In addition, the state of the caches after treating Iy ry up to y and I’ up to y
are the same.

With the transformation above, we do not incur more faults, and any first
occurrence of a vertex w initiating an overlap pattern has been moved further
towards the end of the sequence. Thus, we can apply this transformation tech-
nique repeatedly until no more such patterns exist. a

We have now established the following property:
Property 4. We may assume that a worst ordering is overlap-free.

Now we have all the necessary tools to prove the theorem of this section.
Theorem 2. For all I respecting the cycle C, LRUGN (I) < FIFOSN ().

Proof. We may assume Properties 1-4.

Consider any I and I,gy € Worst(I, Cy,LRU). If there are no turns at all
in It ry, both FIFO and LRU will fault on every request. If there is only one
turn, FIFO will clearly fault as often as LRU on I ry, since we may assume that
there is no overlap.

So, consider the first two turns v and v'. By Property 4, we cannot have the
pattern (..., u,v,u, B,w,v,...). Thus, after the first turn, the edge from w to
v can never be followed again. This holds symmetrically for v’, which is a turn
in the other direction. Thus, once the request sequence enters the arc between v
and v’, it can never leave it again. We refer to this arc as the gap. To be precise,
since we are on a cycle, the gap is the arc that at the two ends has the neighbor
vertices of v and v’ from which edges to v and v’, respectively, cannot be followed
again, and such that v and v" are not part of the arc.

Assume without loss of generality that, after the first turn, if the request
sequence enters the gap between v and v/, then it does so coming from v’. After
the first turn at v, the requests can be assumed to be on the path access graph
Py instead of the cycle Cy, where the access graph Py starts with v, continues
in the direction of the turn at v, and ends at the neighbor of v in the gap. In fact,
we can assume that we are working on the access graph Py from k — 1 requests
before the first turn at v, since all u-walks can be assumed to have at least that
length. Let r; be that request. Since there are no turns before v, starting with
r;, LRU and FIFO function as they would starting with an empty cache.

We divide ILru = (71,72, ..., T|1.4u|) UP into the sequences (r1,7a,...,7i_1)
and (74,...,7|1 q0|)- The former is a u-walk, where LRU and FIFO both fault
on every request, and the latter can be considered a request sequence on a path
access graph as explained above, and the conclusion follows from Theorem 1. O

5 Separation on a path of length k£ + 1

In the last sections, we showed that LRU was at least as good as FIFO on any
path graph or cycle graph. Now we show that LRU is strictly better if these
graphs contain paths of length at least £ + 1. We exhibit a family of sequences
{I,,}n>1 such that FIFOy¥ (I,) > (EEL)-LRUJY (I,) +b, for some fixed constant
b, on path graphs Py with N > k4 1. Only £+ 1 different pages are requested in
I,,. The same family of sequences is also used to show that FWF is worse than
either LRU or FIFO. We number the vertices of the path graph Py in order

from 1 through N.

Theorem 3. There exists a family of sequences, I, = (1,... k,k+1,k,...,2)",
respecting the access graph Py, and a constant b such that the following holds:

k41
lim LRU(I,) = oo, and for all I,, FIFOLY (1) > (212

n—o00 2

) - LRUGY (I,) + b.

We now have tight upper and lower bounds on the relative worst order ratio
of FIFO to LRU on paths.

Theorem 4. For any access graph G, ifWRgIFO)LRU > 1, then WR%FO!LRU <

k1 . P k41
%. Thus, if N > k + 1, then WRgipo pru = %

It was shown in [7] that for a complete graph, the relative worst order ratio of
FWF to FIFO is exactly ,f—fl This is also a lower bound for any graph containing
P41, but it is still open whether or not equality occurs in all sparser graphs.

Theorem 5. For any access graph G which has a path of length at least k + 1,

2k
WR%;WRFIFO > m and WR%;WRLRU =k.

6 Incomparability

In this section, we show that on some general classes of access graphs, LRU
and FIFO are incomparable. We consider the cyclic access graph defined by
the edge set {(1,2),(2,3),(3,4),(4,5),(5,1)} and the request sequence I; =
(1,5,1,2,3,4,5,1,2,1) processed using a cache of size 4.

Lemma 5. On any reordering of Iy starting with 1, LRU incurs at least 8 faults
and FIFO incurs at most 7 faults.

Proof. Tt is trivial to check that LRU incurs 8 faults on I7.

For FIFQ, it is easy to check in the following that reorderings with repeated
requests do not lead to more faults by FIFO. The reorderings of I; either have
a prefix of the type {(1,4,1) | i € {2,5}} or {(1,4,5) | i # j # 1}. For the latter,
examples being (1,2, 3) and (1,5,4), the subsequence following the prefix con-
tains 4 distinct pages. Since FIFO is conservative, it can incur at most 4 faults
on that part after the prefix, bringing the total fault count up to at most 7.

The first four distinct page requests will always incur 4 faults, but for re-
orderings with the prefix {(1,4,1) | i € {2,5}}, some pages are repeated within
the first four requests. If the extended prefix is (1,4,1,4) for ¢ € {2,5}, then the
rest of the sequence still contains 4 distinct pages and again can add at most 4
faults to the previous 2, bringing the total up to at most 6. The only remaining
case is a prefix of the form (1,4,1,7) where i,5 € {2,5}, ¢ # j. Here, there are
3 faults on the prefix. We divide the analysis of the rest of the sequence up into
two cases depending on the next request following j:

For the first case, if the next request is 1, the extended prefix is (1,4, 1,7, 1).
However, then the next request to a page other than 1 is either to 7 or j and
therefore not a fault. In addition, either there are no more ¢’s or no more j’s in
the remaining part of the sequence, and again FIFO can then fault at most 4
times on this sequence with only 4 distinct pages.

For the second case, if the next request is k € {3,4}, then visiting [€ {4, 5|l #
k} before the next j will give a prefix (1,4,1, j, k, 1) with 5 faults, and the suffix
must be (i,1,4,1) or (i,1,1,), adding only one more fault. This gives 6 faults in
total. If j is requested before [, the only possibilities are (1,2,1,5,4,5,1,1,2,3)
and (1,5,1,2,3,2,1,1,5,4). In total, this gives only 5 faults.)

Note that the result above does not contradict our result about cycles. As
predicted by that result, one of the worst orderings for LRU and FIFO would
be (2,1,5,4,3,2,1,5,1,1), incurring 8 faults for both algorithms.

Using the cycle graph on which we processed I;, we now construct a larger
graph using “copies” of this graph as follows. For 2 < i < n, we define I; as a
structural copy of I, i.e, we use new page names, but with the same relative
order as in I; (like putting a “dash” on all pages in I;). All these copies have
their own set of pages such that no request in I; appears in I; for ¢ # j. Just as
I, implies a cycle graph that we denote X7, so do each of these sequences and
we let X; denote the graph implied by I;. Let X; ; denote the kth vertex in the
ith copy and I}, denote the kth request in the jth copy. To be precise, we define
I = (Xin, Xis, Xin, Xio, Xi3, Xia, Xis, Xi1, Xi2, Xin)-

We define a graph G,, with a vertex set containing all X; ; and n additional
vertices uy, g, . .., Uy,. Its edges are all the edges from the graphs X;, 1 <i <mn,
together with edges (X 1,u;) and (u;, X;41.1) for all 4, 1 < ¢ < n — 1, plus the
edge (Xn,la un)

Thus, G, can be described as a chain of cycles, where each two neigh-
boring cycles are separated by a single vertex. Clearly, the sequence Z,, =
(I1,u1, In,ug, I3, ug, . . ., In, u,) respects the access graph G,.

Theorem 6. For the infinite family of sequences {I,} respecting the access
graph G, , the following two conditions hold:

— lim,, o FIFO(Z,,) = 0.
— for all Z,, LRU{ (Z,) > & - FIFOY (Z,,).

Thus, although LRU is strictly better than FIFO on paths and cycles, FIFO is
strictly better than LRU on the family of sequences, {Z, }, respecting the family
of graphs, {Qn} Note that Jr = <)(1717 X172, X1,3, X1,4, X1,5, X174, X173, X172>T,
which only uses the first cycle of G,,, trivially respects G,, for any r. By Theorem 3
for k = 4, FIFOYy (J,) > (2L) LRUY: (J,) — (k — 1).

Thus, on the family {J,}, LRU is better than FIFO. Combining with Theo-
rem 6, we get:

Theorem 7. LRU and FIFO are incomparable on the family of graphs {G.},
according to relative worst order analysis.

uq ug

Fig. 1. The graph G, for n = 4.

7 Open problems

We have determined that according to relative worst order analysis, LRU is bet-
ter than FIFO on paths and cycles. On some classes of general access graphs,
the two algorithms are incomparable. It would be interesting to get closer to
determining exact access graphs classes characterizing relationships between the
two algorithms. We believe that the results for paths and cycles will form fun-
damental building blocks in an attack on this problem. The most obvious class
of access graphs to study next is trees. LRU can clearly do better than FIFO
on any tree containing a path of length k + 1. We conjecture that LRU does at
least as well as FIFO on any tree. One difficulty in establishing a proof of this
is that for trees, as opposed to the cases of paths and cycles, there exist worst
order sequences for LRU for which FIFO performs better than LRU.

For general access graphs, when showing that FIFO can do better than LRU,
we used a family of access graphs, the size of which grew with the length of the
input sequence. It would be interesting to know if this is necessary, or if such a
separation result can be established on a single access graph of bounded size.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Albers, S., von Stengel, B., Werchner, R.: A combined BIT and TIMESTAMP
algorithm for the list update problem. Inform. Proc. Letters 56, 135-139 (1995)
Albers, S., Westbrook, J.: Self-organizing data structures. In: Fiat, A., Woeginger,
G.J. (eds.) Online Algorithms — The State of the Art, LNCS, vol. 1442, pp. 13-51.
Springer (1998)

Bentley, J.L., McGeoch, C.C.: Amortized analyses of self-organizing sequential
search heuristics. Comm. ACM 28, 404-411 (1985)

Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-

bridge University Press (1998)

Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality

of reference. Journal of Computer and System Sciences 50(2), 244-258 (1995)
Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms.
ACM Transactions on Algorithms 3(2) (2007), article No. 22

Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst order ratio applied to

paging. Journal of Computer and System Sciences 73(5), 818-843 (2007)

Boyar, J., Gupta, S., Larsen, K.S.: Access graphs results for LRU versus FIFO
under relative worst order analysis (2012), arXiv:1204.4047v1 [cs.DS]

Chrobak, M., Noga, J.: LRU is better than FIFO. Algorithmica 23(2), 180-185
1999

](Denni)ng7 P.J.: The working set model for program behaviour. Comm. ACM 11(5),
323-333 (1968)

Denning, P.J.: Working sets past and present. IEEE Transactions on Software
Engineering 6(1), 64-84 (1980)

Dorrigiv, R., Lépez-Ortiz, A.: A survey of performance measures for on-line algo-

rithms. SIGACT News 36(3), 67-81 (2005)

Ehmsen, M.R., Kohrt, J.S., Larsen, K.S.: List Factoring and Relative Worst Order
Analysis. In: Jansen, K., Solis-Oba, R. (eds.) WAOA. LNCS, vol. 6534, pp. 118-
129. Springer (2011)

Fiat, A., Karlin, A.R.: Randomized and multipointer paging with locality of ref-

erence. In: 27th Annual ACM Symposium on Theory of Computing. pp. 626-634
1995

](F‘iat, 1)A.7 Mendel, M.: Truly online paging with locality of reference. In: 38th Annual
Symposium on Foundations of Computer Science. pp. 326-335 (1997), extended

version : CoRR, abs/cs/0601127, 2006

Fiat, A., Rosen, Z.: Experimental studies of access graph based heuristics: Beating

the LRU standard? In: 8th Annual ACM-SIAM Symposium on Discrete Algo-

rithms. pp. 63-72 (1997)

Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Systems Tech.
Journal 45(9), 1563-1581 (1966)

Irani, S., Karlin, A.R., Phillips, S.: Strongly competitive algorithms for paging with
locality of reference. SIAM J. Comput. 25(3), 477-497 (1996)

Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. Journal of

the ACM 47(4), 617-643 (2000)

Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy
caching. Algorithmica 3, 79-119 (1988)

Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. SIAM J. Comput. 30(3),
906-922 (2000)

Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Comm. ACM 28(2), 202-208 (1985)

