
Online Bin Covering: Expectations vs.
Guarantees ⋆

Marie G. Christ, Lene M. Favrholdt, and Kim S. Larsen

University of Southern Denmark, Odense, Denmark
{christm,lenem,kslarsen}@imada.sdu.dk

Abstract. Bin covering is a dual version of classic bin packing. As usual,
bins have size one and items with sizes between zero and one must be
packed. However, in bin covering, the objective is to cover as many bins
as possible, where a bin is covered if the sizes of items placed in the
bin sum up to at least one. We are considering the online version of
bin covering. Two classic algorithms for online bin packing that have
natural dual versions are Harmonick and Next-Fit. Though these two
algorithms are quite different in nature, competitive analysis does not
distinguish these bin covering algorithms.

In order to understand the combinatorial structure of the algorithms
better, we turn to other performance measures, namely relative worst
order, random order, and max/max analysis, as well as analyses under
restricted input assumptions or uniformly distributed input. In this way,
our study also supplements the ongoing systematic studies of the relative
strengths of various performance measures.

We make the case that when guarantees are needed, even under restricted
input sequences, the dual Harmonick algorithm is preferable. In addi-
tion, we establish quite robust theoretical results showing that if items
come from a uniform distribution or even if just the ordering of items is
uniformly random, then dual Next-Fit is the right choice.

1 Introduction

Bin covering [1] is a dual version of classic bin packing. As usual, bins have size
one and items with sizes between zero and one must be packed. However, in
bin covering, the objective is to cover as many bins as possible, where a bin is
covered if the sizes of items placed in the bin sum up to at least one. We are
considering the online version of bin covering. A problem is online if the input
sequence is presented to the algorithm one item at a time, and the algorithm
must make an irrevocable decision regarding the current item without knowledge
of future items.

Bin covering algorithms have numerous important applications. For instance
when packing or canning food items guaranteeing a minimum weight or volume,
reductions in the overpacking of even a few percent may have a large economic

⋆ Supported in part by the Danish Council for Independent Research.

impact. If items arrive on a conveyor belt, for instance, the problem becomes
online.

Classic algorithms for online bin packing areNext-Fit andHarmonick [21].
Next-Fit is a very simple and natural algorithm, and Harmonick was designed
to obtain a competitive ratio [24, 19] better than any Any-Fit algorithm (First-
Fit and Best-Fit are examples of Any-Fit algorithms for bin packing, and the
competitive ratio of Next-Fit is worse than both these algorithms). Harmonick

and variations of it have been analyzed extensively [22, 25, 23]. We consider the
obvious dual version of these, DNF [1] and DHk [12]. These algorithms are quite
different in nature and the bin packing versions are clearly separated, having
competitive ratios of 2 and approximately 1.691, respectively. However, for bin
covering, competitive analysis does not separate them! In fact, for bin covering,
competitive analysis categorizes both algorithms as being worst possible (among
reasonable algorithms). This is unlike the situation in bin packing, and in general,
results from bin packing do not transfer directly to bin covering.

To understand the algorithmic differences better, it is therefore necessary to
employ different techniques, and we turn to other generally applicable perfor-
mance measures, namely relative worst order analysis, random order analysis,
and max/max analysis. As for almost all performance measures, the idea is to
abstract away some details of the problem to enable comparisons. Without some
abstraction, it is hard to ever, analytically, claim that one algorithm is better
than another, since almost any algorithm performs better than any other algo-
rithm on at least one input sequence. For all the measures considered here, the
abstraction can be viewed as being defined via first a partitioning of the set of
input sequences of a given length and then an aggregation of the results from
each partition. For each sequence length, competitive analysis, for instance, con-
siders all the ratios of the online performance to the optimal offline performance
obtained for each sequence of that length, and then takes the worst ratio of all
of these. The measures above employ a less fine-grained partition of the input
space. Worst order and random order analysis group permutations of the same
sequence together instead of considering each sequence separately, considering
worst-case or average-case performance, respectively, within each partition. With
max/max analysis the partitioning of the input space is even coarser: for each
sequence length n, the online worst-case behavior over all sequences of length
n is compared to the worst-case optimal offline behavior over all sequences of
length n. There is no one correct way to compare algorithms, but since these
measures focus on different aspects of algorithmic behavior, considering all of
the ones above lead to a very broad analysis of the problem. Extensive moti-
vational sections can be found in the papers introducing these measures and in
the survey [13]. As a further supplement, we analyze restricted input sequences,
where items have similar size, which is likely to happen in practice if one is pack-
ing products with an origin in nature, for instance. Finally, we consider input
sequences containing items having uniformly distributed sizes.

Relative worst order analysis [3, 4] has been applied to many problems; a
recent list can be found in [15]. In [16], bin covering was analyzed, but using a

2

version of the problem allowing items of size 1. We analyze the more commonly
studied version for bin covering, where all items are strictly smaller than 1.
Since worst-case sequences from [16] contain items of size 1, this leads to slightly
different results. For completeness, we include these results. Random order anal-
ysis [20] was introduced for classic bin packing, but has also been used for other
problems; a server problem, for instance [7]. Max/max analysis [2] was intro-
duced as an early step towards refining the results from competitive analysis for
paging and a server problem.

Relative worst order analysis emphasizes the fact that there exist multisets
of input items where DNF can perform 3

2 times as poorly as DHk. On the other
hand, DHk’s method of limiting the worst case also means that it has less of
an opportunity to reach the best case, as opposed to DNF. This is reflected
in the random order analysis, where DNF comes out at least as well as DHk.
Another way of approaching randomness is to analyze a uniform distribution. We
establish new results on DHk showing that its performance here is slightly worse
than that of DNF, in line with the random order results. With the max/max
analysis, a distinction between the two algorithms can only be achieved, when
the item sizes are limited, and DHk is the algorithm selected as best by this
measure. With respect to competitive analysis, we also consider restricted input
in the sense that item sizes may only vary across one or two consecutive DHk

partitioning points. This is a formal way of treating the case where items are
of similar size, while allowing greater variation when this size is large. We show
that with this restricted form of input, considering the worst case measures of
competitive analysis, DHk is deemed better than DNF, as DNF is vulnerable
to worst-case sequences where DHk can organize the packing differently.

This study also contributes to the ongoing systematic studies of the relative
strengths of various performance measures, initiated in [7]. Up until that paper,
most performance measures were introduced for a specific problem to overcome
the limitations of competitive analysis. In [7], comparisons of performance mea-
sures different from competitive analysis were initiated, and this line of work has
been continued in [5, 8, 6], among others. Our results supplement results in [11],
showing that no deterministic algorithm for the bin covering problem can be
better than 1

2 -competitive and giving an asymptotically optimal algorithm for
the case of items being uniformly distributed on (0, 1). For DNF, [10] established
an expected competitive ratio of 2

e
under the same conditions.

Due to space restrictions, several proofs have been omitted or shortened.
Refer to [9] for all the details.

Bin Covering

In the one dimensional bin covering problem, the algorithm gets an input se-
quence I = 〈i1, i2, . . .〉 of item sizes, where for all j, 0 < ij < 1. The goal is
to pack the items in a maximum number of bins, each having size 1, such that
the sum of the sizes of the items within each bin is at least one, i.e., the bin
is covered. Requiring items to be strictly smaller than 1 corresponds to assum-
ing that items of size 1 are treated separately. This makes sense, since there is

3

no advantage in combining an item of size 1 with any other items in a bin. In
other words, any algorithm not giving special treatment to items of size 1 could
trivially be improved by doing so.

In algorithms for bin packing and covering, it is standard to use the termi-
nology that a bin is open if it is one of the bins that an algorithm is currently
considering for the next item, and closed if the bin has received items, but the
algorithm will not consider that bin again for future items.

Thus, the objective for a bin covering algorithm A is to maximize the number
of bins covered as a result of processing an input sequence I. We let A(I) denote
this number of covered bins. We let Opt denote an optimal offline algorithm.
Thus, Opt(I) is the largest number of bins that can be covered by any algorithm
processing I.

Assmann, Johnson, Kleitman, and Leung [1] introduced the Dual Next-Fit

algorithm (DNF), an adaption of theNext-Fit algorithm for bin packing.DNF

always keeps a single bin open. The arriving items are packed into the open bin
until the open bin has a content of at least one. Then the open bin is closed and
a new empty bin becomes the open bin.

Harmonick was introduced for bin packing by Lee and Lee [21]. This al-
gorithm partitions the interval (0, 1] into k subintervals, with the partitioning
points at 1

2 ,
1
3 , . . . ,

1
k
, resulting in the intervals (0, 1

k
], (1

k
, 1
k−1], . . . , (

1
2 , 1). For each

of these k subintervals, Harmonick keeps one open bin into which the items
belonging to this subinterval are packed at their arrival. This means that each
closed bin for the interval (1

j
, 1
j−1] contains exactly j items. The natural adapta-

tion to the bin covering problem is to use (0, 1
k
), [1

k
, 1
k−1), . . . , [

1
2 , 1). The resulting

algorithm, DHarmonick (DHk), uses exactly j items from the interval [1
j
, 1
j−1)

to cover a bin. All through the paper we assume that k ≥ 2, since for k = 1,
DHk becomes DNF.

2 Competitive Analysis

In competitive analysis [24, 19], the performance of an online algorithm is com-
pared to that of an optimal offline algorithm Opt. An algorithm A for a max-
imization problem is called c-competitive if there exists a fixed constant b such
that for any input sequence I, it holds that A(I) ≥ cOpt(I)+b. The supremum
over all such c is the competitive ratio CR(A) of A. Note that some authors
reverse the order of the algorithm and Opt to get ratios larger than one.

For bin covering, Csirik and Totik [11] showed that no deterministic online al-
gorithm can be better than 1

2 -competitive. DNF was shown to be 1
2 -competitive

in [1], and the same result for DHk was noted in [16]. For completeness, to show
that this result is tight for a large class of algorithms, we define a reasonable
algorithm to be one that closes bins as soon as they are covered, does not close
bins before they are covered, and does not have more than a constant number
of open bins at any point.

Theorem 1. Any deterministic reasonable algorithm has competitive ratio 1
2 .

4

2.1 Limiting the item sizes

In some applications of the bin covering problem it is likely that the sizes of the
items contained in an input sequence differ only slightly, e.g., packing similar
food items into a container, guaranteeing the consumer a minimum weight. In
the following, we investigate the performance of DNF and DHk on sequences
with similar-sized items. Since it seems reasonable to allow larger variance in
size when the considered sizes are large, we consider sequences containing item
sizes from consecutive DHk intervals.

We first consider intervals (a, b) ⊆ (0, 1) that contain exactly one DHk par-
titioning point. Afterwards, we consider sequences with exactly two DHk par-
titioning points. We emphasize that there are no restrictions on the endpoints
a and b, which can be any real numbers, as long as the interval between them
contains exactly one or two DHk partitioning points. In both cases, DHk turns
out to have the better ratio.

For any (a, b) ⊆ (0, 1), we let CRa,b denote the competitive ratio on sequences
where all item sizes are in (a, b).

If (a, b) does not contain at least one of the interval borders used by DHk,
then DHk behaves exactly like DNF. If (a, b) contains a DHk border, then we
define 1

p
= max

{

1
l

∣

∣l ∈ N, 1
l
< b

}

, and refer to 1
p
as the maximal border in (a, b).

Theorem 2. If 1
p+1 ≤ a < 1

p
, then CRa,b(DNF) = p

p+1 .

Theorem 3. If 1
p+1 ≤ a < 1

p
and k ≥ p, then CRa,b(DHk) =

p2+1
p(p+1) .

It follows that if (a, b) contains exactly one DHk partitioning point, 1
p
, and

k ≥ p, then DHk has a better competitive ratio than DNF:

Corollary 1. If 1
p+1 ≤ a < 1

p
and k ≥ p, then CRa,b(DHk) > CRa,b(DNF).

We now consider intervals (a, b) ⊆ (0, 1) that contain exactly two DHk par-
titioning points. For the following theorem, note that 1

p
< p+2

p(p+1) <
1

p−1 .

Theorem 4. If a < 1
p+1 , then

CRa,b(DNF) ≤











p+ 1

p+ 2
, if b ≤ p+2

p(p+1)

p(p+ 1)

p2 + 2p+ 2
, otherwise

Proof. Replacing p by p+1 in Theorem 2, we get an upper bound of p+1
p+2 , since

the upper bound of Theorem 2 only assumes a < 1
p
< b. This proves the upper

bound for b ≤ p+2
p(p+1) .

If b > p+2
p(p+1) , we choose ε, 0 < ε < min

{

1
2(p−1)(p+1)n (

1
p+1 − a), b− p+2

p(p+1)

}

,

the only purpose of this complicated expression being that we should ensure that
all items below belong to (a, b). Now, we consider a sequence consisting of the
following subsequences:

5

– 〈〈1
p
〉p−1,

1

p
− 2ε,

p+ 2

p(p+ 1)
+ ε〉(p+1)(p−2)n

– 〈 1

p+ 1
+i(p−1)ε,

1

p+ 1
−(i+1)(p−1)ε, 〈 1

p+ 1
+ε〉p−2,

1

p+ 1
−ε,

p+ 2

p(p+ 1)
+ε〉

for i = 1, 2, . . . , (p+ 1)n

– 〈 1

p+ 1
+ i(p−1)ε,

1

p+ 1
− (i+1)(p−1)ε, 〈 1

p+ 1
〉p−2,

1

p+ 1
−ε,

p+ 2

p(p+ 1)
+ε〉

for i = (p+ 1)n+ 1, (p+ 1)n+ 2, . . . , 2(p+ 1)n− 1

– 〈 1

p+ 1
+ 2(p+ 1)n(p− 1)ε, 〈 1

p+ 1
〉p−2,

1

p+ 1
− ε,

p+ 2

p(p+ 1)
+ ε〉

– 〈 1

p+ 1
− (p− 1)ε〉

Giving the items in this order, DNF covers (p+ 1)(p− 2)n+ (p+ 1)n+ (2(p+
1)n− 1− (p+1)n)+1 = p(p+1)n bins. In the full version it is shown that Opt

covers (p2 + 2p+ 2)n bins. ⊓⊔

Theorem 5. If 1
p+2 ≤ a < 1

p+1 and k ≥ p+ 1, then

CRa,b(DHk) =















p3 + 2p2 + p+ 2

p(p+ 1)(p+ 2)
, if b ≤ p+2

p(p+1)

p3 + 2p2 + 2

p(p+ 1)(p+ 2)
, otherwise

Proof. We only sketch the proof of the lower bound here.

Items of size less than 1
p+1 are called small, items of size at least 1

p
are called

large, and the remaining items are called medium. Let s, m, and ℓ denote the
number of small, medium, and large items, respectively.

Consider an optimal packing. For i = 1, 2, 3, let ni denote the number of bins
with exactly p+i−1 items. Then, n = n1+n2+n3 is the number of bins covered
by Opt. Since DHk covers exactly ⌊ s

p+2⌋ + ⌊ m
p+1⌋ + ⌊ ℓ

p
⌋ bins, we can consider

items from the three types of bins separately. The contribution to the number
of bins covered by DHk from the ni items is at least di − 3, where

di ≥















p3 + 2p2 + p+ 2

p(p+ 1)(p+ 2)
ni, if b ≤ p+2

p(p+1)

p3 + 2p2 + 2

p(p+ 1)(p+ 2)
ni, otherwise

⊓⊔

It follows that if (a, b) contains exactly two DHk partitioning points, then
DHk has a better competitive ratio than DNF:

Corollary 2. If 1
p+2 ≤ a < 1

p+1 , then CRa,b(DHk) > CRa,b(DNF).

6

3 Relative Worst Order Analysis

Relative worst order analysis was introduced by Boyar and Favrholdt [3] and
compares the performance of two algorithms A and B directly instead of via the
comparison to Opt. Algorithms are compared on the same input sequence I,
but on the worst possible permutation of I for each algorithm.

Formally, if n is the length of I, and σ is a permutation on n elements, then
σ(I) denotes I permuted by σ, and we define AW (I) = minσ A(σ(I)). If there
exists a fixed constant b such that, for any input sequence I, AW (I) ≥ BW (I)−b,
then A and B are comparable and the relative worst order ratio of A to B is
defined as follows: WR(A,B) = sup{c | ∃b∀I : AW (I) ≥ cBW (I)− b}.

Note that since the performance of DHk does not depend on the order in
which the items are given, relative worst order analysis of DNF versus DHk

gives the same result as simply comparing the two algorithms on each sequence
separately, just as competitive analysis with Opt replaced by DHk.

In [16], a relative worst order analysis of DHk and DNF is given for the
model that allows items of size 1. It is shown that, for i < j, WR(Hj , Hi) =

i+1
i
.

Hence, in this model, WR(DHk,DNF) = 2, for k ≥ 2, since DNF and DH1 are
equivalent. Note that, for i ≥ 2, the result from [16] holds for our model too,
since the lower bound sequences for these cases do not contain items of size 1.

We first show that DHk and DNF are comparable. This is a special case of
the corresponding result in [16].

Lemma 1. For any k ≥ 1 and any input sequence I, DHkW (I) ≥ DNFW (I)−
(k − 1).

Thus, according to relative worst order analysis, DHk is at least as good as
DNF. The next lemma establishes a separation between the two algorithms.

Lemma 2. For any k ≥ 2, WR(DHk,DNF) ≥ 3
2 .

By providing a matching upper bound, we determine the exact relative worst
order ratio of the two algorithms.

Theorem 6. WR(DHk,DNF) = 3
2 .

Thus, we conclude that according to relative worst order analysis, DHk is a
better algorithm than DNF.

4 The Random Order Ratio

The random order ratio was introduced by Kenyon [20] as the worst ratio ob-
tained over all sequences I, comparing the expected value of an algorithm A,
with respect to a uniform distribution of all permutations, σ, of I, to the value
of Opt on I:

RR(A) = lim inf
Opt(I)→∞

Eσ[A(σ(I))]

Opt(I)

7

Note that Opt is still assumed to know the entire sequence in advance, so there
is no expectation involved in computing Opt(I).

The following theorem gives a bound on how well DNF can perform with
respect to the random order ratio.

Theorem 7. The random order ratio of DNF is at most 4
5 .

Proof. Let Sn denote all sequences of length n with item sizes from I, where
I = {ε, 1− ε} for an 0 < ε < 1

n
. Define

Sn
i = {I ∈ Sn | I contains i items of size ε and n− i items of size 1− ε}

Then we can consider the following disjoint partitioning Sn =
⋃

0≤i≤n S
n
i . We

let Rn denote the set of all sequences of length n.
The first inequality below follows from two facts:

– For any pair of sequences, I, I ′ ∈ Sn
i , Opt(I) = Opt(I ′).

– For two sums A =
∑n

i=1 ai and B =
∑n

i=1 bi,
A
B

≥ min1≤i≤n
ai

bi
.

EI∈Sn [DNF(I)]

EI∈Sn [Opt(I)]
≥ min

0≤i≤n

EI∈Sn
i
[DNF(I)]

Opt(Ini)
, where Ini ∈ Sn

i

= min
I∈Sn

Eσ[DNF(σ(I))]

Opt(I)
≥ min

I∈Rn

Eσ[DNF(σ(I))]

Opt(I)

Hence,

lim
n→∞

EI∈Sn [DNF(I)]

EI∈Sn [Opt(I)]
≥ lim inf

Opt(I)→∞

Eσ[DNF(σ(I))]

Opt(I)
= RR(DNF).

In the rest of the proof, we compute the leftmost expression from the above,
which then gives us an upper bound on the random order ratio of DNF.

There is no difference between choosing some element from Sn uniformly at
random and generating a length n sequence iteratively by choosing the next item
from I with equal probability. Thus, we can analyze the behavior of DNF by
considering a Markov chain, where the state of the system after i items have
been processed is determined by the state of the open bin. The Markov chain is
finite and has just three states: either there is no open bin (N – for “No”), one
open bin containing one large item of size 1 − ε (L – for “Large”), or one bin
with a number of small items, each of size ε (S – for “Small”). Note that since
ε < 1

n
, there is room for all the small items in one bin, if necessary.

This is an irreducible chain, where all states are positive recurrent, which
implies that it has a stationary (equilibrium) distribution, and the probability of
ending up in each of the states converges independently of the starting state [14].
The probability of being in one of the states N , L, or S can be calculated from
the following equations:

1 = Prob[N] + Prob[L] + Prob[S]

Prob[N] = Prob[L] + Prob[S]/2

Prob[L] = Prob[N]/2

Prob[S] = Prob[N]/2 + Prob[S]/2

8

/.-,()*+N

1

2vv
1

2 ((/.-,()*+L

1

77

/.-,()*+S

1

2

gg

1

2

YY

Fig. 1. A Markov chain describing DNF’s behavior on the considered sequences.

This system has the solution Prob[N] = Prob[S] = 2
5 and Prob[L] = 1

5 . From
this it follows that EI∈Sn [DNF(I)] tends to Prob[N]n = 2

5n.
For the optimal algorithm, note that its result only depends on the number

of items of each size. In particular, after n items, it can cover
⌊

n
2

⌋

bins, unless
there are more small than large items. All the small items would be wasted.

Using random walks, it is easy to see that the expected difference between
the number of large and small items is a low order term compared with n, and
therefore does not affect the limit.

A sequence of independent stochastic variables {Xi}i≥1, where Prob[Xi =

1] = Prob[Xi = −1] = 1
2 , is called a simple random walk [14]. It is well known

that if we define Tn =
∑n

i=1 Xi, then limn→∞
E[|Tn|]√

n
=

√

2
π
[17]. Hence, E[|Tn|] ∈

O(
√
n), and then EI∈Sn [Opt(I)] = n

2 −O(
√
n).

In conclusion, we get lim
n→∞

EI∈Sn [DNF(I)]
EI∈Sn [Opt(I)] = lim

n→∞

2

5
n

n
2
−O(

√
n)

= 4
5 .. ⊓⊔

Theorem 8. The random order ratio of DHk is 1
2 .

Proof. The performance of DHk does not depend on the order of the items in
the sequence. Given a sequence containing n items of size 1 − ε and n items of
size ε, where ε < 1

n
, DHk will always cover n

2 bins, while Opt will cover n bins.
The lower bound is given by Theorem 1, since the random order ratio of a bin
covering algorithm is never worse than its competitive ratio. ⊓⊔

Thus, according to random order analysis, DNF is at least as good as DHk.
Though it seems hard to raise the lower bound on the random order ratio for
DNF above 1

2 , and thereby separate the two algorithms, we conjecture thatDNF

is in fact strictly better than DHk with respect to this measure. We discuss this
further in the conclusion.

5 The Max/Max Ratio

The max/max ratio was introduced by Ben-David and Borodin [2] and com-
pares an algorithm’s worst-case behavior on any sequence of length n with Opt’s
worst-case behavior on any sequence of length n. The max/max ratio was intro-
duced for the minimization problems paging and K-server. Since bin covering is

9

a maximization problem, we actually need a min/min ratio. Additionally, since
the input items can be arbitrarily small, letting the sequence length approach
infinity does not give interesting results. Thus, we modify the measure to con-
sider the volume, vol(I), of a sequence I, where vol(I) is the sum of the sizes of
all the items in I:

MRvol(A) =
lim infv→∞ minvol(I)=v A(I)/v

lim infv→∞ minvol(I)=v Opt(I)/v

This measure cannot distinguish between DNF and DHk in the general case:

Theorem 9. Both DNF and DHk have a min/min ratio of 1.

If the item sizes are restricted to be from an interval (a, b) ⊆ (0, 1), the
min/min ratio can distinguish between DNF and DHk. If (a, b) does not contain
at least one of the interval borders used by DHk, then DHk behaves exactly like
DNF. If (a, b) contains a DHk border, then we define, as in Section 2, 1

p
as the

maximal border in (a, b).

Theorem 10. With item sizes in (a, b) ⊆ (0, 1), where 1
p
∈ (a, b), DHk has a

min/min ratio of 1 and DNF has a min/min ratio of max
{

1+ 1

p

1+b
, pb
1+b

}

.

Note that
1+ 1

p

1+b
< 1 is equivalent to 1

p
< b, which follows from the definition

and maximality of 1
p
. Furthermore, pb

1+b
< 1 is equivalent to b < 1

p−1 , which is

satisfied as long as b is not equal to 1
p−1 . Thus, according to min/min analysis,

DHk is better than DNF when item sizes are restricted to an interval (a, b) ∈
(0, 1) containing a DHk border, and b 6= 1

p−1 where 1
p
is the maximal border.

6 Uniform Distribution

In this section, we study the expected performance ratio of DNF and DHk on
sequences containing items drawn uniformly at random from the interval (0, 1).

The expected performance ratio ERU(A) is the ratio between the expected
performance of the algorithms A and Opt on sequences of length n, containing
items drawn uniformly at random from the interval (0, 1):

ERU(A) = lim
n→∞

EI∈Un(0,1)[A(I)]

EI∈Un(0,1)[Opt(I)]
.

Theorem 11. On a sequence containing items drawn uniformly at random from
the interval (0, 1),

ERU(DH2) =
1

2
+

1

e2 − e
≈ 0.7141 and

lim
k→∞

ERU(DHk) =
12− π2

3
≈ 0.7101 .

This should be compared with a result from [10], showing that on a uniform
distribution,DNF has an expected performance ratio of 2

e
≈ 0.7358. Thus, under

this assumption, DNF is a little better than DHk.

10

7 Concluding Remarks

Our starting point was the fact that the very different bin covering algorithms,
DNF and DHk, are not separated by competitive analysis. Thus, the question is
which algorithm to use in different scenarios. DHk was designed to guard against
worst-case sequences, and since these are often made up using pathological input,
mixing very large and very small items, we have carried out analyses using the
worst-case performance, but on restricted input of items of similar size. The
comparison is still in DHk’s favor, though less so. Under similar conditions,
Max/max analysis and relative worst order analysis also point to DHk.

In contrast, DNF is a little better than DHk when considering expected
performance under a uniform distribution. This seems fairly robust; even if we
add an element of worst-case requirements in the form of random order analysis,
DNF does not appear worse thanDHk. Thus, even if an adversary gets to choose
the worst sequence for the algorithm, just the fact that the items are received
in the order of a random permutation removes DHk’s advantage over DNF.

Thus, unless guarantees are desired or it is known that items do not arrive
in a random order, it is worth considering DNF as the algorithm of choice.

DHk has a random order ratio of 1
2 , which is worst possible, whereas the

upper bound we have on DNF is 4
5 . We conjecture that these two algorithms

can be separated, and discuss this issue in rest of the section. It seems intuitively
almost obvious that DNF would always get a ratio larger than 1

2 . The difficulty
in establishing this formally stems from problems handling the size aspects using
probability theory. In the hardest case, there are a linear number of very large
items such that if they end up on top of each other pairwise, we get the ratio
of 1

2 . Thus, we need to prove that some fraction of these large items do not end
up pairwise on top of each other. The small items that would be packed with
the large items in an optimal packing can be cut into very small pieces so there
are orders of magnitude more small items than large items—but still of possibly
dramatically varying size, relatively. Whereas we have strong theoretical tools for
bounding the deviation from the expected number of items in certain locations
in the form of Chebyshev’s inequality, for instance, it is much harder to reason
regarding deviations from the expected size, and it is exactly the sum of sizes
of small items surrounding a large item that decides whether or not two large
items end up on top of each other.

Results on the random order ratio are often difficult to establish. An excep-
tionally tight result appears in [18], where it is shown that the random order
ratio of Next-Fit for bin packing is exactly 2. Note, however, that this result
does not give indication that the random order ratio of DNF for bin covering
should be 1

2 . The sequence establishing the lower bound of 2 consists of n items
of size 1

2 and kn items of size ǫ < 1
kn

, for some large k. For a random ordering of
these items, each item of size 1

2 has a high probability of being combined with at
least one of the small items. For bin covering, the problem is reversed; we must
prove that each large item has a significant probability of being surrounded by
a sufficient volume of small items so that it will not go into the same bin as a
neighboring large item.

11

References

1. S.F. Assmann, D.S. Johnson, D.J. Kleitman, and J.Y.-T. Leung. On a dual version
of the one-dimensional bin packing problem. J. Algorithms, 5(4):502–525, 1984.

2. S. Ben-David and A. Borodin. A new measure for the study of on-line algorithms.
Algorithmica, 11(1):73–91, 1994.

3. J. Boyar and L.M. Favrholdt. The relative worst order ratio for on-line algorithms.
ACM Trans. Algorithms, 3(2), 2007.

4. J. Boyar, L.M. Favrholdt, and K.S. Larsen. The relative worst order ratio applied
to paging. J. Comput. Sys. Sci., 73(5):818–843, 2007.

5. J. Boyar, S. Gupta, and K.S. Larsen. Access graphs results for LRU versus FIFO
under relative worst order analysis. In SWAT, volume 7357 of LNCS, pages 328–
339. Springer, 2012.

6. J. Boyar, S. Gupta, and K.S. Larsen. Relative interval analysis of paging algorithms
on access graphs. In WADS, LNCS. Springer, 2013. Accepted for publication.

7. J. Boyar, S. Irani, and K.S. Larsen. A comparison of performance measures for
online algorithms. In WADS, volume 5664 of LNCS, pages 119–130. Springer, 2009.

8. J. Boyar, K.S. Larsen, and A. Maiti. A comparison of performance measures via
online search. In FAW-AAIM, LNCS, pages 303–314. Springer, 2012.

9. M. Christ, L.M. Favrholdt, and K.S. Larsen. Online bin covering: Expectations vs.
guarantees. arXiv:1309.6477 [cs.DS], 2013.

10. J. Csirik, J.B.G. Frenk, G. Galambos, and A.H.G.R. Kan. Probabilistic analysis
of algorithms for dual bin packing problems. J. Algorithms, 12(2):189–203, 1991.

11. J. Csirik and V. Totik. Online algorithms for a dual version of bin packing. Discrete

Appl. Math., 21(2):163–167, 1988.
12. J. Csirik and G. Woeginger. On-line packing and covering problems. In Online

Algorithms, volume 1442 of LNCS, pages 147–177. Springer, 1998.
13. R. Dorrigiv and A. López-Ortiz. A survey of performance measures for on-line

algorithms. SIGACT News, 36(3):67–81, 2005.
14. R. Durrett. Probability: Theory and Examples. Dixbury Press, 1991.
15. M.R. Ehmsen, J.S. Kohrt, and K.S. Larsen. List factoring and relative worst order

analysis. Algorithmica, 66(2):287–309, 2013.
16. L. Epstein, L.M. Favrholdt, and J.S. Kohrt. Comparing online algorithms for bin

packing problems. J. Scheduling, 15(1):13–21, 2012.
17. J. Hoffmann-Jørgensen. Probability with a View towards Statistics, volume I. Chap-

man & Hall, 1994.
18. E.G. Coffman Jr., J. Csirik, L. Rónyai, and A. Zsbán. Random-order bin packing.

Discrete Appl. Math., 156:2810–2816, 2008.
19. A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive snoopy

caching. Algorithmica, 3:79–119, 1988.
20. C. Kenyon. Best-fit bin-packing with random order. In SODA, pages 359–364,

1996.
21. C.C. Lee and D.T. Lee. A simple on-line bin-packing algorithm. J. ACM,

32(3):562–572, 1985.
22. P.V. Ramanan, D.J. Brown, C.C. Lee, and D.T. Lee. On-line bin packing in linear

time. J. Algorithms, 10(3):305–326, 1989.
23. S.S. Seiden. On the online bin packing problem. J. ACM, 49(5):640–671, 2002.
24. D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.

Comm. ACM, 28(2):202–208, 1985.
25. G. Woeginger. Improved space for bounded space, on-line bin-packing. SIAM J.

Disc. Math., 6(4):575–581, 1993.

12

