Relaxed Red-Black Trees with Group Updates

Kim S. Larsen*

Department of Mathematics and Computer Science, UniyasEBouthern Denmark, Odense,
Campusvej 55, DK-5230 Odense M, Denmark, e-nialt ar sen@i nada. sdu. dk

Received: date / Revised version: date

Abstract. In search trees with relaxed balance, updating and rebatanc
have been uncoupled such that rebalancing can be contissiearately.
Recently, it has been shown how an advanced update such aseation
of an entire tree into a relaxed multi-way structure can bplémented
efficiently. This indicates a similar result for binary tseley a naive inter-
pretation of small multi-way tree nodes as binary configarst However,
this would imply that nodes must be connected by level limksch signif-
icantly deviates from the usual structural implementaiohbinary trees.
In this paper, we show that it is possible to define binary sesewhich are
both natural and efficient.

1 Introduction

Red-black trees with relaxed balance is the name of a stesgthich can
be viewed as a generalization of a red-black tree [5]. The tedaxed
balancewas introduced in [13] to mean a search tree where the taditi
tight coupling between updates and rebalancing is removed.

Not having the traditional restriction that rebalancingsibe carried
out immediately following an update gives significant extoatrol, which
could for instance be used to delay rebalancing during lesttg Relaxed
balance also offers a possible solution to a standard crmrey control
problem in search trees. If it must be possible to rebalanoeddiately

* Supported in part by the Danish Natural Sciences Researchd@¢SNF) and in part
by the Future and Emerging Technologies programme of the ilémcontract number
IST-1999-14186 (ALCOM-FT).

2 Kim S. Larsen

following an update, the updating process must be allowetlbalance
on the entire search path from the location of the update bacto the
root, and this significantly limits the amount of concurrgmehich can be
allowed.

Until recently, updates were restricted to insertions aeléttbns, but
in [11], group updates were introduced for the first time irelaxed set-
ting. The idea is that it might be more efficient to bring in mapdates
at the same time, but also that some applications may retidtea whole
collection of keys be made available simultaneously.

Group updates can be group deletions or group insertiors.ldfge
number of keys are either to be deleted or inserted, someeeétmay be
neighboring nodes, and this might make it possible to perthie entire op-
eration more efficiently. All existing relaxed proposals @ready exploit
the extra possibilities which are available when carrying reeighboring
deletions to do so more efficiently, so our focus is groupriie

We study the core problem of moving keys in between two neighbor
keys in the search tree. Thus, if one considers the problemosfng m
arbitrary keys in, they first have to be divided up into gro@gis some
search procedure). This can be done for our structure gxasit has been
done in [6,11,16].

One application for structures of this type is main-memoogument
databases for search engines using inverted index tedm[@4, 8]. This
problem scenario is also referred to as full-text indexihge goal is to
index a large number of text documents such that it is passibbfficiently
search for words and retrieve documents in which these wopéa. To
obtain this, all words appearing in some document also apm@esakeys in
a dictionary and the value associated with a given key ig afidocument
identifiers, pointing to all the documents in which the kepegrs. This is
the set-up for general search engines for indexing htminah@nts, but also
for more specialized applications such as indexing newspapiicles for
use by journalists and editors. Thus, the data structuresldipreferably
be accessible at all times, so updating must be performek \ahdowing
searching to continue.

While the relaxed balance concept supports the concurserttuéon
of searching and simple updating, including an entire daminfor a se-
ries of documents) means that the data structure must beéagpdace for
each word that occurs in the document. To do this as effigiexstl pos-
sible, it is an advantage if all words which fall in betweerotexisting
neighboring keys can be inserted in one operation. Sincardents usu-
ally evolve around a few topics, specialized words with time prefix are
likely to appear, making it even more likely that large grewll be formed
and savings using a group insertion operation will be largkis is true in

Relaxed Red-Black Trees with Group Updates 3

particular for languages where new (composite) nouns aneefd by con-
catenating several smaller nouns. Such languages are aoinmorthern
Europe. Danish and German are examples of such languages.

The informal model of relaxed balance which has been usedriree
papers and which will also be used here is the following.tFitamust
be possible to perform an update and leave the tree in a whiatl state
without performing any rebalancing. Second, it must beiptes$o perform
rebalancing in small (typically constant-sized) indepartdsteps. Third, it
must be possible to interleave update and rebalancing upesafreely.
This is a satisfactory model from a theoretical point of viamd it has
the advantage of not assuming too much such that some of Hutigad
applications would be ruled out.

Note that there is nothing in the model which forces any atehg
at any point. Thus, all relaxed search trees, including the we present
here, can contain paths of super-logarithmic length. Timesextra freedom
to carry out rebalancing whenever this is convenient shotiicburse be
exercised with some care.

For the same reason, it is a challenge to prove good complestilts
for these data structures. When there is no good bound oretigghl of
the paths, and when rebalancing operations can be appliadyirorder,
care must be taken in order not to introduce super-logaiitmebalancing
or even loops or deadlocks which could follow from negativieiiference
between rebalancing operations.

There has been a significant amount work on relaxed balager; r
ences to most of which can be found via [9]. Work on red-blaekg with
relaxed balance was initiated in [14,15] and continued A4 [2]. Of par-
ticular relevance to the present paper is the first study ofiginsertion
in a relaxed setting from [11] and the results obtained irj,[Mich show
that for (a,b)-trees [12], a relaxed definition can be given which allows
for amortized constant insertions and deletions and amsattiogarithmic
group insertions.

With regards to relaxed binary search trees, there is ongopieresult
to compare ours against, namely the result in [6], where @wnaof red-
black trees is considered. Their variant is based on [1],thackfore has
the slight disadvantage, at least from a practical persedhat some of
the rebalancing operations are quite large (triple ratalioThey show that
the group insertion of a tree of size can be performed in tim@ (log? m),
provided that the tree is red-black when the operation ifop®med. If used
relaxed, the removal of negative weight can create a sinearlamount of
overweight. Large or small weights indicate balance prolslend it is hard
to see how a good complexity bound could be established &rdlaxed
case based on those operations.

4 Kim S. Larsen

In this paper, we develop another variant based on the tiolteaf oper-
ations from [9]. This means that the sizes of the rebalancpegations are
smaller. Furthermore, the operations which do any restring (changes
pointers) are single rotations, with the exception of onleictvis a double
rotation.

Our main focus is on amortized complexity, which we believeniore
interesting in practice than the usual worst-case compleiten, for large
systems, we are really interested in average complexidiesoine, possibly
varying, distributions. However, those results are uguadry difficult to
obtain. Fortunately, amortized results give upper bounushe average
complexities under any distribution, and often very goodn

To be precise, we show the following for updates into ourcstne.
None of the results are restricted to the standard case;adyold for
updates into the more general relaxed structure. Inseatiohdeletion are
amortized constant and worst-case logarithmic. Grouprtioseof a tree
of sizem is amortizedD (log) and worst-casé (log® m). Restructuring
after insertions and deletions is worst-case constantwamst-case loga-
rithmic after a group insertion.

2 A Red-Black Tree with Relaxed Balance

As always in the world of relaxed balance, we considaf-orientedtrees.
This means that all keys are stored in the leaves, and theahteodes only
contain so-called routers which direct the search to theecbsubtree. The
reason for choosing leaf-oriented trees is that otherwideletion cannot
be performed completely locally. In general, to delete agrival node with
two children, the predecessor or successor node must bd felyrand this
node may be more than a constant distance away.

A red-black tree with relaxed balance is a search tree, sashal
search tree ordering invariant must be maintained. Aduitly, each node
is equipped with an integer weight used for rebalancing gsegp. This
weight can be viewed as a generalization of the red/blacérealsed in
red-black trees. Red-black tree with relaxed balance masttain the in-
variant that the sum of all weights of nodes on any path is dinecs

The goal of the rebalancing process is to transform the twartls a
red-black tree. Thus, we interpret the weight zero as a reld mmd the
weight one as a black node. Configurations in the tree whiekigot it
from being red-black are callambnflicts In particular, a node with negative
weight is referred to as lmegativeconflict, a node with weight at least two
is referred to as aaverweightconflict, and two consecutive red nodes on a
path are referred to asrad conflict. In fact, we think of a negative conflict
on a node with weight smaller thanl to consist of a number of conflicts

Relaxed Red-Black Trees with Group Updates 5

corresponding to the numerical value of the weight, e.g,weight —3

means that there are three negative conflicts on that noaélaBy, a node
with weight three has two overweight conflicts. A red confiilves two
nodes and we decide to consider the top-most of these thiolodar the
conflict.

Clearly, a red-black tree with relaxed balance with no cotslfulfills
the conditions of red-black trees from [5], and as a consacpiethey are
balanced.

A red-black tree with relaxed balance is equipped with aectibn of
update operations and rebalancing operations. Since @achtmn is dis-
cussed many times throughout the paper, we have chosenetoatethe
operations to the appendix. The operations are dividedanThe first col-
lection is the operations from [9] which deal with insertiand deletion.
The second gives the extra operations for handling growgrtiogss.

After the initial validation of the operations, the main pose of the
illustrations in the appendix is to have these as easy visfialence, so we
have made an attempt not to clutter them with informationcividan be
given once.

The operations must of course preserve the tree as a seaechitw-
ever, provided that updates are performed correctly, tilevis immedi-
ately since the operations either do not perform any resiring or per-
form a single or double rotation which are known from anylexik on the
subject to preserve the ordering invariant. The standdations also define
where subtrees from before an operation is carried out dHmilattached
afterwards. However, this can also be said more generatdiyaRy trans-
formation on a binary search tree which preserves the nuofberdes, if
the subtrees and routers from before the transformatioariged out are
removed in-order and again attached in-order after thefioamation, then
the tree is still a search tree.

Furthermore, the operations should preserve the tree akldaek tree
with relaxed balance, i.e., they should maintain the imrgrthat the sum of
weights of nodes on any path is the same. This can be, and éasJegified
by checking all possible different paths down through thesformations.

The conditions for when the different operations can beiagglre writ-
ten next to the nodes. For group insertion, the value the weight of a path
from the root to a leaf in the tree which is inserted, exclgdime weight of
the root. We refer to this as the black height of the tree, ¢hengh in the
standard definition [5], the weight of the root is included.

For the insertion operation in the appendix, it is a requeetrthat the
weight of the leaf is at least one before the operation. lagydo verify by
inspection of the operations that no operation can decitbaseeight of a
leaf below one, so an insertion is always possible.

6 Kim S. Larsen

The collection of operations in the appendix show one of tyworset-
ric variants, i.e., to make the set complete, we should feh egperation
include the symmetric variant which can be created by réfigcbout a
line down through the root of the operation. All necessargpde symme-
tries, such ased-pushlandred-push2 are included directly.

This concludes the formal description of red-black treeth welaxed
balance and which transformations are allowed. We now dgshow these
transformations are initiated by the updating and rebatgnprocesses.
First, we assume a sequential scenario, but afterwards lvdisduss con-
current use of the structure.

2.1 Searching and Updating

Since a red-black tree with relaxed balance is a search desgching is
carried out as always in a binary search tree by exploitirgstsarch tree
ordering invariant. Since the tree is leaf-oriented, d@accis never com-
pleted until a leaf is reached, and the result is positivadf anly if the leaf
contains the key we are searching for.

Searching also precedes updating. For all updates, insedeletion,
and group insertion, the correct leaf must be located anapipeopriate
transformation from the appendix carried out. In an impletaton, this
involves pointer manipulations. Thus, when one subtreeptaced by an-
other, it is necessary to have a reference to the parent abtiteof the
subtree in question. This reference can be found from tHdvlemaintain-
ing parent pointers in all nodes. Alternatively, the semglprocess must
maintain the latest pointers it has traversed on its way ¢old¢af. When
an entire tree is inserted at once by a group insertion, this tust be
constructed first, but this can be done separate from the fue alata
structure, possible by an independent process.

Finally, we can consider updating the structure with a s&egé which
do not necessarily all fall in between the same two neighigokiys in the
tree. In this case, the set of keys must be divided into greuph that the
keys in each group fall in between two neighboring keys ingtmacture,
and a group insertion can be applied to each group. In gereisitivision
into groups requires a traversal of the tree, a depth-fiestthefor instance,
where, whenever a node is reached during the search, thélsstsoto be
inserted is split with respect to the key in the node. Nalyralich a split
need only be performed whenever there are keys to be inderthd left as
well as to the right of the node. Since the split operation lmaperformed
efficiently on red-black trees in tim@(logn), the entire set can conve-
niently be represented as a red-black tree before the sbagihs. When

Relaxed Red-Black Trees with Group Updates 7

the groups are formed after a number of splits, then they lezady red-
black trees and can be inserted directly using the grouptiaseoperation.

2.2 Rebalancing

Basically, rebalancing is about locating problems of irabak (a part of
the tree which matches the left-hand side of a rule from tipeagix), and
then carry out the transformation defined by the rule, ieplacing the left-
hand side of the rule with the right-hand side.

However, when it comes to locating the problems of imbalattoere
are many possibilities, partially depending on the intehdsge of the extra
freedom which relaxed structures provide. Independent i€kvmethod
is used, the complexity, in terms of the number of rebalanciperations
which must be carried out, is bounded as stated in this pafmvever,
the cost of locating problems of imbalance will vary depegdon which
method is used.

One possibility is to abandon rebalancing in shorter, busjods, and
then rebalance the tree completely again after the buspgéiover. In
this case, a tree traversal can be used to locate and at tieetisaenfix all
problems of imbalance.

If it is likely that only a small fraction of the tree contaipsoblems of
imbalance (because the busy period is short or updateskahg o mostly
go to a few selected keys), then the updating process can itees&arch
path if each node is equipped with a boolean for this purpdken only
the marked part of the tree will have to be traversed.

Another possibility is to maintain a queue of pointers tohpems of
imbalance. In this way, it is possible to administrate a flryible division
of time spent on the searching and updating on one hand aathneing
on the other. Though queue operations are very efficierst,nttethod will
of course create a small overhead.

2.3 Concurrency

There are certain issues which must be addressed wheneerent sys-
tems are implemented. One of the most basic issues is thasofiag con-
sistency, which is usually defined to mean that the only &ffedich are
allowed are ones that could also be obtained in a sequestabfithe sys-
tem. One way of obtaining this in our set-up is by guarantgédhat all
transformations are carried out as indivisible operations

In tree structures, locks on the nodes are usually applietigare this.
A lock can be obtained by a process and released again, anufdésents a

8 Kim S. Larsen

right to perform an operation on a given node. Since transiions in-
volve more than one node, this introduces the possibilitydedidlocks,
which means that two or more processes are waiting for edddr @t a
cyclic manner. A simple example of how this situation caseis the sce-
nario where two processes try to obtain the same two lockgpposite
order. Then they may obtain each their lock and both waitHerdther to
release its lock. The situation is complicated further by dlesire to have
locks of different types, since some operations, such adirrgaa value,
can sometimes safely by carried out concurrent with otleady operation,
whereas some operations require exclusive rights.

Thus, concurrency control systems must be defined carghuily this
has been done for relaxed structures before [1,13, 14] andeaeused for
our structure as well.

3 Complexity Analysis

We are now ready to prove all complexity results describeth@intro-
duction. Our data structure is a pure generalization of the foom [9],
i.e., the data structure and all the complexity results Jif¢8m a special
case of what we show here, and we can use a similar orgamizaftithe
proofs. However, the harder proofs from [9] become signifilyamore dif-
ficult when negative weight is introduced, and even the smddimmas
need new proofs.

3.1 Complete Collection of Rebalancing Operations

First, we prove that the collection of rebalancing operatits complete,
i.e., if there is conflict somewhere in the tree, then it isgide to apply
some rebalancing operation.

Compared with [9], the proof becomes more involved. Theriepie
in [9] was to consider top-most red conflicts and, if none afsth were
present, bottom-most weight conflicts. However, becausitefference
from the negative weights, this approach is no longer ptess@tince neg-
ative weights cannot be removed unconditionally withoutsidering con-
flicts in its surroundings, we have to assume the presenc# coralicts
simultaneously, and overweight conflicts also have to besidened top-
down.

To be precise, a top-most conflict means that there is no othdtict
at a distance closer to the root.

Theorem 1.If a red-black tree with relaxed balance is not red-blaclerth
one of the rebalancing operations can be applied.

Relaxed Red-Black Trees with Group Updates 9

Proof. Assume that a red-black tree with relaxed balance is noblack.

Thus, there is a conflict in the tree. Consider a top-mostexehlf there is
a choice between the three types of conflicts, we choose diveegaight

conflict if possible. Otherwise, we choose a red conflict @reoverweight
conflict.

Assume first that this top-most conflict is a negative weigintflict. If
it is located at the root or immediately below, theeg-rootlor neg-root2
can be applied. We may now assume that the nodéh negative weight
has at least two ancestors, both of which are non-negative.

Consider the parent of . If it is positive, thenneg-pushlcan be ap-
plied. If it is zero, we considep’s parentg. If ¢'s weight is positive, then
neg-pushar neg-pushZan be applied. Otherwise, its weight must be zero.
However, this is not possible, because theandp form a red conflict,
which means that the conflict under consideration would edbb-most.

Now we assume that the top-most conflict is a red conflictidfldcated
at the root, themed-rootcan be applied. Otherwise, the nadat which the
conflict is located must have a parentand because we are considering a
top-most conflict, the weight gf must be one. Furthermore, because we
decided to choose a negative weight conflict as the top-nu#ict to
consider, if at all possible, we may assume that if there ayenggative
weight conflicts in the tree, then they are located at a lewigtly below
u. Thus, the weight of the sibling af must be non-negative. If this sibling
has weight zero, eitheed-pushlor red-pushZan be applied. If its weight
is positive, themmed-declor red-dec2can be applied.

Finally, we assume that the top-most conflict is an overweiflit is
located at the root, theweight-rootcan be applied. Otherwise, the over-
weighted nodex has a siblingv. By the priority of the conflicts in the
choice of a top-most conflict; cannot have negative weight.

Assume first that the weight af is positive. If the weight ofv is at
least two, thenweight-dec3can be applied, so assume that the weight of
v is one. If any of the children of have negative weight, themeg-pushl
can be applied. Thus, we can assume that both children lafve non-
negative weights. If the outer-most childohas weight zero, theweight-
declcan be applied. If the weight of that child is positive, théepending
on whether the other child af has weight zero or positive weight, either
weight-dec2r weight-pustcan be applied.

As the last case, assume that the weight @f zero. By the priorities
in the choice of a top-most conflict, the childrenwotannot have weight
zero and the weight of the parent @fandv must be one. Now, if any of
the children ofv have negative weights, thereg-push2r neg-push3an
be applied. So, we can assume that they have positive weights

10 Kim S. Larsen

If the outer-most childz of v has weight one, theweight-tempcan
be applied, so assume thathas weight at least two. To show that some
operation can be carried out also in this case, we now focus. det us
recall thatz is overweighted, and it has a siblingwith positive weight.
If y is overweighted, themweight-dec3an be applied, so assume that the
weight ofy is one. If either ofy’s children have negative weight, theeg-
pushlcan be applied. Thus, we can assume that botlisofhildren have
non-negative weights. As above, if the outer-most child;dfas weight
zero, therweight-declcan be applied. If the weight of that child is positive,
then, depending on whether the other child,¢fas weight zero or positive
weight, eitheweight-dec2r weight-pusttan be applied. O

We have proven that as long as the tree is not red-black, seba-r
ancing operation can be applied. In that analysis, we havesta on a
top-most conflict, but this does not imply that only the topainconflict
can be addressed. In fact, any conflict, the surroundingshafhware red-
black can be dealt with, and, as can be seen from the opesatjaite often
a conflict can be addressed in the presence of others.

3.2 Amortized Complexity of Update Operations

In this section, we use the potential function technique piaving the
amortized results [17]. We start by making some observati@garding
the behavior of the different operations in relation to dotglin the tree.
The following observations are easily verified by inspettid the op-
erations in the appendix, and we have of course carried @upthcedure.

Observation 1The following statements hold:

—red-root red-dec] andred-dec2decrease the total number of red con-
flicts in the tree.

—weight-root weight-dec] weight-dec2 and weight-dec3decrease the
total amount of overweight in the tree.

—neg-rootl neg-root2 neg-pushl neg-push2 and neg-push3decrease
the total amount of negative weight in the tree.

— An insertincreases the number of red conflicts by at most omelete
increases the amount of overweight by at most one, aowp-insert
increases the number of red conflicts by at most one and sratieost
h — 1 units of negative weight.

— No rebalancing operation increases the number of negatighivunits
in the tree.

— No rebalancing operation, excapg-root2 neg-pushlneg-push2and
neg-push3increases the number of red conflicts or weight conflicts

Relaxed Red-Black Trees with Group Updates 11

wy > 1 wi>1 wy>1
OC/:\jo w221j\jw321 w2>1C/\jo

(A) (8) ©)

Fig. 1 Potential types A, B, and C.

in the tree. The operationgeg-root2 neg-pushlneg-push2andneg-
push3increase the number of red conflicts and overweight conftligts
at most a constant.

We want to establish a proof of the fact that insertions anetidas are
amortized constant and that group insertion is amortizgdrithmic in the
height of the inserted tree. Since group insertion intredutegative weight
proportional to the height of the inserted tree, this candbermulated. By
recalling that each unit of negative weight and each unitvefr@eight is
considered to be a conflict, we want to show that each confligthvis
introduced is removed in amortized constant time.

One problem in establishing the proof is the new operatimgsroot?
neg-pushlneg-push2andneg-push3which may create new conflicts. It
turns out that defining an ordering of conflicts, such thas itansidered
better to have an overweight conflict than a negative weighflict, can
help here.

Another problem in establishing the proof is to show thatgpess is
made also when operations which do not actually remove dgarobre car-
ried out. The operatioweight-temps one such operation, butd-pushl
red-push2 andweight-pushare similar, in that they do remove a problem,
but they may introduce a problem of the same type further dpdrree. To
obtain the proof, it is necessary to show that carrying oese¢hoperations
also represent progress.

One way to approach this is by identifying patterns whichbémahe
application of these operations. If such a pattern is remhoiteepresents
progress, since an operation which requires this patternatebe applied
there again until such a pattern has been created again.

The following patterns were also identified in [9]:

Definition 1. The three patterns displayed in Fig. 1 are referred topas
tential types

As for all other operations in this paper, we only display oheach sym-
metric configuration, so the symmetric variant of (C) is asmnfiguration
of potential type (C).

A relation between actions of the operations which do notorecon-
flicts and the total collection of potential types in the tieeestablished
in the following lemma, which is a slight modification of a sian lemma
in [9].

12 Kim S. Larsen

Fig. 2 Red-pushl when the number of red conflicts is not reduced.

Lemma 1. The following statements hold:

1. If red-pushl or red-push2 do not reduce the total numbezatonflicts
in the tree, then they reduce the number of potential types (A

2. The operation weight-temp reduces the number of potapgtias (C) by
one, and does not increase the number of the other poteytiakt

3. If weight-push does not decrease the total amount of aight/in the
tree, then it decreases the number of potential types (R),daes not
increase the number of potential types (A).

Proof. We prove the three parts separately.

1. The proofs fored-pushlandred-push2are very similar, and we just
give the proof for the former. If the number of red conflictsnist re-
duced by the operation, then a red conflict must be creatéat algpve
the current. Thusy,; = 1; see Fig. 2. Similarly, the number of red con-
flicts would be reduced if any of thg's were zero. Clearly, the number
of potential types (A) is reduced by one.

. Easy inspection.

. If weight-pushdoes not decrease the total amount of overweight, then
we must have that; > 1. Thus, the operation cannot create siblings
with weight zero, so no configuration of potential type (Akxigated.
Two configurations of potential type (B) are removed: onetedaat
the node labelledv; and one rooted at the node labelledNo new
configurations of potential type (B) can be created.

O

[CSIN\]

As a final lemma before the main result, we show that we cax bed-
black trees which do not contain many potential types. Thisnportant
since they will be used to define potential, and we do not wagroap-
insertto increase the potential too much. The lemma can be deriogal f
a corollary in [7] followed by a transformation fror2, 4)-trees [12] to
red-black trees, but for completeness, we give a directfproo

Lemma 2. Givenm keys, a red-black tree can be build such that the num-
ber of potential types (A), (B), and (C) in the tregllglog m).

Proof. Start by arranging the: keys in a list ofm leaves in sorted order.
Recursively build layers bottom-up. A layer is build as dols. From left

Relaxed Red-Black Trees with Group Updates 13

to right, while there is at least five nodes left, considee¢tmodes at a time,
and join these using one red node to join two neighboring si@hel one

black node to join in the remaining node. The last three,, foufive nodes

are treated as follows. If the remaining number is three e, five continue

as before one more time. There are now either zero, two, arrfodes

left. These are connected using either zero, one, or twogumations of

potential type (A). In this way, at most two potential types ased per
layer. O

Theorem 2.When starting from an empty tree, the number of rebalancing
operations is amortized constant in response to an ingedraleletion and
amortizedO(log m) in response to a group insertion of a red-black tree of
sizem.

Proof. We now define an ordering on the various types of conflicts and
potential types in the tree. The ordering, which we refersoarabstract
problem list is

negative weight, overweight, red conflicts, (A), (B), and.(C

Observation 1 and Lemma 1 together establish that for ewdglancing
operation, there is a problem in the abstract problem hsttotal number
of which is reduced when the operation is carried out. Addily, if the
rebalancing operation increases the total number of soaie#gm, then that
problem is further down the abstract problem list compaoetthé problem
type which is decreased.

For all rebalancing operations, weights are only increasatbcreased
by one, and no operation involves more than a constant nuofberdes.
This means that any operation which creates problems franpi@lblem
list can create at most a constant number of these problems.

As a result, we can define a potential function as a weightetr{tean-
ing of the wordweighthere should not be confused with the weights appear-
ing in the tree) sum of the number of problems of each typedratbstract
problems list, giving higher weight to problems early in lisé Since each
rebalancing operation can create only a constant numbéherf problems,
the weights of the weighted sum can also be constants, apdainébe cho-
sen such that every rebalancing operation decreases #ipbby at least
one.

Sinceinsert and deleteinvolve only a constant number of nodes and
only increase or decrease weights in the tree by at most loeye cn only
increase the potential by a constant.

A group-insertof a tree of sizem can be performed such that the
increase in potential is at mo8!(log m). This follows from Lemma 2
and from the fact that the black height of a red-black treeizé & is

14 Kim S. Larsen

©(logm) [5], which implies that at mosb(log m) negative weight is in-
troduced. O

3.3 Worst-Case Complexity of Update Operations

If we consider starting with an initially non-empty red-thatree, what are
the complexities of the operations? Amortized results galyeassume an
initially empty structure in which potential can be build gimdually. Since
a red-black tree can only contain a linear amount of potettyadistribut-
ing the cost out over a sequence of operations, it is cleamthan 2(n)
operations have been performed on a red-black tree oflisiian, all op-
erations have the amortized complexities shown in Theorebngl that
happens, the results proven in this section applies.

We introduce an accounting scheme inspired by [9], but monepdi-
cated. The overall idea is to establish a connection betweenumber of
nodes in a tree and its weighted height, where the weightigtithef a node
is defined to be the sum of all weights from that node down t@f le

We define a “counting” functiom from the set of nodes in the tree at a
given point in time to the real numbers. The sum of all the fiamcvalues
will have the property that it equals the total number of rsoadrich have
been in the tree since it was last red-black.

We now give the rules for updating when an operation is applied.
When aninsertis made, the two new nodes are given function value one.
Similarly, when agroup-insertis made, all new nodes get function value
one. When aleleteis made, the total sum of function values for the three
nodes from before the operation is carried out is the newevaftthe re-
maining node.

Other operations only move values around. Since valuessaaei@ted
with the nodes, we have to define which nodes after an operaticar-
ried out correspond to which nodes before. For operatiorishahake no
structural changes, the identification is given by locatfeor the remaining
operations, the root of a configuration before the operas@arried out is
identified with the root after the configuration. For the rémray nodes, the
identification is made by the order of the nodes in an in-otderersal of
the configurations, i.e., completely skipping the root & tdonfiguration,
theith node encountered in an in-order traversal of the configuréefore
the operation is carried out is identified with thie node encountered in an
in-order traversal of the configuration after the operatiocarried out.

Finally, when operations for negative weight are appliedgcfion value
is taken from the subtree of the negatively weighted nodegareh to the
other at most two nodes which have their weights increasete Mhat if
there are two such nodes, they have the same weighted heigfter the

Relaxed Red-Black Trees with Group Updates 15

operation. Each of these at most two nodes receive the yélife—1). The
amount which is taken away from the subtree with negativeisamllected
in such a manner that all original nodes in the subtree dfeioperation
have the same function value. By original nodes, we meandteswhich
were inserted at the time that the negative weight was aeéttevill be

an invariant that these nodes always have the same funalaoe,\s0 this
requirement can always be fulfilled again.

We letT,, denote the set of nodes in the subtree rooted.by

Lemma 3.If u is a node with non-negative weight and weighted height
theny er, c(v) > $(2¥ — 1).

Proof. The proof is by induction in the number of operations perfednon

the tree. The base case is when no operations have beempedforhus,
we have a red-black tree. The base case is proven by a sinnpitusal

induction. Clearly it holds for the leaves, which initialhave weight one,
and if it holds for two subtrees of a node thenwu’s weighted heightv is

at most one more than its childrens’, and, by induction utefion value is
atleastt(2v~! — 1) + d(2v~1—1) + 1> L(2v - 1).

For the induction step, we consider each operation in turn.

Forinsert, the new node has weighted height one and has function value
one. No other nodes have their weighted heights changedciidn values
decreased. Fatelete the weighted height as well as the subtree sum are
unchanged for the nodes that remain in the tree after theatiper For
group-insert the inserted tree is red-black, so the results hold inligriva
that tree, just as in the base case. We do not have to showiramyiin the
negatively weighted node, and no other nodes have theimtaicheights
changed or function values decreased.

Now we consider the operations for negative weight. Assumagut is
the node with negative weight. Clearly, by the scheme we lanined,
the other nodes, which have one added to their weight, wi# Hanction
values large enough. However, at some point, the weighigfoing to be
changed from-1 to zero, and at that point, it must have a sufficiently large
subtree sum.

At the time of the insertiony has weighted height one, since the black
height of the inserted tree isandu has weight—h + 1. Since it is a red-
black tree of black height, its subtree sum is at lea®t — 1. Whenever
some function value is taken from the subtree ahd given to other nodes,
at most two nodes receive. The recipient nodes have weigieigtit iden-
tical to u's at the time. During the operation, the weightwofincreases,
and no operation ever decreases the weight of a negativéfjjhted node.
First time, the weighted height of the involved nodes is tamg last time,
itis h + 1, referring to the weighted heights after each operationbleas

16 Kim S. Larsen

carried out. Thus, in totat, can give away at most:

So, there is at least
21— (82" —1) >

left for « at the time it is needed.

Since the nodes of this subtree cannot again have a negatie&hted
ancestor, no more function value will be taken away fromehssdes.

General arguments cover all remaining cases:

First, the root of an operation will always have the same hiteidg height
before and after the operation, unless it is the root of thigectree, since
otherwise it would violate the weighted height constra8itce the root of
an operation never has its function value altered, the trésldls for such
nodes.

Second, nodes which after the operation have weight zerm®raad
which have subtrees that are unchanged by the operationveraheady
been established to have large enough function valuesheithselves have
large enough function values. This follows since the weaighieightw of
such nodes is at most one more than their childrens’ and $iveieown
function value of at leas§ results in the su (2¥~! — 1)+ $(2¥~' - 1)+
1 _ 1(ow

Third, for nodes which are leaves of an operation and keapshbtree
from before the operation is carried out, the result holdwipled that their
weight is not increased.

By these arguments, all nodes in the operations have beenscbv O

Corollary 1. Letn' denote the total number of nodes inserted into the tree
since it was a red-black tree of size Then the largest weighted height of a
node which is not in the subtree of a negatively weighted mobdeunded

by [log(9(n +n') + 1)].

Proof. By definition ofc, the sum of all function value in the treeris+ n'.
Assume that the weight of the root is non-negative. Then heratode in
the tree can have a larger weighted height than the rootssiitiés in the
subtree of a negatively weighted node.

By Lemma 3, if the weighted height of the rootds thenn + n' >
$(2v — 1), sow < |log(9(n +n') +1)]. O

The upper bound on the largest possible weighted heighteaisdd to
bound the number of times most of the operations can be apit@s is

Relaxed Red-Black Trees with Group Updates 17

because the operations have been designed with the aim digremnflicts
to larger weighted heights, if they cannot be removed cotelyien the
given configuration.

By moving a conflictwe refer to the scenario where an operation re-
moves a certain conflict, only to introduce a new one of theestype
further up in the tree. The operatioed-pushl for instance, may do that if
wi = 1 and the parent of that node is red.

As already described, overweighted nodes with weighttaigan two
as well as negatively weighted nodes with weights smallan thl are
considered as a number of unit conflicts. So, if a node hashweig > 1
and weighted heighty, this is interpreted as; — 1 weight conflicts of
weighted heightv — wy + 2, w —wy +3,. .., w, respectively. When a unit
of overweight is moved or removed, we always assume thattitdsone
with the largest weighted height.

Proposition 1. The following statements hold:

—red-root, red-decl, and red-dec2 remove at least one reélicon

— weight-root, weight-dec1, weight-dec2, and weight-decBave at least
one unit of overweight.

—red-pushl, red-push2, and weight-push either remove aicomflmove
a conflict to a larger weighted height.

— All the operations leave all other conflicts at the same wieidtheight
as before the operation was carried out.

— Only neg-root2, neg-pushl, neg-push2, and neg-push3ecreat con-
flicts, which is at most two red conflicts and at most two urfitsver-
weight.

Proof. Most follow by easy inspection of the operations in the ajpipen
For the scenario wherged-pushl(similarly for red-push2 moves a
conflict, refer to Fig. 2.
Note that ifweight-pushmoves a conflict, thew; > 1. 0O

The proof builds on the concept of moving conflicts to largeighted
heights. Unfortunately, sinogeight-tempdoes not accomplish this, an al-
ternative method of bounding the application of this operamust be
found.

If an overweighted node has a red parent, which in turn hasaed
sibling and a non-red parent, we refer to this aseaght-temp configura-
tion, since the operatioweight-temreates such configurationsalfs the
overweighted node in such a configuration, we refer to theratibdes as
the parent, the uncle, and the grandparent.of

Lemma 4. Weight-temp configurations can only disappear through he a
plication of an operation which decreases the total numidezamflicts in
the tree or which decreases the number of negative weigffictsn

18 Kim S. Larsen

Proof. Clearly, in order to change the configuration, an operatiarstm
overlap with nodes in the configuration. Letbe the overweighted node
in the configuration (the one with a red parent).

The operationnsertcannot make the configuration disappear (note that
if the uncle ofu has weight one, then it cannot be a leaf). Similarly for
group-insert If a deletechanges the situation, it is because = 0 and
wsg > 1 (within the deleteoperation). However, we must have that >
ws, SO the total amount of overweight decreasesuby- 1.

It is only necessary to discuss the rebalancing operatidrishwdo not
necessarily decrease the total number of conflicts in tleedréhe number
of negatively weighted nodes, i.eed-pushlred-push2weight-tempand
weight-push

The operatiorred-pushlcan be applied in this situationif is the top-
node of thered-pushloperation. In that case, the amount of overweight
as well as the number of red conflicts decrease. It can alspjied at a
position whereu’s uncle is the top node of thed-pushloperation. In that
case, a red conflict disappears. The operatahpush2s similar.

The operatiomweight-tempan only be applied to nodes in this configu-
ration if eitheru or its uncle is the root of theveight-temmperation. Since
the weight of the root of aveight-tempoperation is not changed when the
operation is carried out, neither is the configuration.

Finally, weight-pushcan overlap the configuration if the parentwofs
the root of theweight-pustoperation. However, in that case, the amount of
overweight decreases. It can also overlap if the uncleiefthe root of the
weight-pustoperation. In that case, the unclewlas its weight increased,
so it will still be non-red. 0O

Corollary 2. If 7 insert operationsd delete operations, angl group-insert
operations of black heights, ..., h, are made into a red-black tree, at
most; +d + 5 Z?Zl h; weight-temp operations can be applied.

Proof. According to Observation 1, only the rebalancing operatifor
negative weight increase the number of conflicts. The ojpeainsert
and deletecreate at most one conflict each time they are applied. As it
appears from the proof of Lemma 3, the negative operationsnteoduce

at most4 Z?Zl h; red conflicts or units of overweight. Every time a con-
flict is created this way, a unit of negative weight disappe@hus, the total
number of non-negative conflicts ever introduced in the isdmunded by
i+d+43%) hy.

By Lemma 4, a weight-temp configuration can only be removealih
the application of an operation which either decreases dted humber
of conflicts in the tree or removes negative weight. Thus,giveiemp
configurations can be removed at most d + 4 2521 hj + Zgzl h; =
i+d+5%7_ h; times.

Relaxed Red-Black Trees with Group Updates 19

By Theorems 1 and 2, the tree will eventually become redkbl&mce
a weight-temp configuration contains overweight, everygletemp con-
figuration will eventually be removed. Thus, at mést d + 52?21 h;j
weight-temp configurations can ever be created.

We can now prove that starting with a red-black tree, eaclatgpgives
rise to at most a logarithmic number of rebalancing openatio

Theorem 3.Assume that insert operationsd delete operations, angd
group-insert operations of trees of sizes . . . , n, and black heighté, ..., h,
are made into a red-black tree of sizeLetN = n + 1 + Zgzl n; and

M =i+d+5 2521 h;. Then at mosD (M log N) rebalancing operations
are carried out.

Proof. By Proposition 1, at mos{jg:1 h; operations for negative weight
can be applied, and these can give rise to at mgs;zl h; other conflicts.

As it appears from Corollary 24/ = 1 + d + 52?21 h; is an upper
bound on the number of conflicts ever introduced. This imatet bounds
the number of operations which remove conflictsMy Corollary 2 gives
a bound on the number efeight-tempoperations which can be applied,
which is at most\/.

By Proposition 1, all the other operations move conflicts tiarger
weighted height, so by Corollary 1, at magt|log(9(n-+2(i+X7_, n;))+
1)] such operations can be carried out.

Now the result follows sincé; € O(logn;) and[log(9(n + 2(i +

?:1 nj))+1)] € O(logN). O

3.4 Worst-Case Restructuring Complexity

Finally, we prove a bound on the number of operations whidiadly
change the structure of the tree. The reason for singlingetlogit is that
they are generally more expensive, and in parallel appicathey require
exclusive locking [1,14].

Theorem 4.Assume thai insert operationsd delete operations, ang
group-insert operations of trees of sizes, ...,n, are made into a red-
black tree of size:. Then at mosO(i + d + Ele log n;) restructuring
rebalancing operations are carried out.

Proof. Only weight-tempoperations and operations which decrease the
number of conflicts do any restructuring. By the proof of Tieeo 3, this
amounts t@M operations from which the result follows.O

20 Kim S. Larsen

4 Concluding Remarks

We have defined a collection of operations for which it is flmego prove
all the good complexity bounds one could hope for. Howewjysaments
are still possible. Sometimes it is possible to push mora thee unit of
weight at a time, and this could be allowed by the operati@rs could
also consider creating positive interference betweerwdifft conflicts such
that more frequently more than one conflict can be handlediatea It is
also possible to merge operations; theight-tempoperation, for instance,
can be merged with the weight decreasing operations to gatexiion of
fewer, but larger, rebalancing operations.

With the proofs in this paper, it is often quite easy to vetlify checking
the proofs, whether or not a desired change in the colledfaebalanc-
ing operations will give a new collection which also has goodhplexity
bounds.

References

1. Joan Boyar, Rolf Fagerberg, and Kim S. Larsen. AmortizeResults for Chromatic
Search Trees, with an Application to Priority Queudsurnal of Computer and System
Sciencesb5(3):504-521, 1997.

2. Joan F. Boyar and Kim S. Larsen. Efficient Rebalancing ab@latic Search Trees.
Journal of Computer and System Sciendéx3):667-682, 1994.

3. Alfonso F. Cardenas. Analysis and Performance of Indebata Base Structures.
Communications of the ACM8(5):253—-263, 1975.

4. Christos Faloutsos and H. V. Jagadish. Hybrid Index Qrgaions for Text Databases.
In Third International Conference on Extending Database Metdgy, volume 580 of
Lecture Notes in Computer Scienpages 310-327, 1992.

5. Leo J. Guibas and Robert Sedgewick. A Dichromatic Framiefes Balanced Trees.
In 19th Annual IEEE Symposium on the Foundations of Computen&gpages 8-21,
1978.

6. Sabina Hanke and Eljas Soisalon-Soininen. Group Updatd?ed-Black Trees. In
4th Italian Conference on Algorithms and Complexitglume 1767 ol ecture Notes
in Computer Sciencgages 253-262. Springer-Verlag, 2000.

7. Lars Jacobsen, Kim S. Larsen, and Morten N. Nielsen. OrEgigtence and Con-
struction of Non-Extreme (a,b)-Trees. Tech. report 11, d&&pent of Mathematics
and Computer Science, University of Southern Denmark, ©ele2001.

8. Sheau-Dong Lang, James R. Driscoll, and Jiann H. JouhBasertion for Tree Struc-
tured File Organizations—Improving Differential DatabdRepresentationinforma-
tion Systemsl1(2):167-175, 1986.

9. Kim S. Larsen. Amortized Constant Relaxed RebalancimgguStandard Rotations.
Acta Informatica 35(10):859—-874, 1998.

10. Kim S. Larsen. Relaxed Multi-Way Trees with Group Updatén Twentieth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of DataBgseemspages 93—
101. ACM Press, 2001.

11. Lauri Malmi and Eljas Soisalon-Soininen. Group Updafms Relaxed Height-
Balanced Trees. |IRighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systenmmges 358—367. ACM Press, 1999.

Relaxed Red-Black Trees with Group Updates 21

12.

13.

14.

15.

16.

17.

Kurt Mehlhorn.Sorting and Searching/olume 1 ofData Structures and Algorithms
Springer-Verlag, 1984.

O. Nurmi, E. Soisalon-Soininen, and D. Wood. Conculye@ontrol in Database
Structures with Relaxed Balance. 6th ACM Symposium on Principles of Database
Systemgspages 170-176, 1987.

Otto Nurmi and Eljas Soisalon-Soininen. Uncoupling >y and Rebalancing in
Chromatic Binary Search Trees.Tanth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systemages 192-198, 1991.

Otto Nurmi and Eljas Soisalon-Soininen. Chromatic Bjr&earch Trees—A Structure
for Concurrent Rebalancing\cta Informatica 33(6):547-557, 1996.

Kerttu Pollari-Malmi, Eljas Soisalon-Soininen, andurglonen. Concurrency Control
in B-Trees with Batch UpdatetEEE Transactions on Knowledge and Data Engineer-
ing, 8(6):975-984, 1996.

Robert Endre Tarjan. Amortized Computational Compyexs$IAM Journal on Alge-
braic and Discrete Method$(2):306—318, 1985.

22 Kim S. Larsen

A Appendix: The Operations

A.1 Update Operations

wy—1 wy
gwr 21 - o Owitwsg
1 1 wo w3

(insert) (delete)

A.2 Rebalancing Operations

0 o ROOT 1
—
0 0

(red-root)

wy > 1 wy—1
J/\a %1

(red-push1l)

@j
wy > 1 wy wy > 1 wy
wo >1 4 0 0 0 0
wo wa

>1 1—1

(red- push2)

(red-decl) (red-dec2)
wy >1 wq
wq >1QROOT _;, 01 wo > 1 0 = 0 1
1 wo

(weight-root) (weight-temp)

wy wy wy wy
wo > 1 1 - 1 1 wo > 10\13 - /\
0 wo —1 0 wg >0 wo—1 w3
(weight-decl) (weight-dec2)

w41
wy wi+1
= wo > 1
wo > 1 wg > 1
3>0 wyq >0

(weight-dec3) (weight- push)

Relaxed Red-Black Trees with Group Updates 23

A.3 Group Insertion

wy —1

Ow; >1 4 1 —h 41

(group-insert)

A.4 Rebalancing after Group Insertion

w1 (yROOT 1
w1 <O0QROOT _ o1 —
wo <0 wg wo +1 wg 41

(neg-rootl) (neg-root2)
wy>1 wy —1
wy>1 wy—1
A - A 0 wg 0 wyg+1
wo <0 wg wo +1 wg+1
wo <0 wg wo +1 wg+1
(neg-pushl) (neg-push2)
wy>1 wy —1
0 wy N 0 wy+1
wo wg <0 wo 41 wg+1

(neg-push3)

