
Relaxed Red-Black Trees with Group Updates

Kim S. Larsen?

Department of Mathematics and Computer Science, University of Southern Denmark, Odense,
Campusvej 55, DK-5230 Odense M, Denmark, e-mail:kslarsen�imada.sdu.dk

Received: date / Revised version: date

Abstract. In search trees with relaxed balance, updating and rebalancing
have been uncoupled such that rebalancing can be controlledseparately.
Recently, it has been shown how an advanced update such as an insertion
of an entire tree into a relaxed multi-way structure can be implemented
efficiently. This indicates a similar result for binary trees by a naive inter-
pretation of small multi-way tree nodes as binary configurations. However,
this would imply that nodes must be connected by level links,which signif-
icantly deviates from the usual structural implementations of binary trees.
In this paper, we show that it is possible to define binary schemes which are
both natural and efficient.

1 Introduction

Red-black trees with relaxed balance is the name of a structure which can
be viewed as a generalization of a red-black tree [5]. The term relaxed
balancewas introduced in [13] to mean a search tree where the traditional
tight coupling between updates and rebalancing is removed.

Not having the traditional restriction that rebalancing must be carried
out immediately following an update gives significant extracontrol, which
could for instance be used to delay rebalancing during load peeks. Relaxed
balance also offers a possible solution to a standard concurrency control
problem in search trees. If it must be possible to rebalance immediately

? Supported in part by the Danish Natural Sciences Research Council (SNF) and in part
by the Future and Emerging Technologies programme of the EU under contract number
IST-1999-14186 (ALCOM-FT).



2 Kim S. Larsen

following an update, the updating process must be allowed torebalance
on the entire search path from the location of the update backup to the
root, and this significantly limits the amount of concurrency which can be
allowed.

Until recently, updates were restricted to insertions and deletions, but
in [11], group updates were introduced for the first time in a relaxed set-
ting. The idea is that it might be more efficient to bring in more updates
at the same time, but also that some applications may requirethat a whole
collection of keys be made available simultaneously.

Group updates can be group deletions or group insertions. Ifa large
number of keys are either to be deleted or inserted, some of these may be
neighboring nodes, and this might make it possible to perform the entire op-
eration more efficiently. All existing relaxed proposals can already exploit
the extra possibilities which are available when carrying out neighboring
deletions to do so more efficiently, so our focus is group insertion.

We study the core problem of movingm keys in between two neighbor
keys in the search tree. Thus, if one considers the problem ofmovingm
arbitrary keys in, they first have to be divided up into groups(via some
search procedure). This can be done for our structure exactly as it has been
done in [6,11,16].

One application for structures of this type is main-memory document
databases for search engines using inverted index techniques [3,4,8]. This
problem scenario is also referred to as full-text indexing.The goal is to
index a large number of text documents such that it is possible to efficiently
search for words and retrieve documents in which these word appear. To
obtain this, all words appearing in some document also appears as keys in
a dictionary and the value associated with a given key is a list of document
identifiers, pointing to all the documents in which the key appears. This is
the set-up for general search engines for indexing html-documents, but also
for more specialized applications such as indexing newspaper articles for
use by journalists and editors. Thus, the data structures should preferably
be accessible at all times, so updating must be performed while allowing
searching to continue.

While the relaxed balance concept supports the concurrent execution
of searching and simple updating, including an entire document (or a se-
ries of documents) means that the data structure must be updated once for
each word that occurs in the document. To do this as efficiently as pos-
sible, it is an advantage if all words which fall in between two existing
neighboring keys can be inserted in one operation. Since documents usu-
ally evolve around a few topics, specialized words with the same prefix are
likely to appear, making it even more likely that large groups will be formed
and savings using a group insertion operation will be larger. This is true in



Relaxed Red-Black Trees with Group Updates 3

particular for languages where new (composite) nouns are formed by con-
catenating several smaller nouns. Such languages are common in northern
Europe. Danish and German are examples of such languages.

The informal model of relaxed balance which has been used in earlier
papers and which will also be used here is the following. First, it must
be possible to perform an update and leave the tree in a well-defined state
without performing any rebalancing. Second, it must be possible to perform
rebalancing in small (typically constant-sized) independent steps. Third, it
must be possible to interleave update and rebalancing operations freely.
This is a satisfactory model from a theoretical point of viewand it has
the advantage of not assuming too much such that some of the practical
applications would be ruled out.

Note that there is nothing in the model which forces any rebalancing
at any point. Thus, all relaxed search trees, including the one we present
here, can contain paths of super-logarithmic length. Thus,the extra freedom
to carry out rebalancing whenever this is convenient shouldof course be
exercised with some care.

For the same reason, it is a challenge to prove good complexity results
for these data structures. When there is no good bound on the length of
the paths, and when rebalancing operations can be applied inany order,
care must be taken in order not to introduce super-logarithmic rebalancing
or even loops or deadlocks which could follow from negative interference
between rebalancing operations.

There has been a significant amount work on relaxed balance, refer-
ences to most of which can be found via [9]. Work on red-black trees with
relaxed balance was initiated in [14,15] and continued in [2,1,9]. Of par-
ticular relevance to the present paper is the first study of group insertion
in a relaxed setting from [11] and the results obtained in [10], which show
that for (a; b)-trees [12], a relaxed definition can be given which allows
for amortized constant insertions and deletions and amortized logarithmic
group insertions.

With regards to relaxed binary search trees, there is one previous result
to compare ours against, namely the result in [6], where a variant of red-
black trees is considered. Their variant is based on [1], andtherefore has
the slight disadvantage, at least from a practical perspective, that some of
the rebalancing operations are quite large (triple rotations). They show that
the group insertion of a tree of sizem can be performed in timeO(log

2

m),
provided that the tree is red-black when the operation is performed. If used
relaxed, the removal of negative weight can create a super-linear amount of
overweight. Large or small weights indicate balance problems and it is hard
to see how a good complexity bound could be established for the relaxed
case based on those operations.



4 Kim S. Larsen

In this paper, we develop another variant based on the collection of oper-
ations from [9]. This means that the sizes of the rebalancingoperations are
smaller. Furthermore, the operations which do any restructuring (changes
pointers) are single rotations, with the exception of one, which is a double
rotation.

Our main focus is on amortized complexity, which we believe is more
interesting in practice than the usual worst-case complexity. Often, for large
systems, we are really interested in average complexities for some, possibly
varying, distributions. However, those results are usually very difficult to
obtain. Fortunately, amortized results give upper bounds on the average
complexities under any distribution, and often very good ones.

To be precise, we show the following for updates into our structure.
None of the results are restricted to the standard case; theyall hold for
updates into the more general relaxed structure. Insertionand deletion are
amortized constant and worst-case logarithmic. Group insertion of a tree
of sizem is amortizedO(logm) and worst-caseO(log

2

m). Restructuring
after insertions and deletions is worst-case constant, andworst-case loga-
rithmic after a group insertion.

2 A Red-Black Tree with Relaxed Balance

As always in the world of relaxed balance, we considerleaf-orientedtrees.
This means that all keys are stored in the leaves, and the internal nodes only
contain so-called routers which direct the search to the correct subtree. The
reason for choosing leaf-oriented trees is that otherwise adeletion cannot
be performed completely locally. In general, to delete an internal node with
two children, the predecessor or successor node must be found [5], and this
node may be more than a constant distance away.

A red-black tree with relaxed balance is a search tree, so theusual
search tree ordering invariant must be maintained. Additionally, each node
is equipped with an integer weight used for rebalancing purposes. This
weight can be viewed as a generalization of the red/black colors used in
red-black trees. Red-black tree with relaxed balance must maintain the in-
variant that the sum of all weights of nodes on any path is the same.

The goal of the rebalancing process is to transform the tree towards a
red-black tree. Thus, we interpret the weight zero as a red node and the
weight one as a black node. Configurations in the tree which prevent it
from being red-black are calledconflicts. In particular, a node with negative
weight is referred to as anegativeconflict, a node with weight at least two
is referred to as anoverweightconflict, and two consecutive red nodes on a
path are referred to as aredconflict. In fact, we think of a negative conflict
on a node with weight smaller than�1 to consist of a number of conflicts



Relaxed Red-Black Trees with Group Updates 5

corresponding to the numerical value of the weight, e.g., the weight�3
means that there are three negative conflicts on that node. Similarly, a node
with weight three has two overweight conflicts. A red conflictinvolves two
nodes and we decide to consider the top-most of these the location for the
conflict.

Clearly, a red-black tree with relaxed balance with no conflicts fulfills
the conditions of red-black trees from [5], and as a consequence, they are
balanced.

A red-black tree with relaxed balance is equipped with a collection of
update operations and rebalancing operations. Since each operation is dis-
cussed many times throughout the paper, we have chosen to refer all the
operations to the appendix. The operations are divided in two. The first col-
lection is the operations from [9] which deal with insertionand deletion.
The second gives the extra operations for handling group insertions.

After the initial validation of the operations, the main purpose of the
illustrations in the appendix is to have these as easy visualreference, so we
have made an attempt not to clutter them with information which can be
given once.

The operations must of course preserve the tree as a search tree. How-
ever, provided that updates are performed correctly, this follows immedi-
ately since the operations either do not perform any restructuring or per-
form a single or double rotation which are known from any textbook on the
subject to preserve the ordering invariant. The standard rotations also define
where subtrees from before an operation is carried out should be attached
afterwards. However, this can also be said more generally: For any trans-
formation on a binary search tree which preserves the numberof nodes, if
the subtrees and routers from before the transformation is carried out are
removed in-order and again attached in-order after the transformation, then
the tree is still a search tree.

Furthermore, the operations should preserve the tree as a red-black tree
with relaxed balance, i.e., they should maintain the invariant that the sum of
weights of nodes on any path is the same. This can be, and has been, verified
by checking all possible different paths down through the transformations.

The conditions for when the different operations can be applied are writ-
ten next to the nodes. For group insertion, the valueh, is the weight of a path
from the root to a leaf in the tree which is inserted, excluding the weight of
the root. We refer to this as the black height of the tree, eventhough in the
standard definition [5], the weight of the root is included.

For the insertion operation in the appendix, it is a requirement that the
weight of the leaf is at least one before the operation. It is easy to verify by
inspection of the operations that no operation can decreasethe weight of a
leaf below one, so an insertion is always possible.



6 Kim S. Larsen

The collection of operations in the appendix show one of two symmet-
ric variants, i.e., to make the set complete, we should for each operation
include the symmetric variant which can be created by reflecting about a
line down through the root of the operation. All necessary deeper symme-
tries, such asred-push1andred-push2, are included directly.

This concludes the formal description of red-black trees with relaxed
balance and which transformations are allowed. We now discuss how these
transformations are initiated by the updating and rebalancing processes.
First, we assume a sequential scenario, but afterwards we will discuss con-
current use of the structure.

2.1 Searching and Updating

Since a red-black tree with relaxed balance is a search tree,searching is
carried out as always in a binary search tree by exploiting the search tree
ordering invariant. Since the tree is leaf-oriented, searching is never com-
pleted until a leaf is reached, and the result is positive if and only if the leaf
contains the key we are searching for.

Searching also precedes updating. For all updates, insertion, deletion,
and group insertion, the correct leaf must be located and theappropriate
transformation from the appendix carried out. In an implementation, this
involves pointer manipulations. Thus, when one subtree is replaced by an-
other, it is necessary to have a reference to the parent of theroot of the
subtree in question. This reference can be found from the leaf by maintain-
ing parent pointers in all nodes. Alternatively, the searching process must
maintain the latest pointers it has traversed on its way to the leaf. When
an entire tree is inserted at once by a group insertion, this tree must be
constructed first, but this can be done separate from the use of the data
structure, possible by an independent process.

Finally, we can consider updating the structure with a set ofkeys which
do not necessarily all fall in between the same two neighboring keys in the
tree. In this case, the set of keys must be divided into groupssuch that the
keys in each group fall in between two neighboring keys in thestructure,
and a group insertion can be applied to each group. In general, this division
into groups requires a traversal of the tree, a depth-first search for instance,
where, whenever a node is reached during the search, the set of keys to be
inserted is split with respect to the key in the node. Naturally, such a split
need only be performed whenever there are keys to be insertedto the left as
well as to the right of the node. Since the split operation canbe performed
efficiently on red-black trees in timeO(log n), the entire set can conve-
niently be represented as a red-black tree before the searchbegins. When



Relaxed Red-Black Trees with Group Updates 7

the groups are formed after a number of splits, then they are already red-
black trees and can be inserted directly using the group insertion operation.

2.2 Rebalancing

Basically, rebalancing is about locating problems of imbalance (a part of
the tree which matches the left-hand side of a rule from the appendix), and
then carry out the transformation defined by the rule, i.e., replacing the left-
hand side of the rule with the right-hand side.

However, when it comes to locating the problems of imbalance, there
are many possibilities, partially depending on the intended use of the extra
freedom which relaxed structures provide. Independent of which method
is used, the complexity, in terms of the number of rebalancing operations
which must be carried out, is bounded as stated in this paper.However,
the cost of locating problems of imbalance will vary depending on which
method is used.

One possibility is to abandon rebalancing in shorter, busy periods, and
then rebalance the tree completely again after the busy period is over. In
this case, a tree traversal can be used to locate and at the same time fix all
problems of imbalance.

If it is likely that only a small fraction of the tree containsproblems of
imbalance (because the busy period is short or updates are likely to mostly
go to a few selected keys), then the updating process can markits search
path if each node is equipped with a boolean for this purpose.Then only
the marked part of the tree will have to be traversed.

Another possibility is to maintain a queue of pointers to problems of
imbalance. In this way, it is possible to administrate a veryflexible division
of time spent on the searching and updating on one hand and rebalancing
on the other. Though queue operations are very efficient, this method will
of course create a small overhead.

2.3 Concurrency

There are certain issues which must be addressed whenever concurrent sys-
tems are implemented. One of the most basic issues is that of ensuring con-
sistency, which is usually defined to mean that the only effects which are
allowed are ones that could also be obtained in a sequential use of the sys-
tem. One way of obtaining this in our set-up is by guaranteeing that all
transformations are carried out as indivisible operations.

In tree structures, locks on the nodes are usually applied toensure this.
A lock can be obtained by a process and released again, and it represents a



8 Kim S. Larsen

right to perform an operation on a given node. Since transformations in-
volve more than one node, this introduces the possibility ofdeadlocks,
which means that two or more processes are waiting for each other in a
cyclic manner. A simple example of how this situation can arise is the sce-
nario where two processes try to obtain the same two locks in opposite
order. Then they may obtain each their lock and both wait for the other to
release its lock. The situation is complicated further by the desire to have
locks of different types, since some operations, such as reading a value,
can sometimes safely by carried out concurrent with other (read) operation,
whereas some operations require exclusive rights.

Thus, concurrency control systems must be defined carefully, and this
has been done for relaxed structures before [1,13,14] and can be reused for
our structure as well.

3 Complexity Analysis

We are now ready to prove all complexity results described inthe intro-
duction. Our data structure is a pure generalization of the one from [9],
i.e., the data structure and all the complexity results in [9] form a special
case of what we show here, and we can use a similar organization of the
proofs. However, the harder proofs from [9] become significantly more dif-
ficult when negative weight is introduced, and even the smaller lemmas
need new proofs.

3.1 Complete Collection of Rebalancing Operations

First, we prove that the collection of rebalancing operations is complete,
i.e., if there is conflict somewhere in the tree, then it is possible to apply
some rebalancing operation.

Compared with [9], the proof becomes more involved. The technique
in [9] was to consider top-most red conflicts and, if none of those were
present, bottom-most weight conflicts. However, because ofinterference
from the negative weights, this approach is no longer possible. Since neg-
ative weights cannot be removed unconditionally without considering con-
flicts in its surroundings, we have to assume the presence of all conflicts
simultaneously, and overweight conflicts also have to be considered top-
down.

To be precise, a top-most conflict means that there is no otherconflict
at a distance closer to the root.

Theorem 1.If a red-black tree with relaxed balance is not red-black, then
one of the rebalancing operations can be applied.



Relaxed Red-Black Trees with Group Updates 9

Proof. Assume that a red-black tree with relaxed balance is not red-black.
Thus, there is a conflict in the tree. Consider a top-most of these. If there is
a choice between the three types of conflicts, we choose a negative weight
conflict if possible. Otherwise, we choose a red conflict overan overweight
conflict.

Assume first that this top-most conflict is a negative weight conflict. If
it is located at the root or immediately below, thenneg-root1or neg-root2
can be applied. We may now assume that the nodeu with negative weight
has at least two ancestors, both of which are non-negative.

Consider the parentp of u. If it is positive, thenneg-push1can be ap-
plied. If it is zero, we considerp’s parentg. If g’s weight is positive, then
neg-push2or neg-push3can be applied. Otherwise, its weight must be zero.
However, this is not possible, because theng and p form a red conflict,
which means that the conflict under consideration would not be top-most.

Now we assume that the top-most conflict is a red conflict. If itis located
at the root, thenred-rootcan be applied. Otherwise, the nodeu at which the
conflict is located must have a parentp, and because we are considering a
top-most conflict, the weight ofp must be one. Furthermore, because we
decided to choose a negative weight conflict as the top-most conflict to
consider, if at all possible, we may assume that if there are any negative
weight conflicts in the tree, then they are located at a level strictly below
u. Thus, the weight of the sibling ofu must be non-negative. If this sibling
has weight zero, eitherred-push1or red-push2can be applied. If its weight
is positive, thenred-dec1or red-dec2can be applied.

Finally, we assume that the top-most conflict is an overweight. If it is
located at the root, thenweight-rootcan be applied. Otherwise, the over-
weighted nodeu has a siblingv. By the priority of the conflicts in the
choice of a top-most conflict,v cannot have negative weight.

Assume first that the weight ofv is positive. If the weight ofv is at
least two, thenweight-dec3can be applied, so assume that the weight of
v is one. If any of the children ofv have negative weight, thenneg-push1
can be applied. Thus, we can assume that both children ofv have non-
negative weights. If the outer-most child ofv has weight zero, thenweight-
dec1can be applied. If the weight of that child is positive, then,depending
on whether the other child ofv has weight zero or positive weight, either
weight-dec2or weight-pushcan be applied.

As the last case, assume that the weight ofv is zero. By the priorities
in the choice of a top-most conflict, the children ofv cannot have weight
zero and the weight of the parent ofu andv must be one. Now, if any of
the children ofv have negative weights, thenneg-push2or neg-push3can
be applied. So, we can assume that they have positive weights.



10 Kim S. Larsen

If the outer-most childx of v has weight one, thenweight-tempcan
be applied, so assume thatx has weight at least two. To show that some
operation can be carried out also in this case, we now focus onx. Let us
recall thatx is overweighted, and it has a siblingy with positive weight.
If y is overweighted, thenweight-dec3can be applied, so assume that the
weight ofy is one. If either ofy’s children have negative weight, thenneg-
push1can be applied. Thus, we can assume that both ofy’s children have
non-negative weights. As above, if the outer-most child ofy has weight
zero, thenweight-dec1can be applied. If the weight of that child is positive,
then, depending on whether the other child ofy has weight zero or positive
weight, eitherweight-dec2or weight-pushcan be applied. ut

We have proven that as long as the tree is not red-black, some rebal-
ancing operation can be applied. In that analysis, we have focused on a
top-most conflict, but this does not imply that only the top-most conflict
can be addressed. In fact, any conflict, the surroundings of which are red-
black can be dealt with, and, as can be seen from the operations, quite often
a conflict can be addressed in the presence of others.

3.2 Amortized Complexity of Update Operations

In this section, we use the potential function technique forproving the
amortized results [17]. We start by making some observations regarding
the behavior of the different operations in relation to conflicts in the tree.

The following observations are easily verified by inspection of the op-
erations in the appendix, and we have of course carried out this procedure.

Observation 1.The following statements hold:

– red-root, red-dec1, andred-dec2decrease the total number of red con-
flicts in the tree.

– weight-root, weight-dec1, weight-dec2, and weight-dec3decrease the
total amount of overweight in the tree.

– neg-root1, neg-root2, neg-push1, neg-push2, and neg-push3decrease
the total amount of negative weight in the tree.

– An insert increases the number of red conflicts by at most one, adelete
increases the amount of overweight by at most one, and agroup-insert
increases the number of red conflicts by at most one and creates at most
h� 1 units of negative weight.

– No rebalancing operation increases the number of negative weight units
in the tree.

– No rebalancing operation, exceptneg-root2, neg-push1, neg-push2, and
neg-push3, increases the number of red conflicts or weight conflicts



Relaxed Red-Black Trees with Group Updates 11

w

1

� 1




0




�

� T

T

0




w

1

�1




w

2

�1




�

� T

T

w

3

�1




w

1

�1




w

2

>1




�

� T

T

0




(A) (B) (C)

Fig. 1 Potential types A, B, and C.

in the tree. The operationsneg-root2, neg-push1, neg-push2, andneg-
push3increase the number of red conflicts and overweight conflictsby
at most a constant.

We want to establish a proof of the fact that insertions and deletions are
amortized constant and that group insertion is amortized logarithmic in the
height of the inserted tree. Since group insertion introduces negative weight
proportional to the height of the inserted tree, this can be reformulated. By
recalling that each unit of negative weight and each unit of overweight is
considered to be a conflict, we want to show that each conflict which is
introduced is removed in amortized constant time.

One problem in establishing the proof is the new operationsneg-root2,
neg-push1, neg-push2, andneg-push3, which may create new conflicts. It
turns out that defining an ordering of conflicts, such that it is considered
better to have an overweight conflict than a negative weight conflict, can
help here.

Another problem in establishing the proof is to show that progress is
made also when operations which do not actually remove a problem are car-
ried out. The operationweight-tempis one such operation, butred-push1,
red-push2, andweight-pushare similar, in that they do remove a problem,
but they may introduce a problem of the same type further up inthe tree. To
obtain the proof, it is necessary to show that carrying out these operations
also represent progress.

One way to approach this is by identifying patterns which enable the
application of these operations. If such a pattern is removed, it represents
progress, since an operation which requires this pattern cannot be applied
there again until such a pattern has been created again.

The following patterns were also identified in [9]:

Definition 1. The three patterns displayed in Fig. 1 are referred to aspo-
tential types.

As for all other operations in this paper, we only display oneof each sym-
metric configuration, so the symmetric variant of (C) is alsoa configuration
of potential type (C).

A relation between actions of the operations which do not remove con-
flicts and the total collection of potential types in the treeis established
in the following lemma, which is a slight modification of a similar lemma
in [9].



12 Kim S. Larsen

0




1




0




0




�

� T

T

q

1

6=0




!

!

!

! a

a

a

a

0




q

2

6=0




�

� T

T

q

3

6=0




�

�

!

0




0




1




0




�

� T

T

q

1




�

�

� H

H

H

1




q

2




�

� T

T

q

3




�

�

Fig. 2 Red-push1 when the number of red conflicts is not reduced.

Lemma 1.The following statements hold:

1. If red-push1 or red-push2 do not reduce the total number ofred conflicts
in the tree, then they reduce the number of potential types (A).

2. The operation weight-temp reduces the number of potential types (C) by
one, and does not increase the number of the other potential types.

3. If weight-push does not decrease the total amount of overweight in the
tree, then it decreases the number of potential types (B), and does not
increase the number of potential types (A).

Proof. We prove the three parts separately.

1. The proofs forred-push1and red-push2are very similar, and we just
give the proof for the former. If the number of red conflicts isnot re-
duced by the operation, then a red conflict must be created right above
the current. Thus,w

1

= 1; see Fig. 2. Similarly, the number of red con-
flicts would be reduced if any of theq

i

’s were zero. Clearly, the number
of potential types (A) is reduced by one.

2. Easy inspection.
3. If weight-pushdoes not decrease the total amount of overweight, then

we must have thatw
1

� 1. Thus, the operation cannot create siblings
with weight zero, so no configuration of potential type (A) iscreated.
Two configurations of potential type (B) are removed: one rooted at
the node labelledw

1

and one rooted at the node labelled1. No new
configurations of potential type (B) can be created.
ut

As a final lemma before the main result, we show that we can build red-
black trees which do not contain many potential types. This is important
since they will be used to define potential, and we do not want agroup-
insert to increase the potential too much. The lemma can be derived from
a corollary in [7] followed by a transformation from(2; 4)-trees [12] to
red-black trees, but for completeness, we give a direct proof.

Lemma 2.Givenm keys, a red-black tree can be build such that the num-
ber of potential types (A), (B), and (C) in the tree isO(logm).

Proof. Start by arranging them keys in a list ofm leaves in sorted order.
Recursively build layers bottom-up. A layer is build as follows. From left



Relaxed Red-Black Trees with Group Updates 13

to right, while there is at least five nodes left, consider three nodes at a time,
and join these using one red node to join two neighboring nodes and one
black node to join in the remaining node. The last three, four, or five nodes
are treated as follows. If the remaining number is three or five, we continue
as before one more time. There are now either zero, two, or four nodes
left. These are connected using either zero, one, or two configurations of
potential type (A). In this way, at most two potential types are used per
layer. ut

Theorem 2.When starting from an empty tree, the number of rebalancing
operations is amortized constant in response to an insertion or deletion and
amortizedO(logm) in response to a group insertion of a red-black tree of
sizem.

Proof. We now define an ordering on the various types of conflicts and
potential types in the tree. The ordering, which we refer to as ourabstract
problem list, is

negative weight, overweight, red conflicts, (A), (B), and (C).

Observation 1 and Lemma 1 together establish that for every rebalancing
operation, there is a problem in the abstract problem list, the total number
of which is reduced when the operation is carried out. Additionally, if the
rebalancing operation increases the total number of some problem, then that
problem is further down the abstract problem list compared to the problem
type which is decreased.

For all rebalancing operations, weights are only increasedor decreased
by one, and no operation involves more than a constant numberof nodes.
This means that any operation which creates problems from our problem
list can create at most a constant number of these problems.

As a result, we can define a potential function as a weighted (the mean-
ing of the wordweighthere should not be confused with the weights appear-
ing in the tree) sum of the number of problems of each type in the abstract
problems list, giving higher weight to problems early in thelist. Since each
rebalancing operation can create only a constant number of other problems,
the weights of the weighted sum can also be constants, and they can be cho-
sen such that every rebalancing operation decreases the potential by at least
one.

Since insert and deleteinvolve only a constant number of nodes and
only increase or decrease weights in the tree by at most one, they can only
increase the potential by a constant.

A group-insert of a tree of sizem can be performed such that the
increase in potential is at mostO(logm). This follows from Lemma 2
and from the fact that the black height of a red-black tree of size m is



14 Kim S. Larsen

�(logm) [5], which implies that at mostO(logm) negative weight is in-
troduced. ut

3.3 Worst-Case Complexity of Update Operations

If we consider starting with an initially non-empty red-black tree, what are
the complexities of the operations? Amortized results generally assume an
initially empty structure in which potential can be build upgradually. Since
a red-black tree can only contain a linear amount of potential, by distribut-
ing the cost out over a sequence of operations, it is clear that when
(n)

operations have been performed on a red-black tree of initial sizen, all op-
erations have the amortized complexities shown in Theorem 2. Until that
happens, the results proven in this section applies.

We introduce an accounting scheme inspired by [9], but more compli-
cated. The overall idea is to establish a connection betweenthe number of
nodes in a tree and its weighted height, where the weighted height of a node
is defined to be the sum of all weights from that node down to a leaf.

We define a “counting” function
 from the set of nodes in the tree at a
given point in time to the real numbers. The sum of all the function values
will have the property that it equals the total number of nodes which have
been in the tree since it was last red-black.

We now give the rules for updating
 when an operation is applied.
When aninsert is made, the two new nodes are given function value one.
Similarly, when agroup-insertis made, all new nodes get function value
one. When adeleteis made, the total sum of function values for the three
nodes from before the operation is carried out is the new value of the re-
maining node.

Other operations only move values around. Since values are associated
with the nodes, we have to define which nodes after an operation is car-
ried out correspond to which nodes before. For operations which make no
structural changes, the identification is given by location. For the remaining
operations, the root of a configuration before the operationis carried out is
identified with the root after the configuration. For the remaining nodes, the
identification is made by the order of the nodes in an in-ordertraversal of
the configurations, i.e., completely skipping the root of the configuration,
theith node encountered in an in-order traversal of the configuration before
the operation is carried out is identified with theith node encountered in an
in-order traversal of the configuration after the operationis carried out.

Finally, when operations for negative weight are applied, function value
is taken from the subtree of the negatively weighted node andgiven to the
other at most two nodes which have their weights increased. Note that if
there are two such nodes, they have the same weighted heightw after the



Relaxed Red-Black Trees with Group Updates 15

operation. Each of these at most two nodes receive the value1

9

(2

w

�1). The
amount which is taken away from the subtree with negative root is collected
in such a manner that all original nodes in the subtree after the operation
have the same function value. By original nodes, we mean the nodes which
were inserted at the time that the negative weight was created. It will be
an invariant that these nodes always have the same function value, so this
requirement can always be fulfilled again.

We letT
u

denote the set of nodes in the subtree rooted byu.

Lemma 3. If u is a node with non-negative weight and weighted heightw,
then
P

v2T

u


(v) �

1

9

(2

w

� 1).

Proof. The proof is by induction in the number of operations performed on
the tree. The base case is when no operations have been performed. Thus,
we have a red-black tree. The base case is proven by a simple structural
induction. Clearly it holds for the leaves, which initiallyhave weight one,
and if it holds for two subtrees of a nodeu, thenu’s weighted heightw is
at most one more than its childrens’, and, by induction, its function value is
at least1

9

(2

w�1

� 1) +

1

9

(2

w�1

� 1) + 1 �

1

9

(2

w

� 1).
For the induction step, we consider each operation in turn.
For insert, the new node has weighted height one and has function value

one. No other nodes have their weighted heights changed or function values
decreased. Fordelete, the weighted height as well as the subtree sum are
unchanged for the nodes that remain in the tree after the operation. For
group-insert, the inserted tree is red-black, so the results hold internally in
that tree, just as in the base case. We do not have to show anything for the
negatively weighted node, and no other nodes have their weighted heights
changed or function values decreased.

Now we consider the operations for negative weight. Assume thatu is
the node with negative weight. Clearly, by the scheme we haveoutlined,
the other nodes, which have one added to their weight, will have function
values large enough. However, at some point, the weight ofu is going to be
changed from�1 to zero, and at that point, it must have a sufficiently large
subtree sum.

At the time of the insertion,u has weighted height one, since the black
height of the inserted tree ish andu has weight�h + 1. Since it is a red-
black tree of black heighth, its subtree sum is at least2h � 1. Whenever
some function value is taken from the subtree ofu and given to other nodes,
at most two nodes receive. The recipient nodes have weightedheight iden-
tical to u’s at the time. During the operation, the weight ofu increases,
and no operation ever decreases the weight of a negatively weighted node.
First time, the weighted height of the involved nodes is two,and last time,
it is h + 1, referring to the weighted heights after each operation hasbeen



16 Kim S. Larsen

carried out. Thus, in total,u can give away at most:

h+1

X

j=2

2

1

9

(2

j

� 1) �

8

9

2

h

� 1

So, there is at least

2

h

� 1� (

8

9

2

h

� 1) �

1

9

(2

h

� 1)

left for u at the time it is needed.
Since the nodes of this subtree cannot again have a negatively weighted

ancestor, no more function value will be taken away from these nodes.
General arguments cover all remaining cases:
First, the root of an operation will always have the same weighted height

before and after the operation, unless it is the root of the entire tree, since
otherwise it would violate the weighted height constraint.Since the root of
an operation never has its function value altered, the result holds for such
nodes.

Second, nodes which after the operation have weight zero or one and
which have subtrees that are unchanged by the operation or have already
been established to have large enough function values will themselves have
large enough function values. This follows since the weighted heightw of
such nodes is at most one more than their childrens’ and sincetheir own
function value of at least1

9

results in the sum1
9

(2

w�1

�1)+

1

9

(2

w�1

�1)+

1

9

=

1

9

(2

w

� 1).
Third, for nodes which are leaves of an operation and keep their subtree

from before the operation is carried out, the result holds provided that their
weight is not increased.

By these arguments, all nodes in the operations have been covered. ut

Corollary 1. Letn0 denote the total number of nodes inserted into the tree
since it was a red-black tree of sizen. Then the largest weighted height of a
node which is not in the subtree of a negatively weighted nodeis bounded
by blog(9(n+ n

0

) + 1)
.

Proof. By definition of
, the sum of all function value in the tree isn+n

0.
Assume that the weight of the root is non-negative. Then no other node in
the tree can have a larger weighted height than the root, unless it is in the
subtree of a negatively weighted node.

By Lemma 3, if the weighted height of the root isw, thenn + n

0

�

1

9

(2

w

� 1), sow � blog(9(n+ n

0

) + 1)
. ut

The upper bound on the largest possible weighted height can be used to
bound the number of times most of the operations can be applied. This is



Relaxed Red-Black Trees with Group Updates 17

because the operations have been designed with the aim of moving conflicts
to larger weighted heights, if they cannot be removed completely in the
given configuration.

By moving a conflict, we refer to the scenario where an operation re-
moves a certain conflict, only to introduce a new one of the same type
further up in the tree. The operationred-push1, for instance, may do that if
w

1

= 1 and the parent of that node is red.
As already described, overweighted nodes with weights larger than two

as well as negatively weighted nodes with weights smaller than �1 are
considered as a number of unit conflicts. So, if a node has weight w

1

> 1

and weighted heightw, this is interpreted asw
1

� 1 weight conflicts of
weighted heightw�w

1

+2; w�w

1

+3; : : : ; w, respectively. When a unit
of overweight is moved or removed, we always assume that it isthe one
with the largest weighted height.

Proposition 1.The following statements hold:

– red-root, red-dec1, and red-dec2 remove at least one red conflict.
– weight-root, weight-dec1, weight-dec2, and weight-dec3 remove at least

one unit of overweight.
– red-push1, red-push2, and weight-push either remove a conflict or move

a conflict to a larger weighted height.
– All the operations leave all other conflicts at the same weighted height

as before the operation was carried out.
– Only neg-root2, neg-push1, neg-push2, and neg-push3 create new con-

flicts, which is at most two red conflicts and at most two units of over-
weight.

Proof. Most follow by easy inspection of the operations in the appendix.
For the scenario wherered-push1(similarly for red-push2) moves a

conflict, refer to Fig. 2.
Note that ifweight-pushmoves a conflict, thenw

1

� 1. ut

The proof builds on the concept of moving conflicts to larger weighted
heights. Unfortunately, sinceweight-tempdoes not accomplish this, an al-
ternative method of bounding the application of this operation must be
found.

If an overweighted node has a red parent, which in turn has a non-red
sibling and a non-red parent, we refer to this as aweight-temp configura-
tion, since the operationweight-tempcreates such configurations. Ifu is the
overweighted node in such a configuration, we refer to the other nodes as
the parent, the uncle, and the grandparent ofu.

Lemma 4.Weight-temp configurations can only disappear through the ap-
plication of an operation which decreases the total number of conflicts in
the tree or which decreases the number of negative weight conflicts.



18 Kim S. Larsen

Proof. Clearly, in order to change the configuration, an operation must
overlap with nodes in the configuration. Letu be the overweighted node
in the configuration (the one with a red parent).

The operationinsertcannot make the configuration disappear (note that
if the uncle ofu has weight one, then it cannot be a leaf). Similarly for
group-insert. If a deletechanges the situation, it is becausew

1

= 0 and
w

3

> 1 (within the deleteoperation). However, we must have thatw

2

�

w

3

, so the total amount of overweight decreases byw

2

� 1.
It is only necessary to discuss the rebalancing operations which do not

necessarily decrease the total number of conflicts in the tree or the number
of negatively weighted nodes, i.e.,red-push1, red-push2, weight-temp, and
weight-push.

The operationred-push1can be applied in this situation ifu is the top-
node of thered-push1operation. In that case, the amount of overweight
as well as the number of red conflicts decrease. It can also be applied at a
position whereu’s uncle is the top node of thered-push1operation. In that
case, a red conflict disappears. The operationred-push2is similar.

The operationweight-tempcan only be applied to nodes in this configu-
ration if eitheru or its uncle is the root of theweight-tempoperation. Since
the weight of the root of aweight-tempoperation is not changed when the
operation is carried out, neither is the configuration.

Finally, weight-pushcan overlap the configuration if the parent ofu is
the root of theweight-pushoperation. However, in that case, the amount of
overweight decreases. It can also overlap if the uncle ofu is the root of the
weight-pushoperation. In that case, the uncle ofu has its weight increased,
so it will still be non-red. ut

Corollary 2. If i insert operations,d delete operations, andg group-insert
operations of black heightsh

1

; : : : ; h

g

are made into a red-black tree, at
mosti+ d+ 5

P

g

j=1

h

j

weight-temp operations can be applied.

Proof. According to Observation 1, only the rebalancing operations for
negative weight increase the number of conflicts. The operations insert
and deletecreate at most one conflict each time they are applied. As it
appears from the proof of Lemma 3, the negative operations can introduce
at most4

P

g

j=1

h

j

red conflicts or units of overweight. Every time a con-
flict is created this way, a unit of negative weight disappears. Thus, the total
number of non-negative conflicts ever introduced in the treeis bounded by
i+ d+ 4

P

g

j=1

h

j

.
By Lemma 4, a weight-temp configuration can only be removed through

the application of an operation which either decreases the total number
of conflicts in the tree or removes negative weight. Thus, weight-temp
configurations can be removed at mosti + d + 4

P

g

j=1

h

j

+

P

g

j=1

h

j

=

i+ d+ 5

P

g

j=1

h

j

times.



Relaxed Red-Black Trees with Group Updates 19

By Theorems 1 and 2, the tree will eventually become red-black. Since
a weight-temp configuration contains overweight, every weight-temp con-
figuration will eventually be removed. Thus, at mosti + d + 5

P

g

j=1

h

j

weight-temp configurations can ever be created.ut

We can now prove that starting with a red-black tree, each update gives
rise to at most a logarithmic number of rebalancing operations.

Theorem 3.Assume thati insert operations,d delete operations, andg
group-insert operations of trees of sizesn

1

; : : : ; n

g

and black heightsh
1

; : : : ; h

g

are made into a red-black tree of sizen. LetN = n + i +

P

g

j=1

n

j

and
M = i+d+5

P

g

j=1

h

j

. Then at mostO(M logN) rebalancing operations
are carried out.

Proof. By Proposition 1, at most
P

g

j=1

h

j

operations for negative weight
can be applied, and these can give rise to at most4

P

g

j=1

h

j

other conflicts.
As it appears from Corollary 2,M = i + d + 5

P

g

j=1

h

j

is an upper
bound on the number of conflicts ever introduced. This immediately bounds
the number of operations which remove conflicts byM . Corollary 2 gives
a bound on the number ofweight-tempoperations which can be applied,
which is at mostM .

By Proposition 1, all the other operations move conflicts to alarger
weighted height, so by Corollary 1, at mostMblog(9(n+2(i+

P

g

j=1

n

j

))+

1)
 such operations can be carried out.
Now the result follows sinceh

j

2 O(log n

j

) and blog(9(n + 2(i +

P

g

j=1

n

j

)) + 1)
 2 O(logN). ut

3.4 Worst-Case Restructuring Complexity

Finally, we prove a bound on the number of operations which actually
change the structure of the tree. The reason for singling these out is that
they are generally more expensive, and in parallel applications they require
exclusive locking [1,14].

Theorem 4.Assume thati insert operations,d delete operations, andg
group-insert operations of trees of sizesn

1

; : : : ; n

g

are made into a red-
black tree of sizen. Then at mostO(i + d +

P

g

j=1

logn

j

) restructuring
rebalancing operations are carried out.

Proof. Only weight-tempoperations and operations which decrease the
number of conflicts do any restructuring. By the proof of Theorem 3, this
amounts to2M operations from which the result follows.ut



20 Kim S. Larsen

4 Concluding Remarks

We have defined a collection of operations for which it is possible to prove
all the good complexity bounds one could hope for. However, adjustments
are still possible. Sometimes it is possible to push more than one unit of
weight at a time, and this could be allowed by the operations.One could
also consider creating positive interference between different conflicts such
that more frequently more than one conflict can be handled at atime. It is
also possible to merge operations; theweight-tempoperation, for instance,
can be merged with the weight decreasing operations to get a collection of
fewer, but larger, rebalancing operations.

With the proofs in this paper, it is often quite easy to verify, by checking
the proofs, whether or not a desired change in the collectionof rebalanc-
ing operations will give a new collection which also has goodcomplexity
bounds.

References

1. Joan Boyar, Rolf Fagerberg, and Kim S. Larsen. Amortization Results for Chromatic
Search Trees, with an Application to Priority Queues.Journal of Computer and System
Sciences, 55(3):504–521, 1997.

2. Joan F. Boyar and Kim S. Larsen. Efficient Rebalancing of Chromatic Search Trees.
Journal of Computer and System Sciences, 49(3):667–682, 1994.

3. Alfonso F. Cardenas. Analysis and Performance of Inverted Data Base Structures.
Communications of the ACM, 18(5):253–263, 1975.

4. Christos Faloutsos and H. V. Jagadish. Hybrid Index Organizations for Text Databases.
In Third International Conference on Extending Database Technology, volume 580 of
Lecture Notes in Computer Science, pages 310–327, 1992.

5. Leo J. Guibas and Robert Sedgewick. A Dichromatic Framework for Balanced Trees.
In 19th Annual IEEE Symposium on the Foundations of Computer Science, pages 8–21,
1978.

6. Sabina Hanke and Eljas Soisalon-Soininen. Group Updatesfor Red-Black Trees. In
4th Italian Conference on Algorithms and Complexity, volume 1767 ofLecture Notes
in Computer Science, pages 253–262. Springer-Verlag, 2000.

7. Lars Jacobsen, Kim S. Larsen, and Morten N. Nielsen. On theExistence and Con-
struction of Non-Extreme (a,b)-Trees. Tech. report 11, Department of Mathematics
and Computer Science, University of Southern Denmark, Odense, 2001.

8. Sheau-Dong Lang, James R. Driscoll, and Jiann H. Jou. Batch Insertion for Tree Struc-
tured File Organizations—Improving Differential Database Representation.Informa-
tion Systems, 11(2):167–175, 1986.

9. Kim S. Larsen. Amortized Constant Relaxed Rebalancing using Standard Rotations.
Acta Informatica, 35(10):859–874, 1998.

10. Kim S. Larsen. Relaxed Multi-Way Trees with Group Updates. In Twentieth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of DatabaseSystems, pages 93–
101. ACM Press, 2001.

11. Lauri Malmi and Eljas Soisalon-Soininen. Group Updatesfor Relaxed Height-
Balanced Trees. InEighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, pages 358–367. ACM Press, 1999.



Relaxed Red-Black Trees with Group Updates 21

12. Kurt Mehlhorn.Sorting and Searching, volume 1 ofData Structures and Algorithms.
Springer-Verlag, 1984.

13. O. Nurmi, E. Soisalon-Soininen, and D. Wood. Concurrency Control in Database
Structures with Relaxed Balance. In6th ACM Symposium on Principles of Database
Systems, pages 170–176, 1987.

14. Otto Nurmi and Eljas Soisalon-Soininen. Uncoupling Updating and Rebalancing in
Chromatic Binary Search Trees. InTenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 192–198, 1991.

15. Otto Nurmi and Eljas Soisalon-Soininen. Chromatic Binary Search Trees—A Structure
for Concurrent Rebalancing.Acta Informatica, 33(6):547–557, 1996.

16. Kerttu Pollari-Malmi, Eljas Soisalon-Soininen, and Tatu Ylönen. Concurrency Control
in B-Trees with Batch Updates.IEEE Transactions on Knowledge and Data Engineer-
ing, 8(6):975–984, 1996.

17. Robert Endre Tarjan. Amortized Computational Complexity. SIAM Journal on Alge-
braic and Discrete Methods, 6(2):306–318, 1985.



22 Kim S. Larsen

A Appendix: The Operations

A.1 Update Operations

w

1

� 1

!

w

1

�1




1

�

� T

T

1

w

1




w

2

�

� T

T

w

3




!

w

1

+w

3




(insert) (delete)

A.2 Rebalancing Operations

0 ROOT


0




�

�

!

1




0




�

�

(red-root)

w

1

� 1




0




0




�

�

�

� T

T

0




!

w

1

�1




1




0




�

�

�

� T

T

1




w

1

� 1




0




J

J

0




�

� T

T

0




!

w

1

�1




1




J

J

0




�

� T

T

1




(red-push1) (red-push2)

w

1

� 1




0




0




�

�

�

� T

T

w

2

� 1




!

w

1




0




�

� T

T

0




T

T

w

2




w

1

� 1




0




T

T

0




�

� T

T

w

2

� 1




!

w

1




0




�

� T

T

0




T

T

w

2




(red-dec1) (red-dec2)

w

1

>1 ROOT


!

1




w

1

�1




w

2

>1




�

� T

T

0




T

T

1




!

w

1




0




w

2




�

�

�

� T

T

1




(weight-root) (weight-temp)

w

1




w

2

>1




�

� T

T

1




T

T

0




!

w

1




1




w

2

�1




�

�

�

� S

S

1




w

1




w

2

>1




�

� T

T

1




0




�

� T

T

w

3

>0




!

w

1




1




w

2

�1




�

�

�

� S

S

1




T

T

w

3




(weight-dec1) (weight-dec2)

w

1




w

2

>1




�

� T

T

w

3

>1




!

w

1

+1




w

2

�1




�

� T

T

w

3

�1




w

1




w

2

>1




�

� T

T

1




w

3

>0




�

� T

T

w

4

>0




!

w

1

+1




w

2

�1




�

� T

T

0




w

3




�

� T

T

w

4




(weight-dec3) (weight-push)



Relaxed Red-Black Trees with Group Updates 23

A.3 Group Insertion

w

1

� 1

!

w

1

�1




1

�

�
T

T

�

�

D

D

�h + 1

(group-insert)

A.4 Rebalancing after Group Insertion

w

1

<0 ROOT


!

1




w

1

ROOT


w

2

<0




�

� T

T

w

3




!

1




w

2

+1




�

� T

T

w

3

+1




(neg-root1) (neg-root2)

w

1

�1




w

2

<0




�

� T

T

w

3




!

w

1

�1




w

2

+1




�

� T

T

w

3

+1




w

1

�1




0




w

2

<0




�

� T

T

w

3




�

� T

T

w

4




!

w

1

�1




0




w

2

+1




�

� T

T

w

3

+1




�

� T

T

w

4

+1




(neg-push1) (neg-push2)

w

1

�1




0




w

2




�

� T

T

w

3

<0




�

� T

T

w

4




!

w

1

�1




0




w

2

+1




�

� T

T

w

3

+1




�

� T

T

w

4

+1




(neg-push3)


