
Department of Mathematics and Computer Science January 12, 2017
University of Southern Denmark RF

The Hunt-Szymanski Algorithm for LCS

In 1977, James W. Hunt and Thomas G. Szymanski published an algorithm
for the Longest Common Subsequence (LCS) problem which runs in time
O(r log n + m log(m)), where m is the length of the longest string X, n is
the length of the shortest string Y , and r is the number of pairs (i, j) for
which X[i] = Y [j]. For the strings acea and aeaca, the set R of such pairs
can be illustrated as follows:

a

c

e

a

a e a c a

× × ×
×

×
× × ×

Since r is at most mn, this is never much worse than the standard dynamic
programming algorithm, which runs in O(mn) time. On the other hand, r
may be much smaller, in particular for large alphabets and fairly random
strings—for strings with characters chosen uniformly at random from an
alphabet Σ, the expected value of r is mn/|Σ|.

A version of the algorithm is used in the diff command (for comparing files
on UNIX/Linux and in many version control systems) when comparing two
text-based files: the idea is to hash each line in a file to a k bit integer,
and view the file as a string of such integers. To come up with a suggestion
for which lines have not been changed between two files, the LCP of the
corresponding two strings is calculated (the rest of the lines are reported as
removed in one file or inserted in the other). For files with few repeated lines
(and assuming a good hash function), these strings will behave like random
strings from an alphabet of size 2k, hence the Hunt-Szymanski algorithm
will be very efficient.

The algorithm is based on the following observation:

Lemma 1 A row in the lcs-table for the standard dynamic programming
algorithm for the LCS problem has a content of the following type:

0 0 0 0 0 1 1 1 1 2 3 3 3 3 4 4 4 4

In other words, it is a sequence of non-empty blocks of integers of the same
value, where the value is zero for the first block and increases by one for
each new block.

Proof: By induction on the row number. The base case is the first row,
which contains only zeros (by the base case of the recursive formula for the
dynamic programming algorithm), i.e., is a line of the above type containing
just a single block. For the induction step, assume that the statement is true
for row i − 1. For a block starting at entry (i − 1, j1) and ending at entry
(i − 1, j2), call j1 its head index and j1 + 1, j1 + 2, . . . , j2 its tail indices.
Below, the row from above is shown again with the (row entries of the) tail
indices of the blocks framed:

0 0 0 0 0 1 1 1 1 2 3 3 3 3 4 4 4 4

We call an index j in row i−1 active if (i, j) is in R. Consider filling out row i
from left to right using the recursive formula for the dynamic programming
algorithm. The first entry lcs(i, 0) is always zero. When filling out using
the recursive formula, the value of lcs(i, j) for increasing j’s will stay at zero
until the first active tail index j in the first block in row i − 1, if such an
index exists. At this point lcs(i, j) will turn one. For the remaining tail
indices j in the first block of row i− 1, lcs(i, j) will stay at one, whether or
not the indices are active. When j becomes the head index of the second
block of row i − 1, lcs(i, j) will become one in all cases (whether or not an
active index was met in the tail of the first block, and whether of not the
head index of the second block is active).

The process thus repeats with the second block, just with all lcs values
increased by one. By induction on the block number (an induction separate
from the main induction), the process repeats for all the blocks in the row.

The entire step when generating row i from row i − 1 is illustrated below.
Active indices in row i are shown by red crosses.

2

0 0 0 0 0 1 1 1 1 2 3 3 3 3 4 4 4 4
× ×× × × ××

↓

0 0 0 0 0 1 1 1 1 2 3 3 3 3 4 4 4 4
× ×× × × ××0 0 1 1 1 1 1 1 1 2 3 3 4 4 4 4 5 5

This proves the induction step (of the main induction). �

The next observation used in the algorithm is that by Lemma 1, a row can
be represented simply by storing the head indices of its blocks. The row

0 0 0 0 0 1 1 1 1 2 3 3 3 3 4 4 4 4

will thus be represented by the set {0, 5, 9, 10, 14} (assuming that the first
character of a string has index one, hence the first column index zero).

Recall from DM507 that for an ordered set S, the predecessor of a search
key x is defined by pred(x) = max{y ∈ S | y ≤ x} and the successor is
defined by succ(x) = min{y ∈ S | y ≥ x}. Also recall from DM507 that
storing the set in a decorated balanced binary tree allows us to perform each
of these operations in time O(log |S|).

The Hunt-Szymanski algorithm generates the rows of the lcs-tabel in a top-
down manner, using this representation. From the proof of the induction
step in Lemma 1, we see how row i can be produced from row i − 1: Each
head index should be moved to the leftmost active tail index (if any) in the
block to the left of the head index, and the leftmost active tail index (if any)
in the rightmost block should generate a new head index.

Assume that we for all i have access to the i’th row R[i] = {j | (i, j) ∈ R}
of the active indices R, sorted in descending order on j. Then the following
algorithm carries out the method above:

T.insert(0) // Initialize tree to represent the first row

FOR i=1 to m

FOR j in R[i] // in decreasing order of j

IF T.succ(j) exists

T.delete(T.succ(j))

T.insert(j)

3

The inner loop correctly generates row i from row i − 1: Actions are only
taken on active indices. If the first j from R[i] is the rightmost active tail
index of the rightmost block, the second to last line will not be executed
for this j, and the last line will insert a new head. For the rest of the j’s
in R[i], both of the two last lines will be executed. If j is a head index,
the two lines cancel out (recall that the successor of an element present is
the element itself, so the head index is deleted and then re-inserted in the
tree). If j is a tail index, the lines move the closest head index right of j to
position j. Due to the decreasing order of R[i], the total effect is that all
existing head indices are moved to the leftmost active tail index (if any) in
the block to the left of the head index, and the leftmost active tail index (if
any) in the rightmost block generates a new head index. The time used is
O(m + r log n).

What remains to discuss is how to first find R and R[i]. For each string
X and Y , we annotate its characters with their position, and then sort the
characters of each string. This takes O((m + n) log(m + n)) for general
comparison-based alphabets. For alphabets linear (polynomial) in m+n, it
can even be done in time O(m + n) by countingsort (radixsort).

Passing through the two sorted sequences in a merge-like fashion, we can
easily generate R in time r = |R|: all a’s of X and all a’s of Y will be passed
at the same time and the crossproduct of their positions can be generated,
the same applies to the rest of the characters present. Finally, we sort R
lexicographically, ascending on first coordinate i and descending on second
coordinate j. This can be done by radixsort in O(r + (m + n)) time.

In total, this is time O(r log n + m log(m)) for comparison based alphabets,
assuming without loss of generality that m ≥ n.

The above algorithm at the end has calculated the (represention of) the last
row of the lcs-table, hence we can find the value lcs(m,n). If we desire an
actual longest subsequence (which clearly is needed in the diff application,
for instance), we can try to use backtracking as in the standard dynamic
programming algorithm. However, if we generate the entire table during
the Hunt-Szymanski algorithm, we will spend additional time Θ(mn) just
on that. Luckily, it turns out that we can restrict ourselves to only store
information in the table each time a head index is moved, while still be-
ing able to backtrack correctly. The additional time for generating (and
backtracking over) this information is O(r).

The details of this are left as an exercise. We here give an outline (not

4

curriculum): The observation used is that during backtracking in the lcs-
table, we can always move left or up as long as the entry value stays the
same: if e.g. lcs(i, j − 1) = lcs(i, j), the backtracking from lcs(i, j − 1) will
create a LCS for X[1..i] and Y [1..(j−1)] (which is also a LCS for X[1..i] and
Y [1..j]) of optimal length for X[1..i] and Y [1..j]. This means that during
backtracking over the table, we can always proceed left to the head index of
the block we are in. It also means that from the head index of a block, we
can proceed up as long the head index of the block we are in is the same.
We exploit this by representing by a single node all consecutive (in terms of
row number) versions of a block for which the head index does not change
(these blocks are below each other in the table, and combined constitute a
connected region of it, with a left side which is a straight, vertical line). The
node stores the position (i, j) of the head index of the first of these versions
(where the head index had just changed from the previous row). During the
algorithm, the currently active nodes (the nodes representing the blocks of
row i−1 during execution of the inner FOR-loop) are stored with the blocks
(i.e., stored with the head indices kept in the tree). When a head index of
a block changes from row i − 1 to row i, it is due to an active index, and
the correct backtracking from this position in the table is diagonally left-up.
This is to a block which is among those represented by the currently active
node v representing the block to the left (block entry value one lower). A
new node u for the moved block is created (only one node for the entire
move of the head index, even if it is done over several iterations of the
inner FOR-loop), and an edge (u, v) is also created. The node u will be the
active node for that block in the next iteration of the outer FOR-loop, at
which point the node v becomes inactive. If a head index does not change,
the active node of the block stays the same for the next iteration of the
outer FOR-loop. Backtracking is now performed as follows: Starting with
the node representing the region containing lcs(m,n), we move to its stored
coordinates (i, j) (in terms of backtracking in the entire table, this is a move
left, then up, while generating no elements of the output LCS). From there,
we follow the single edge out of the node to the node representing the region
containing lcs(i− 1, j − 1) (in terms of backtracking in the entire table, this
is a move left-up to (i− 1, j − j), and should generate one character of the
output LCS). Then repeat.

5

