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Introduction
Solving LP Problems
Mathematical ProgrammingThe Diet Problem (Blending Problems)

• Select a set of foods that will satisfy a set of daily nutritional
requirements at minimum cost.

• Motivated in the 1930s and 1940s by US army.
• Formulated as a linear programming problem by George Stigler
• (programming intended as planning not computer code)

min cost/weight
subject to nutrition requirements:

eat enough but not too much of Vitamin A
eat enough but not too much of Sodium
eat enough but not too much of Calories
...
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Introduction
Solving LP Problems
Mathematical ProgrammingThe Diet Problem

Suppose there are:
• 3 foods available: corn, milk, and bread, and
• there are restrictions on the number of calories (between 2000 and 2250) and the amount of

Vitamin A (between 5,000 and 50,000)

Food Cost per serving Vitamin A Calories
Corn $0.18 107 72

2% Milk $0.23 500 121
Wheat Bread $0.05 0 65
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Introduction
Solving LP Problems
Mathematical ProgrammingThe Mathematical Model

Parameters (given data)
F := set of foods
N := set of nutrients

aij := amount of nutrient i in food j , ∀i ∈ N, ∀j ∈ F
cj := cost per serving of food j ,∀j ∈ F

Fmin,j := minimum number of required servings of food j ,∀j ∈ F
Fmax,j := maximum allowable number of servings of food j ,∀j ∈ F
Nmin,i := minimum required level of nutrient i ,∀i ∈ N
Nmax,i := maximum allowable level of nutrient i ,∀i ∈ N

Decision Variables
xj := number of servings of food j to purchase/consume, ∀j ∈ F
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Introduction
Solving LP Problems
Mathematical ProgrammingThe Mathematical Model

Objective Function: Minimize the total cost of the food

Minimize
∑
j∈F

cjxj

Constraint Set 1: For each nutrient i ∈ N, at least meet the minimum required level∑
j∈F

aijxj ≥ Nmin,i , ∀i ∈ N

Constraint Set 2: For each nutrient i ∈ N, do not exceed the maximum allowable level.∑
j∈F

aijxj ≤ Nmax,i , ∀i ∈ N

Constraint Set 3: For each food j ∈ F , select at least the minimum required number of servings

xj ≥ Fmin,j , ∀j ∈ F

Constraint Set 4: For each food j ∈ F , do not exceed the maximum allowable number of servings.

xj ≤ Fmax,j , ∀j ∈ F
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Introduction
Solving LP Problems
Mathematical ProgrammingThe Mathematical Model

system of equalities and inequalities

min
∑
j∈F

cjxj∑
j∈F

aijxj ≥ Nmin,i , ∀i ∈ N

∑
j∈F

aijxj ≤ Nmax,i , ∀i ∈ N

xj ≥ Fmin,j , ∀j ∈ F

xj ≤ Fmax,j , ∀j ∈ F
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Solving LP Problems
Mathematical ProgrammingMathematical Model

Machines/Materials A and B
Products 1 and 2

max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1 ≥ 0
x2 ≥ 0

Graphical Representation:

5x1 + 10x2 ≤ 60

4x1 + 4x2 ≤ 406x1 + 8x2 = 16

x1

x2
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Introduction
Solving LP Problems
Mathematical ProgrammingIn Matrix Form

max c1x1 + c2x2 + c3x3 + . . . + cnxn = z
s.t. a11x1 + a12x2 + a13x3 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + a23x3 + . . . + a2nxn ≤ b2
. . .

am1x1 + am2x2 + am3x3 + . . . + amnxn ≤ bm
x1, x2, . . . , xn ≥ 0

c =


c1
c2
...
cn

 , A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 , x =


x1
x2
...
xn

 , b =


b1
b2
...
bm


max z = cT x

Ax ≤ b
x ≥ 0
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Solving LP Problems
Mathematical ProgrammingLinear Programming

Abstract mathematical model:
Parameters, Decision Variables, Objective, Constraints
(+ Domains & Quantifiers)

The Syntax of a Linear Programming Problem

objective func. max /min cT x c ∈ Rn

constraints s.t. Ax R b A ∈ Rm×n, b ∈ Rm

x ≥ 0 x ∈ Rn, 0 ∈ Rn

Essential features: continuity, linearity (proportionality and additivity), certainty of parameters

• Any vector x ∈ Rn satisfying all constraints is a feasible solution.
• Each x∗ ∈ Rn that gives the best possible value for cT x among all feasible x is an optimal

solution or optimum
• The value cT x∗ is the optimum value
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Introduction
Solving LP Problems
Mathematical ProgrammingDiet Problem — History

• The linear programming model consisted of 9 equations in 77 variables

• In 1944, Stigler guessed an near-optimal solution using a heuristic method

• In 1947, the National Bureau of Standards used the newly developed simplex method to solve
Stigler’s model.
It took 9 clerks using hand-operated desk calculators 120 man days to solve for the optimal
solution

• The original instance: https://developers.google.cn/optimization/lp/stigler_diet
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Introduction
Solving LP Problems
Mathematical ProgrammingAMPL Model

� �
# diet.mod
set NUTR;
set FOOD;

param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f_max { j in FOOD} >= f_min[j];
param n_min { NUTR } >= 0;
param n_max {i in NUTR } >= n_min[i];
param amt {NUTR,FOOD} >= 0;

var Buy { j in FOOD} >= f_min[j], <= f_max[j]

minimize total_cost: sum { j in FOOD } cost [j] ∗ Buy[j];
subject to diet { i in NUTR }:

n_min[i] <= sum {j in FOOD} amt[i,j] ∗ Buy[j] <= n_max[i];� �
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Introduction
Solving LP Problems
Mathematical ProgrammingAMPL Model

� �
# diet.dat
data;

set NUTR := A B1 B2 C ;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR;

param: cost f_min f_max :=
BEEF 3.19 0 100
CHK 2.59 0 100
FISH 2.29 0 100
HAM 2.89 0 100
MCH 1.89 0 100
MTL 1.99 0 100
SPG 1.99 0 100
TUR 2.49 0 100 ;

param: n_min n_max :=
A 700 10000
C 700 10000
B1 700 10000
B2 700 10000 ;

# %� �

� �
param amt (tr):

A C B1 B2 :=
BEEF 60 20 10 15
CHK 8 0 20 20
FISH 8 10 15 10
HAM 40 40 35 10
MCH 15 35 15 15
MTL 70 30 15 15
SPG 25 50 25 15
TUR 60 20 15 10 ;� �
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Introduction
Solving LP Problems
Mathematical ProgrammingPython Script

Model

� �
# Model diet.py
m = Model("diet")

# Create decision variables for the foods to buy
buy = {}
for f in foods:

buy[f] = m.addVar(obj=cost[f], name=f)

# Nutrition constraints
for c in categories:

m.addConstr(
quicksum(nutritionValues[f,c] ∗ buy[f] for f in foods) <= maxNutrition[c], name=c+’max’)

m.addConstr(
quicksum(nutritionValues[f,c] ∗ buy[f] for f in foods) >= minNutrition[c], name=c+’min’)

# Solve
m.optimize()� �
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Introduction
Solving LP Problems
Mathematical ProgrammingPython Script

Data� �
from gurobipy import ∗

categories, minNutrition, maxNutrition = multidict({
’calories’: [1800, 2200],
’protein’: [91, GRB.INFINITY],
’fat’: [0, 65],
’sodium’: [0, 1779] })

foods, cost = multidict({
’hamburger’: 2.49,
’chicken’: 2.89,
’hot dog’: 1.50,
’fries’: 1.89,
’macaroni’: 2.09,
’pizza’: 1.99,
’salad’: 2.49,
’milk’: 0.89,
’ice cream’: 1.59 })� �

� �
# Nutrition values for the foods
nutritionValues = {

(’hamburger’, ’calories’): 410,
(’hamburger’, ’protein’): 24,
(’hamburger’, ’fat’): 26,
(’hamburger’, ’sodium’): 730,
(’chicken’, ’calories’): 420,
(’chicken’, ’protein’): 32,
(’chicken’, ’fat’): 10,
(’chicken’, ’sodium’): 1190,
(’hot dog’, ’calories’): 560,
(’hot dog’, ’protein’): 20,
(’hot dog’, ’fat’): 32,
(’hot dog’, ’sodium’): 1800,
(’fries’, ’calories’): 380,
(’fries’, ’protein’): 4,
(’fries’, ’fat’): 19,
(’fries’, ’sodium’): 270,
(’macaroni’, ’calories’): 320,
(’macaroni’, ’protein’): 12,
(’macaroni’, ’fat’): 10,
(’macaroni’, ’sodium’): 930,
(’pizza’, ’calories’): 320,
(’pizza’, ’protein’): 15,
...� �17
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Introduction
Solving LP Problems
Mathematical ProgrammingHistory of Linear Programming (LP)

System of linear equations

 It is impossible to find out who knew what when first.
Just two “references”:

• Egyptians and Babylonians considered about 2000 B.C. the solution of special linear equations.
But, of course, they described examples and did not describe the methods in "today’s style".

• What we call “Gaussian elimination” today has been explicitly described in Chinese “Nine
Books of Arithmetic” which is a compendium written in the period 2000 B.C. to A.D. 9, but
the methods were probably known long before that.

• Gauss, by the way, never described “Gaussian elimination”. He just used it and stated that the
linear equations he used can be solved “per eliminationem vulgarem”
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Introduction
Solving LP Problems
Mathematical ProgrammingHistory of Linear Programming (LP)

• Origins date back to Newton, Leibnitz, Lagrange, etc.
• In 1827, Fourier described a variable elimination method for systems of linear inequalities,

today often called Fourier-Motzkin elimination (Motzkin, 1937). It can be turned into an LP
solver but inefficient.

• In 1932, Leontief (1905-1999) Input-Output model to represent interdependencies between
branches of a national economy (1976 Nobel prize)

• In 1939, Kantorovich (1912-1986): Foundations of linear programming (Nobel prize in
economics with Koopmans on LP, 1975) on Optimal use of scarce resources: foundation and
economic interpretation of LP

• The math subfield of Linear Programming was created by George Dantzig, John von Neumann
(Princeton), and Leonid Kantorovich in the 1940s.

• In 1947, Dantzig (1914-2005) invented the (primal) simplex algorithm working for the US Air
Force at the Pentagon. (program=plan)
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Introduction
Solving LP Problems
Mathematical ProgrammingHistory of LP (cntd)

• In 1954, Lemke: dual simplex algorithm,
• In 1954, Dantzig and Orchard Hays: revised simplex algorithm
• In 1970, Victor Klee and George Minty created an example that showed that the classical

simplex algorithm has exponential worst-case behavior.
• In 1979, L. Khachain found a new efficient algorithm for linear programming. It was terribly

slow. (Ellipsoid method)
• In 1984, Karmarkar discovered yet another new efficient algorithm for linear programming. It

proved to be a strong competitor for the simplex method. (Interior point method)
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Solving LP Problems
Mathematical ProgrammingHistory of Optimization

• In 1951, Nonlinear Programming began with the Karush-Kuhn-Tucker Conditions

• In 1952, Commercial Applications and Software began

• In 1950s, Network Flow Theory began with the work of Ford and Fulkerson.

• In 1955, Stochastic Programming began

• In 1958, Integer Programming began by R. E. Gomory.

• In 1962, Complementary Pivot Theory
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Introduction
Solving LP Problems
Mathematical ProgrammingFourier Motzkin elimination method

Has Ax ≤ b a solution? (Assumption: A ∈ Qm×n, b ∈ Qn)
Idea:

1. transform the system into another by eliminating some variables such that the two systems
have the same solutions over the remaining variables.

2. reduce to a system of constant inequalities that can be easily decided

Let xr be the variable to eliminate
Let M = {1 . . .m} indices of the constraints
For a variable j let’s partition the rows of the matrix in

N = {i ∈ M | aij < 0}
Z = {i ∈ M | aij = 0}
P = {i ∈ M | aij > 0}

24
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Mathematical Programming

 xr ≥ b′ir −
∑r−1

k=1 a
′
ikxk , air < 0

xr ≤ b′ir −
∑r−1

k=1 a
′
ikxk , air > 0

all other constraints i ∈ Z

 xr ≥ Ai (x1, . . . , xr−1), i ∈ N
xr ≤ Bi (x1, . . . , xr−1), i ∈ P
all other constraints i ∈ Z

Hence the original system is equivalent to{
max{Ai (x1, . . . , xr−1), i ∈ N} ≤ xr ≤ min{Bi (x1, . . . , xr−1), i ∈ P}
all other constraints i ∈ Z

which is equivalent to{
Ai (x1, . . . , xr−1) ≤ Bj(x1, . . . , xr−1) i ∈ N, j ∈ P
all other constraints i ∈ Z

we eliminated xr but:{
|N| · |P| inequalities
|Z | inequalities

after d iterations if |P| = |N| = m/2 exponential growth: (1/4d)(m/2)2d
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Introduction
Solving LP Problems
Mathematical ProgrammingExample

−7x1 + 6x2 ≤ 25
x1 − 5x2 ≤ 1
x1 ≤ 7
−x1 + 2x2 ≤ 12
−x1 − 3x2 ≤ 1
2x1 − x2 ≤ 10

x2 variable to eliminate
N = {2, 5, 6},Z = {3},P = {1, 4}
|Z ∪ (N × P)| = 7 constraints

By adding one variable and one inequality, Fourier-Motzkin elimination can be turned into an LP
solver.
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Introduction
Solving LP Problems
Mathematical ProgrammingDefinitions

• [a, b] = {x ∈ R | a ≤ x ≤ b} closed interval
(a, b) = {x ∈ R | a < x < b} open interval

• column vector and matrices
scalar product: yT x =

∑n
i=1 yixi

• Ax column vector combination of the columns of A;
uTA row vector combination of the rows of A

• linear combination

v1, v2 . . . , vk ∈ Rn

λλλ = [λ1, . . . , λk ]T ∈ Rk x = λ1v1 + · · ·+ λkvk =
k∑

i=1

λivi

moreover:
λλλ ≥ 0 conic combination

λλλT1 = 1 affine combination
λλλ ≥ 0 and λλλT1 = 1 convex combination

(
k∑

i=1

λi = 1

)
29



Introduction
Solving LP Problems
Mathematical ProgrammingDefinitions

• set S is linear (affine) independent if no element of it can be expressed as linear combination
of the others
Eg: S ⊆ Rn =⇒ max n lin. indep. (max n + 1 aff. indep.)

• convex set: if x, y ∈ S and 0 ≤ λ ≤ 1 then λx + (1− λ)y ∈ S

• convex function if its epigraph {(x , y) ∈ R2 : y ≥ f (x)} is a convex set or f : X → R and
if ∀x , y ∈ X , λ ∈ [0, 1] it holds that f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

30



Introduction
Solving LP Problems
Mathematical ProgrammingDefinitions

• For a set of points S ⊆ Rn

lin(S) linear hull (span)
cone(S) conic hull

aff(S) affine hull
conv(S) convex hull

conv(X ) =
{
λ1x1 + λ2x2 + . . .+ λnxn | xi ∈ X , λ1, . . . , λn ≥ 0 and

∑
i λi = 1

}

31



Introduction
Solving LP Problems
Mathematical ProgrammingDefinitions

• rank of a matrix for columns (= for rows)
if (m, n)-matrix has rank = min{m, n} then the matrix is full rank
if (n, n)-matrix is full rank then it is regular and admits an inverse

• G ⊆ Rn is an hyperplane if ∃ a ∈ Rn \ {0} and α ∈ R:

G = {x ∈ Rn | aT x = α}

• H ⊆ Rn is an halfspace if ∃ a ∈ Rn \ {0} and α ∈ R:

H = {x ∈ Rn | aT x ≤ α}

(aT x = α is a supporting hyperplane of H)
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Mathematical ProgrammingDefinitions

• a set S ⊂ Rn is a polyhedron if ∃m ∈ Z+,A ∈ Rm×n, b ∈ Rm:

P = {x ∈ Rn | Ax ≤ b} =
m⋂
i=1

{x ∈ Rn | aTi,·x ≤ bi}

i.e., a polyhedron P 6= Rn is determined by finitely many halfspaces

• a polyhedron P is a polytope if it is bounded: ∃ B ∈ R,B > 0:

P ⊆ {x ∈ Rn | ‖x‖ ≤ B}

(‖x‖ =
√∑n

i=1 x
2
i is the Euclidean norm of the vector x ∈ R)

• a point x of a polyhedron P is said to be an extreme point or a vertex of P if it cannot be
expressed as a strict convex combination of other two points of the polyhedron, i.e., if there
exist no y, z ∈ P, y 6= z and λ ∈ (0, 1) such that x = λy + (1− λ)z

• every point of a polytope can be obtained as the convex combination of its vertices.
(Minkowski-Weyl Theorem)
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Mathematical ProgrammingDefinitions

• If A and b are made of rational numbers, P = {x ∈ Rn | Ax ≤ b} is a rational polyhedron

• General optimization problem: max{ϕ(x) | x ∈ F}, F is feasible region for x

• Note: if F is open, eg, x < 5 then: sup{x | x < 5}
sumpreum: least element of R greater or equal than any element in F

• arg min{f (i) | i ∈ I} argument i∗ ∈ I such that f (i∗) = min{f (i) | i ∈ I}
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Mathematical ProgrammingDefinitions

• The inequality denoted by (a, α) is called a valid inequality for P if ax ≤ α,∀x ∈ P.
Note that (a, α) is a valid inequality if and only if P lies in the half-space {x ∈ Rn | ax ≤ α}.

• A face of P is F = {x ∈ P | ax = α} where (a, α) is a valid inequality for P. Hence, it is the
intersection of P with the hyperplane of a valid inequality. It is said to be proper if F 6= ∅ and
F 6= P.

• If F 6= ∅ we say that the corresponding hyperplane supports P.
If c is a non zero vector for which δ = max{cT x | x ∈ P} is finite,
then the set {x | cT x = δ} is called supporting hyperplane.

• A point x for which {x} is a face is called a vertex of P and also a basic solution of Ax ≤ b
(0 dim face)

• A facet is a maximal face distinct from P
cx ≤ d is facet defining if cx = d is a supporting hyperplane of P of n − 1 dim
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Solving LP Problems
Mathematical ProgrammingLinear Programming Problem

Input: a matrix A ∈ Rm×n and column vectors b ∈ Rm, c ∈ Rn

Task:
1. decide that {x ∈ Rn;Ax ≤ b} is empty (prob. infeasible), or

2. find a column vector x ∈ Rn such that Ax ≤ b and cT x is max, or

3. decide that for all α ∈ R there is an x ∈ Rn with Ax ≤ b and cT x > α (prob. unbounded)

1. F = ∅
2. F 6= ∅ and ∃ solution

1. one solution
2. infinite solutions

3. F 6= ∅ and 6 ∃ solution
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Solving LP Problems
Mathematical ProgrammingFundamental Theorem of LP

Theorem (Fundamental Theorem of Linear Programming)

Given:

min{cT x | x ∈ P} where P = {x ∈ Rn | Ax ≤ b}

If P is a bounded polyhedron and not empty and x∗ is an optimal solution to the problem, then:

• x∗ is an extreme point (vertex) of P, or

• x∗ lies on a face F ⊂ P of optimal solutions

Proof idea:

• assume x∗ not a vertex of P then ∃ a ball around it still in P. Show that a point in the ball
has better cost

• if x∗ is not a vertex then it is a convex combination of vertices. Show that all points are also
optimal.
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Implications:

• the optimal solution is at the intersection of supporting hyperplanes.

• hence finitely many possibilities

• solution method: write all inequalities as equalities and solve all
(
m
n

)
systems of linear

equalities (n # variables, m # equality constraints)

• for each point we then need to check if feasible and if best in cost.

• each system is solved by Gaussian elimination

• Stirling approximation:(
2m
m

)
≈ 4m√

πm
as m→∞
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Mathematical ProgrammingSimplex Method

1. find a solution that is at the intersection of some n hyperplanes

2. try systematically to produce the other points by exchanging one hyperplane with another

3. check optimality, proof provided by duality theory

42



Introduction
Solving LP Problems
Mathematical ProgrammingOutline

1. Introduction
Diet Problem

2. Solving LP Problems
Fourier-Motzkin method

3. Mathematical Programming
Definitions
Fundamental Theorem of LP
Gaussian Elimination

44



Introduction
Solving LP Problems
Mathematical ProgrammingGaussian Elimination

1. Forward elimination
reduces the system to row echelon form by elementary row operations
• multiply a row by a non-zero constant
• interchange two rows
• add a multiple of one row to another

(or LU decomposition)

2. Back substitution (or reduced row echelon form - RREF)
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Example

2x + y − z = 8 (R1)
−3x − y + 2z = −11 (R2)
−2x + y + 2z = −3 (R3)

|----+----+----+----+-----|
| R1 | 2 | 1 | -1 | 8 |
| R2 | -3 | -1 | 2 | -11 |
| R3 | -2 | 1 | 2 | -3 |
|----+----+----+----+-----|

2x + y − z = 8 (R1)
+ 1

2y + 1
2z = 1 (R2)

+ 2y + 1z = 5 (R3)

2x + y − z = 8 (R1)
+ 1

2y + 1
2z = 1 (R2)

− z = 1 (R3)

2x + y − z = 8 (R1)
+ 1

2y + 1
2z = 1 (R2)

− z = 1 (R3)

x = 2 (R1)
y = 3 (R2)

z = −1 (R3)

|---------------+---+-----+------+---|
| R1’=1/2 R1 | 1 | 1/2 | -1/2 | 4 |
| R2’=R2+3/2xR1 | 0 | 1/2 | 1/2 | 1 |
| R3’=R3+R1 | 0 | 2 | 1 | 5 |
|---------------+---+-----+------+---|

|-------------+---+-----+------+---|
| R1’=R1 | 1 | 1/2 | -1/2 | 4 |
| R2’=2 R2 | 0 | 1 | 1 | 2 |
| R3’=R3-4xR2 | 0 | 0 | -1 | 1 |
|-------------+---+-----+------+---|

|---------------+---+-----+---+-----|
| R1’=R1-1/2xR3 | 1 | 1/2 | 0 | 7/2 |
| R2’=R2+R3 | 0 | 1 | 0 | 3 |
| R3’=-R3 | 0 | 0 | 1 | -1 |
|---------------+---+-----+---+-----|

|---------------+---+---+---+----+
| R1’=R1-1/2xR2 | 1 | 0 | 0 | 2 | => x=2
| R2’=R2 | 0 | 1 | 0 | 3 | => y=3
| R3’=R3 | 0 | 0 | 1 | -1 | => z=-1
|---------------+---+---+---+----+
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 2 1 −1
−3 −1 2
−2 1 2

xy
z

 =

 8
−11
−3

 Ax = b

x = A−1b

 2 1 −1
−3 −1 2
−2 1 2

 =

 1 0 0
l21 1 0
l31 l32 1

u11 u12 u13
0 u22 u23
0 0 u33

 A = PLU

x = A−1b = U−1L−1PTb

z1 = PTb, z2 = L−1z1, x = U−1z2
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Mathematical ProgrammingIn Python

� �
In [1]: import scipy as sc

In [2]: A = sc.array([[2,1,−1],[−3,−1,2],[−2,1,2]])

In [3]: from scipy import linalg as sl

In [4]: P,L,U = sl.lu(A)

In [5]: print(P,L,U)
[[0. 0. 1.]
[1. 0. 0.]
[0. 1. 0.]]

[[ 1. 0. 0. ]
[ 0.66666667 1. 0. ]
[−0.66666667 0.2 1. ]]

[[−3. −1. 2. ]
[ 0. 1.66666667 0.66666667]
[ 0. 0. 0.2 ]]� �
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Polynomial time O(n2m) but needs to guarantee that all the numbers during the run can be
represented by polynomially bounded bits
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