DM545/DM871

Linear and Integer Programming

Linear Programming

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Outline

1. Introduction
Diet Problem

2. Solving LP Problems
Fourier-Motzkin method

3. Mathematical Programming
Definitions
Fundamental Theorem of LP
Gaussian Elimination

Introduction
Solving LP Problems
Mathematical Programming



Introduction
Solving LP Problems

O utl i ne Mathematical Programming

1. Introduction



Introduction
Solving LP Problems

O utl i ne Mathematical Programming

1. Introduction
Diet Problem



The Diet Problem (Blending Problems)

® Select a set of foods that will satisfy a set of daily nutritional
requirements at minimum cost.

® Motivated in the 1930s and 1940s by US army.
® Formulated as a linear programming problem by George Stigler

® (programming intended as planning not computer code)

min  cost/weight

subject to nutrition requirements:
eat enough but not too much of Vitamin A
eat enough but not too much of Sodium
eat enough but not too much of Calories
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Introduction

The Diet Problem

Suppose there are:
® 3 foods available: corn, milk, and bread, and

® there are restrictions on the number of calories (between 2000 and 2250) and the amount of
Vitamin A (between 5,000 and 50,000)

Food | Cost per serving Vitamin A Calories

Corn $0.18 107 72

2% Milk $0.23 500 121
Wheat Bread $0.05 0 65
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Solving LP Problems

The Mathematical Model oo ening

Parameters (given data)

F =
N =

.0
Il

=
3
I

set of foods
set of nutrients

amount of nutrient / in food j, Vi € N, Vj € F

cost per serving of food j,Vj € F

minimum number of required servings of food j,V/ € F
maximum allowable number of servings of food j,Vj € F
minimum required level of nutrient /,Vi € N

maximum allowable level of nutrient /,Vi € N

Decision Variables
xj = number of servings of food j to purchase/consume, Vj € F
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The Mathematical Model oo ening

Objective Function: Minimize the total cost of the food
Minimize Z GiX;
jeF
Constraint Set 1: For each nutrient / € N, at least meet the minimum required level
> aixi = Npinj,  VieEN
JEF
Constraint Set 2: For each nutrient / € N, do not exceed the maximum allowable level.

> 35 < Noaiy VieN
JEF

Constraint Set 3: For each food j € F, select at least the minimum required number of servings
Xj 2> Fumin,j, VjeF

Constraint Set 4: For each food j € F, do not exceed the maximum allowable number of servings.

Xj < Frmax.,j, VjeF
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The Mathematical Model T e g

system of equalities and inequalities

min E G Xj

JjeF
Zaijxj 2 Niin,i VieN
JjEF
> aj% < Npaxjs  VieN
JjEF

Xj>Fmin,j7 VJEF

XjSFmax,j; VJGF



Mathematical Model

Machines/Materials A and B
Products 1 and 2

max 6x; + 8x»
5x1 + 10x> < 60
4x; + 4xo <40
X1 = 0
X2 Z 0

V
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Graphical Representation:

X2

N

N

N

NEEN

ENEN

BN
L2 BN
\/\\ \\\ 5X1 + 10X2 S 60
S Xl

N
6X1 + 8X2 =16 4X1 + 4X2 S 40
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In

Matrix Form

max CiX1 + CXo + 3X3+ ...+ ChXp =2
s.t. ayxy + aexe + aizxg + ...+ X, < by
a2 Xy + anxp + axnxs + ...+ axx, < by
amix1 + ameXx2 + am3x3s + ... + amnXy < by
X1, X250y Xn > 0
C1 d11 412 ... din X1
C2 21 a2 ... azp X2
C - ) A - b X - b)
Cn dml dm2 --- dmn Xn
max z=c'x
Ax<b
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L i near P rogra mm i ng Mathematical Programming

Abstract mathematical model:
Parameters, Decision Variables, Objective, Constraints
(+ Domains & Quantifiers)

The Syntax of a Linear Programming Problem

objective func. max / min c’x ceR”
constraints s.t. Ax z b AeR™ beR™
x>0 x€eR",0e€R"

Essential features: continuity, linearity (proportionality and additivity), certainty of parameters

® Any vector x € IR" satisfying all constraints is a feasible solution.

® Each x* € IR” that gives the best possible value for c”x among all feasible x is an optimal
solution or optimum

® The value ¢”x* is the optimum value
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Diet Problem — History

® The linear programming model consisted of 9 equations in 77 variables
® |n 1944, Stigler guessed an near-optimal solution using a heuristic method

® |n 1947, the National Bureau of Standards used the newly developed simplex method to solve
Stigler's model.
It took 9 clerks using hand-operated desk calculators 120 man days to solve for the optimal
solution

® The original instance: https://developers.google.cn/optimization/lp/stigler_diet
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https://developers.google.cn/optimization/lp/stigler_diet

AMPL Model

# diet.mod
set NUTR;
set FOOD;

param cost {FOOD} > 0;

param f_min {FOOD} >= 0;

param f _max { j in FOOD} >=f min[j];
param n_min { NUTR } >= 0;

param n_max {i in NUTR } >=n_minli];
param amt {NUTR,FOOD} >= 0;

var Buy { j in FOOD} >=f min[j], <= f_ max][j]
minimize total cost: sum { j in FOOD } cost [j] * Buyl[j];

subject to diet { i in NUTR }:
n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max][i];

Introduction
Solving LP Problems
Mathematical Programming
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AMPL Model b e ming
# diet.dat param amt (tr):
data; A C Bl B2 :=
BEEF 60 20 10 15
set NUTR := AB1 B2 C; CHK 8 0 20 20

param: cost f min f max :=
BEEF 3.19 0 100
CHK 2.59 0 100
FISH 2.29 0 100
HAM 2.89 0 100
MCH 1.89 0 100
MTL 1.99 0 100
SPG 1.99 0 100
TUR 2.49 0 100 ;

param: n_min n_max :=
A 700 10000
C 700 10000
B1 700 10000
B2 700 10000 ;
# %

set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR;

FISH 8 10 15 10
HAM 40 40 35 10
MCH 15 35 15 15
MTL 70 30 15 15
SPG 25 50 25 15
TUR 60 20 15 10 ;
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Python Scri pt Solving LP Problems

Mathematical Programming
Model

# Model diet.py
m = Model("diet")

# Create decision variables for the foods to buy
buy = {}
for f in foods:

buy[f] = m.addVar(obj=cost[f], name=f)

# Nutrition constraints
for c in categories:
m.addConstr(
quicksum(nutritionValues|[f,c] * buy[f] for f in foods) <= maxNutrition[c], name=c+ ’max’)
m.addConstr(
quicksum(nutritionValues|f,c] * buy[f] for f in foods) >= minNutrition[c], name=c+ ’min’)

# Solve
m.optimize()

16



Python Script

Data

Introduction
Solving LP Problems
Mathematical Programming

from gurobipy import *

categories, minNutrition, maxNutrition = multidict({
’calories’: [1800, 2200],
’protein’: [91, GRB.INFINITY],
>fat’: [0, 65],
’sodium’: [0, 1779] })

foods, cost = multidict({
’hamburger’: 2.49,
’chicken’: 2.89,
’hot dog’: 1.50,
’fries’: 1.89,
’macaroni’: 2.09,
’pizza’: 1.99,
’salad’: 2.49,
’milk’: 0.89,
’ice cream’: 1.59 })

# Nutrition values for the foods
nutritionValues = {

(’hamburger’, ’calories’): 410,

(’hamburger’, ’protein’): 24,
(’hamburger’, *fat’): 26,
(’hamburger’, ’sodium’): 730,
(’chicken’, ’calories’): 420,
(’chicken’, ’protein’): 32,
(’chicken’, *fat’): 10,
(’chicken’, ’sodium’): 1190,
(’hot dog’, ’calories’): 560,
(’hot dog’, ’protein’): 20,
(’hot dog’, ’fat’): 32,

(’hot dog’, ’sodium’): 1800,
(’fries’, ’calories’): 380,
(’fries’, ’protein’): 4,
(’fries’, ’fat’): 19,
(’fries’, ’sodium’): 270,
(’macaroni’, ’calories’): 320,
(’macaroni’, ’protein’): 12,
(’macaroni’, >fat’): 10,
(’macaroni’, ’sodium’): 930,
(’pizza’, ’calories’): 320,
(’pizza’, ’protein’): 15,
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2. Solving LP Problems
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Solving LP Problems

History of Linear Programming (LP)

System of linear equations

~ It is impossible to find out who knew what when first.
Just two “references’:

® Egyptians and Babylonians considered about 2000 B.C. the solution of special linear equations.

But, of course, they described examples and did not describe the methods in "today's style".

® What we call “Gaussian elimination” today has been explicitly described in Chinese “Nine
Books of Arithmetic” which is a compendium written in the period 2000 B.C. to A.D. 9, but
the methods were probably known long before that.

® Gauss, by the way, never described “Gaussian elimination”. He just used it and stated that the
linear equations he used can be solved “per eliminationem vulgarem”
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Solving LP Problems

History of Linear Programming (LP)

® Origins date back to Newton, Leibnitz, Lagrange, etc.

® |n 1827, Fourier described a variable elimination method for systems of linear inequalities,
today often called Fourier-Motzkin elimination (Motzkin, 1937). It can be turned into an LP
solver but inefficient.

® In 1932, Leontief (1905-1999) Input-Output model to represent interdependencies between
branches of a national economy (1976 Nobel prize)

® In 1939, Kantorovich (1912-1986): Foundations of linear programming (Nobel prize in
economics with Koopmans on LP, 1975) on Optimal use of scarce resources: foundation and
economic interpretation of LP

® The math subfield of Linear Programming was created by George Dantzig, John von Neumann
(Princeton), and Leonid Kantorovich in the 1940s.

® |n 1947, Dantzig (1914-2005) invented the (primal) simplex algorithm working for the US Air
Force at the Pentagon. (program=plan)

20



Solving LP Problems

History of LP (cntd)

® |In 1954, Lemke: dual simplex algorithm,
® |n 1954, Dantzig and Orchard Hays: revised simplex algorithm

® |n 1970, Victor Klee and George Minty created an example that showed that the classical
simplex algorithm has exponential worst-case behavior.

® |n 1979, L. Khachain found a new efficient algorithm for linear programming. It was terribly
slow. (Ellipsoid method)

® |n 1984, Karmarkar discovered yet another new efficient algorithm for linear programming. It
proved to be a strong competitor for the simplex method. (Interior point method)
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Solving LP Problems

History of Optimization

® |n 1951, Nonlinear Programming began with the Karush-Kuhn-Tucker Conditions
® |n 1952, Commercial Applications and Software began

® |n 1950s, Network Flow Theory began with the work of Ford and Fulkerson.

® |n 1955, Stochastic Programming began

® |n 1958, Integer Programming began by R. E. Gomory.

® In 1962, Complementary Pivot Theory

22
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Introduction

Solving LP Problems

Fourier Motzkin elimination method Mathematical Programming

Has Ax < b a solution? (Assumption: A € Q%" b € Q)
Idea:

1. transform the system into another by eliminating some variables such that the two systems
have the same solutions over the remaining variables.

2. reduce to a system of constant inequalities that can be easily decided

Let x, be the variable to eliminate
Let M = {1...m} indices of the constraints
For a variable j let's partition the rows of the matrix in

N={ieM|a;<0}
Z={ieM]|a=0}
P={ieM]a; >0}

24
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1 .
Xr Zbll'ri Ir<:1 a:-ka., air <0 XrZAi(le"'erfl)a ieN
x, < b, — Z;;i alyxk, ap>0 x < Bi(x1,...,%-1), [€P
all other constraints i€ Z all other constraints i€ Z

Hence the original system is equivalent to

max{A;(x1,...,x—1),i € N} < x, < min{Bi(x1,...,x-1),i € P}
all other constraints i€ Z

which is equivalent to

Ail(xt, .oy xr—1) < Bj(xa, ..., xr—1) ieN,jeP
all other constraints ie”Z

we eliminated x, but:

[N| - |P| inequalities
|Z| inequalities

after d iterations if |[P| = || = m/2 exponential growth: (1/49)(m/2)%’

25



Introduction

Example Mot Prassarmming
—7X1 + 6X2 < 25
X1 — 5X2 S 1
X1 S 7
—Xx1 + 2X2 S 12
—x;1 —3x <1
2X1 — X2 S 10

x> variable to eliminate
N =1{2,5,6},Z={3},P={1,4}
|Z U (N x P)| =7 constraints

By adding one variable and one inequality, Fourier-Motzkin elimination can be turned into an LP
solver.
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Introduction
Solving LP Problems

Definitions Mathematica Progs
® [a,b] = {x € R|a<x < b} closed interval
(a,b) = {x € R | a < x < b} open interval

® column vector and matrices
cyTy N
scalar product: y'x = >"", yix;

® Ax column vector combination of the columns of A;
u” A row vector combination of the rows of A

® |inear combination

Vi,V2...,Vk € R”

k
A=[A,..., ] €RK X:)‘1V1+"'+)\kaZZIAfVi

moreover:
A>0 conic combination
AT1=1 affine combination < A= 1)
i=1

A>0 and \T1=1 convex combination

=

29



Introduction
Solving LP Problems
Math

Definitions ical Progr

® set S is linear (affine) independent if no element of it can be expressed as linear combination
of the others
Eg: S CIR” = max n lin. indep. (max n+ 1 aff. indep.)

® convex set: if x,y € Sand 0 < A <1then &x+(1—AyeS
nonconvex convex

® convex function if its epigraph {(x,y) € R? : y > f(x)} is a convex set or f : X — R and
if Vx,y € X, A €[0,1] it holds that f(Ax + (1 — A)y) < Af(x)+ (1= N)f(y)

30



Definitions

® For a set of points S C R”
lin(S) linear hull (span)

cone(S) conic hull
aff(S) affine hull
conv(S) convex hull
x

Introduction
Solving LP Problems
Matl

seal P
Progr

the convex hull of X

conv(X) = {Aixa + Aoxa + ...+ Anxn | Xi € X, A1,...,An >0 and z,A,:1}|

31



Definitions

® rank of a matrix for columns (= for rows)
if (m, n)-matrix has rank = min{m, n} then the matrix is full rank
if (n, n)-matrix is full rank then it is regular and admits an inverse

® G C R"is an hyperplane if 3a € IR”\ {0} and a € IR:

G={xeR"|a"x=a}

® H C IR"is an halfspace if 3a € IR”\ {0} and o € IR:
H={xcR"|a"x < a}

(a”x = a is a supporting hyperplane of H)

Introduction
Solving LP Problems
ceal P,

Math
Matl Progr
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Definitions Miheimatical Progsamming

aset S C R"is a polyhedron if 3me Z", Ac R™" b e R™:

P={xecR"[Ax<b}=[){xeR"|a]x< b}
i=1

i.e., a polyhedron P # R" is determined by finitely many halfspaces
a polyhedron P is a polytope if it is bounded: 3B € R, B > 0:
PC{xeR"|[x]| < B}

(x| = y/>-"_, x? is the Euclidean norm of the vector x € R)

a point x of a polyhedron P is said to be an extreme point or a vertex of P if it cannot be
expressed as a strict convex combination of other two points of the polyhedron, i.e., if there
existnoy,z€ P,y#zand A € (0,1) such that x = Ay + (1 — \)z

every point of a polytope can be obtained as the convex combination of its vertices.
(Minkowski-Weyl Theorem)
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ceal P,

Definitions Mah F

If A and b are made of rational numbers, P = {x € R" | Ax < b} is a rational polyhedron
General optimization problem: max{p(x) | x € F}, F is feasible region for x
Note: if F is open, eg, x < 5 then: sup{x | x < 5}

sumpreum: least element of R greater or equal than any element in F

argmin{f(i) | i € I} argument i* € [ such that f(i*) = min{f (i) | i€/}
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Definitions

e .
Progr g

The inequality denoted by (a, ) is called a valid inequality for P if ax < o, Vx € P.
Note that (a, «) is a valid inequality if and only if P lies in the half-space {x € R" | ax < a}.

A face of Pis F = {x € P | ax = a} where (a, ) is a valid inequality for P. Hence, it is the
intersection of P with the hyperplane of a valid inequality. It is said to be proper if F # () and
F # P.

If F +# () we say that the corresponding hyperplane supports P.
If c is a non zero vector for which § = max{c’x | x € P} is finite,
then the set {x | c/x = ¢} is called supporting hyperplane.

A point x for which {x} is a face is called a vertex of P and also a basic solution of Ax < b
(0dim face)

A facet is a maximal face distinct from P
cx < d is facet defining if cx = d is a supporting hyperplane of P of n — 1dim
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Linear Programming Problem el Prog

Input: a matrix A € R™*" and column vectors b € R™, c € R"

Task:
1. decide that {x € R"; Ax < b} is empty (prob. infeasible), or
2. find a column vector x € R” such that Ax < b and ¢’ x is max, or

3. decide that for all o € R there is an x € R” with Ax < b and ¢”x > « (prob. unbounded)

F=0
2. F # () and 3 solution

1. one solution
2. infinite solutions

3. F # 0 and A solution
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3. Mathematical Programming

Fundamental Theorem of LP
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Introduction

Solving LP Problems
Fundamental Theorem of LP

Mathematical Programming

Theorem (Fundamental Theorem of Linear Programming)
Given:

min{c'x | x € P} where P={xe€ R" | Ax < b}

If P is a bounded polyhedron and not empty and x* is an optimal solution to the problem, then:

® x* is an extreme point (vertex) of P, or G‘
® x* lies on a face F C P of optimal solutions 69/
v
Proof idea:

® assume x* not a vertex of P then 7 a ball around it still in P. Show that a point in the ball
has better cost

® if x* is not a vertex then it is a convex combination of vertices. Show that all points are also
optimal.
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Implications:

® the optimal solution is at the intersection of supporting hyperplanes.
® hence finitely many possibilities

® solution method: write all inequalities as equalities and solve all (':) systems of linear
equalities (n # variables, m # equality constraints)

® for each point we then need to check if feasible and if best in cost.
® each system is solved by Gaussian elimination

® Stirling approximation:

2m 4m
AR ——— as m — 00
m m™m
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Simplex Method Mathematical Prog

1. find a solution that is at the intersection of some n hyperplanes
2. try systematically to produce the other points by exchanging one hyperplane with another

3. check optimality, proof provided by duality theory

42
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3. Mathematical Programming

Gaussian Elimination
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Gaussian Elimination

1. Forward elimination
reduces the system to row echelon form by elementary row operations

® multiply a row by a non-zero constant
® interchange two rows
® add a multiple of one row to another

(or LU decomposition)

2. Back substitution (or reduced row echelon form - RREF)

ical Progr
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LU Factorization feal Promr
(2 1 —17 [x] 8 Ax = b
—3-12| |yl =]-11 B
-2 1 2] |z -3 x=A""b
i 2 1 —1_ i 1 0 0 uy1 Ui U13 A= PLU
-3-12|=1h 10 0 wxp ur3 x=A"b=U"L"1PTb
-2 1 2] _/31 k1 0 0 uss 2=PTb, =11z, x=U"2
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Solving LP Problems
Math

In Python el Pro

In [1]: import scipy as sc

In [2]: A = sc.array([[2,1,—1],[—3,—1,2],[—2,1,2]])
In [3]: from scipy import linalg as sl

In [4]: P,L,U = sl.lu(A)

In [5]: print(P,L,U)
[[0.0.1]
[1.0.0]
[0. 1. 0.]]
[[1.0.0.]
[ 0.66666667 1. 0. ]
[~0.66666667 0.2 1. |]
[[-3. —1.2.]
[ 0. 1.66666667 0.66666667]
[0.0.02]]




ical Progr

Polynomial time O(n?m) but needs to guarantee that all the numbers during the run can be
represented by polynomially bounded bits
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