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Exception Handling

Simplex: Exception Handling, Overview Iicalzation

Solution of an LP problem: Handling exceptions in the Simplex Method
a. F# 10 and A solution 1. Unboundedness
b. F +# () and 3 solution 2. More than one solution

i) one solution

I ) 3. Degeneracies
ii) infinite solutions

® benign

c. F=0 ® cycling

4. Infeasible starting
Phase | + Phase |l
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Exception Handling

Unboundedness

max 2x; + Xxo

X2 S 5

—x1 + x <1

x1,x =0

® [nitial tableau

| | x1 | x2 | x3 | x4 | -z | b |
e |
I x31 ol 11 11 01l 015/
Il x4l -11 11 0] 11 O01l1]
[ ————
| I 21 1] 0l ol 1]0]

® x, entering, x; leaving

| I x1 1 x2 |1 x3 1 x4 1 -z1 bl
|-———meme - B T |
| II°=II-I’ I 11 ol 11-11] Ol 41
| I°=I l-11 11 01 1] o1l 11
[, S Y— |
| II1°=11I-1> 1 31 01 O -1 1 11 -11

—x1 + X + x4 = 1, x; can increase without restriction, 0 = min{g tais>0,i=1...,n}



Exception Handling

® x; entering, x3 leaving

| | x1 | x2 1 x3 1 x4 1 -z 1 bl
|-———mmmo - By |
| I°=I 11 01 11 -11 01 41
| II°=II+I’ ol 11 11 01l 0] 5 |
| AP S |
| III°=III-3I’ | O ol-31 21 1] -131

o —

x, was already in basis but for both | and Il (x> + x3 + 0xs = 5), x4 can increase arbitrarily

X2

X1




Exception Handling

oo solutions

max x3 + Xo

5X]_ + 10X2 S 60
4x;1 + 4x, < 40
x1,x2 > 0

® |nitial tableau

| | x1 | x2 | x3 | x4 | -z | b |
T Tur e Jupup—— |
I x31 51101 11 01l 01601
l x4 1 41 41 01 11 01401
I . ———
| I 11 11 01l o1l 11 01
® x, enters, x3 leaves
| I x| x2 | x3 l x4 1 -z 1 b |
|-——me - [ — oot [ R SRR S |
| I°=I/10 l1/2 1 111/101 o1 Ol 6|
| II°=II-4Ix4 | 21 o1 -2/61 1| 01 16 |
[, oo [ N, [ R S Y.
| II1°=III-I |1 1/2 | o1l -1/6 1 O 1 11 -6 |



Exception Handling

® x; enters, x; leaves

| | x1 | x2 | %3 | x4 | -z | bl
[ L e oo |
| I°=I-11°/2 ol 1115 | -1/41 01 2]
| II°=1I1/2 | 11 ol -1/611/2 | 0 8 |
R oo oo E |
| II1°=III-II’/2 |1 O O | © | -1/4 | 11 -10 |

x = (8,2,0,0),z =10

nonbasic variables typically have reduced costs # 0. Here x3 has r.c. = 0. Let's make it enter
the basis

® X3 enters, x» leaves

| | x1 | x2 | x3 | x4 | -z | b |
|- - L Ty, [ SR SR, |
| I°=5I | 0l 51 11-5/41 01 10|
| II°=II+I’/5 | 1] 1] 01l 4 I 01l 10|
| o F P S [ S . |
| III’=III | 0ol ol oOo1l-1/41 11 -10 |

x = (10,0,10,0),z =10
There are 2 optimal solutions ~~ all their convex combinations are optimal solutions (from the
proof of the fundamental theorem of LP) ~~



x{ =1[8,2,0,0]
x5 = [10,0,10,0]
o] =«

ar=1—«

X1

Exception Handling
Initialization

X1 8 10
x| 2 0
x| =% o] T g
X4 0 0

x1 = 8a +10(1 — )

X2:204
X3 = 10(1 —Oé)
X4:0

10



Degeneracy

X1, X2

® [nitial tableau
| x1 | x2 | x3 | x4

® degenerate plvot step: not improving, the entering variable stays at zero

x1

— O

one basic var. is zero) might lead to cycling

¥
|
|
¥
|

[y

-+ ——+

31
+
|
|
+
|

(=]

|
+
|
|
+
|

x4 | -z | b |
Py g |
ol o1
11 01
|
o1l 1]

Exception Handling
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Exception Handling

® now nondegenerate:

ol -11-11]

0

12

> n -+ 1 constraints meet at a vertex

X1




Exception Handling

Def: An improving variable is one with positive reduced cost

Def: A degenerate iteration is one in which the objective function does not increase.
Def: The simplex method cycles if the same tableau appears in two iterations.
Degenerate conditions may appear often in practice but cycling is rare.

(see compendium for the smallest possible example)

Theorem

If the simplex fails to terminate, then it must cycle.

Proof:

® there is a finite number of basis and simplex chooses to always increase the objective value

® hence the only situation for not terminating is that a basis appears again and iterations in
between are degenerate. Two tabelaux with the same basis are the same (related to uniqueness
of basic solutions)

13



Exception Handling

Pivot Rules

Some pivoting rules can prevent the occurrence of cycling alltogether.

So far we chose an arbitrary improving variable to enter. Rules for breaking ties in selecting entering
improving variables (more important than selecting leaving variables)

® Largest Coefficient: the improving var with largest coefficient in last row of the tableau.
Original Dantzig’s rule, can cycle

® Largest increase: absolute improvement: argmax;{c;0; }
computationally more costly

® Steepest edge the improving var that if entering in the basis moves the current basic feasible
sol in a direction closest to the direction of the vector c (ie, maximizes the cosine of the angle
between the two vectors):

a-b=|al|b[[cosd == max T (Xnew — Xold)

*new || || Xnew — Xold |

14



Exception Handling

® Bland's rule (smallest-subscript rule) chooses the improving var with the lowest index and, if
there are more than one leaving variable, the one with the lowest index.
Prevents cycling but is slow (no smart choice for entering variable)

® Random edge select var uniformly at random among the improving ones and the leaving ones
among those selected by the ratio test

® Perturbation method: perturb values of b; terms to avoid b; = 0, which must occur for cycling.

To avoid cancellations: 0 < ¢, K €, 1 < - K 1 < 1
It affects the choice of the leaving variable
Can be shown to be the same as lexicographic method, which prevents cycling
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Exception Handling

Efficiency of Simplex Method Iicalzation
® Trying all points is ~ 47
® |n practice between 2m and 3m iterations
® Klee and Minty 1978 constructed an example that requires 2" — 1 iterations in R":

random shuffle of indexes + lowest index for entering + lexicographic for leaving: expected
iterations < eCVinn

16



Efficiency of Simplex Method

® unknown if there exists a pivot rule that leads to polynomial time.

e Clairvoyant'’s rule: shortest possible sequence of steps

Hirsh conjecture O(n — d) for an n-facet polytope in d-dimensional Euclidean space but best
known n't'n”

® smoothed complexity: slight random perturbations of worst-case inputs

D. Spielman and S. Teng (2001), Smoothed analysis of algorithms: why the simplex algorithm
usually takes polynomial time

O(max(n® log® m, n°log*n, n3o—*))
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O ut I i ne Initialization

2. Initialization



Initial Infeasibility

maXx X3 — Xp
X1 + X2 <
2x1 + 2xp >
X1, X2 2

® [nitial tableau

| I x1 | x2 | x3 | x4
| -t -
=31 11 1] 11 0
l x4 -21-21 01l 1
T T pupp
| I 11 -11 01l O

~~ we do not have an

Exception Handling
Initialization

2 max Xi — X2
5 X1 + x + x3 = 2
0 —2x1 — 2xo + x4 = =5

X1, X2, X3, X4 2 0

l -z bl
[ RPROR PR |
I o1 21
I 01 -51
[ S |
I 11 01

initial basic feasible solution!!
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Initialization

In general finding any feasible solution is difficult as finding an optimal solution, otherwise we could
do binary search

Auxiliary Problem (I Phase of Simplex)
We introduce auxiliary variables:

*

w* = max —xs = minxs
X1 4* X2 AF X3 = 2
2X]_ —+ 2X2 — X4 + X5 = 5

X1, X2, X3, X4, %5 > 0

if w* =0 then x5 = 0 and the two problems are equivalent
if w* > 0 then not possible to set x5 to zero.

® |nitial tableau

| | x1 | x2 | x3 | x4 |1 x5 | -z | -w | b |
T S— |
| I 11 11 1] 0l ol o1l 0121
| Il 21 21 0ol -1t1 11 o1l O01®56]I
lz | 11 -1 01l ol 0ol 11 0101
. S— |
lw | 01 0] |l 0ol -1 0ol 1101

0
Keep z always in basis



Initialization

® we reach a canonical form simply by letting x5 enter the basis:

| | x1 | x2 | x3 | x4 |1 x5 | -z | -w | b |
|--———--- L T T iy |
| 11 11 11 ol ol ol 01 2]
| 21 21 01-11 11 0] 015
| z [l 11 -1 01 ol ol 11 010
| p— Tt e ey
' Iv+II | 21 21 ol -1 1 ol Ol 115/

now we have a basic feasible solution!

® x; enters, x3 leaves

| | x1 | x2 | x3 | x4 | x5 | -z | -w | b |
|-—---——- B T et e e |
| I 11 11 11 0o ol ol o1l 21
| II-21° 1 01 Ol -21]-11] 1] 01 O] 1]
| III-1° | 01 -2 1 -1 ] O] Ol 11 01 -2
|-——-——- B T et e S e |
lv-21> | ol ol -21-121 o1l ol 11 11

w* = —1 then no solution with x5 = 0 exists then no feasible solution to initial problem



max X3 — Xp
X1 + Xo

2x1 + 2x
X1, X2

IV IV IA

(&)

X2

Exception Handling
Initialization

e
V

X1
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Exception Handling

Initial Infeasibility - Another Example Iicalzation
max X3 — Xp
X1+ x <2 max x3 — Xz
2X1 + 2X2 > 2 X1 + X + X3 =2
x1,%x2 > 0 2x1 + 2% —xg = 2

AVAN
o

X1, X2, X3, X4

Auxiliary problem (I phase):

W = max —Xs = minXxs
xp + X2 + X3 =2
2x1 +  2x — X4 + Xs 2

X1, X2, X3, X4, X5 2 0
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® |nitial tableau

ol ol -11 ol

01
~ we do not have an initial basic feasible solution.

1
2

® set in canonical form:

o1l 1

(O]

2

e .
|
|
|
e P " Y
2 ol -11

® x; enters, x5 leaves

o1l 0l
o1l 0l
11 01

xb
| -1/2 |
| -1/2 |
-1

| -1/2 | 1/2

| 1/2
e

ol 1] 1/2

11 0

21 0

01 010
0 hence x5

I x1 | x2 | x3 | x4
o |
1]
0|

0 we have a starting feasible solution for the initial problem.



Initialization

® (Il phase) We keep only what we need:

0l -1/2 |
01 1/2

o |
11
0l -2

2
2

ol 21 11 ol
11 11 o1l ol

0
1

i S

Optimal solution: x; =2, x =0,x3 =0,x4 =2, z = 2.
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max X3 — Xy
X1 + X2

2x1 + 2x

X1, X2

IV IV IA

N

Exception Handling
Initialization

X2

e
=
ke
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Exception Handling

In Dictionary Form iitalzation

max X3 — Xp X3 2 X1 — X
x1 + x <2 X = =5 + 2x1 + 2x
2x1 + 2x0 > 5 ’}777;{7;7}; 777777
X1, X2 Z 0 . .
sol. infeasible
We introduce corrections of infeasibility
max —xp = min
ax X°+'X0 <5 3= 2 — X3 — X
X1 X2 >
x4 = —5H 2x: 2x: X
.t — x5 Mz SEZattn
X1, X2, X0 >0 N 0

It is still infeasible but it can be made feasible by letting xo enter the basis
which variable should leave?

the most infeasible: the var with the b term whose negative value has the largest magnitude
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Exception Handling

Simplex: Exception Handling, Summary Iicalzation

Solution of an LP problem: Handling exceptions in the Simplex Method
a. F# 10 and A solution 1. Unboundedness
b. F +# () and 3 solution 2. More than one solution

i) one solution

G . 3. Degeneracies
ii) infinite solutions

® benign

c. F=0 ® cycling

4. Infeasible starting
Phase | + Phase |l
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