DM545/DM871 Linear and Integer Programming

Lecture 5
Duality

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Derivation and Motivation

2. Theory

Outline

1. Derivation and Motivation

2. Theory

Dual Problem

Dual variables y in one-to-one correspondence with the constraints:

Primal problem:

$$\begin{array}{ll}
\text{max} & z = c^T x \\
Ax \le b \\
x \ge 0
\end{array}$$

Dual Problem:

$$\min_{A^T y \ge c} w = b^T y$$

$$x \ge 0$$

Bounding approach

$$\begin{array}{c} z^* = \max \, 4x_1 + \, x_2 \, + 3x_3 \\ x_1 \, + 4x_2 & \leq 1 \\ 3x_1 + \, x_2 \, + \, x_3 \, \leq 3 \\ x_1, x_2, x_3 \geq 0 \end{array}$$

a feasible solution is a lower bound but how good? By tentatives:

$$(x_1, x_2, x_3) = (1, 0, 0) \rightsquigarrow z^* \ge 4$$

 $(x_1, x_2, x_3) = (0, 0, 3) \rightsquigarrow z^* \ge 9$

What about upper bounds?

Hence $z^* \leq 11$. Is this the best upper bound we can find?

multipliers $y_1, y_2 \ge 0$ that preserve sign of inequality

$$\begin{array}{cccc} y_1 \cdot (& x_1 + 4x_2 &) & \leq & y_1(1) \\ \underline{y_2 \cdot (& 3x_1 + x_2 + & x_3)} & \leq & y_2(3) \\ \hline (y_1 + 3y_2)x_1 + (4y_1 + y_2)x_2 + y_2x_3 \leq y_1 + 3y_2 \end{array}$$

Coefficients

$$y_1 + 3y_2 \ge 4 4y_1 + y_2 \ge 1 y_2 \ge 3$$

 $z = 4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 + y_2)x_2 + y_2x_3 \le y_1 + 3y_2$ then to attain the best upper bound:

$$\begin{array}{ccc} \min & y_1 & + 3y_2 \\ & y_1 & + 3y_2 \geq 4 \\ & 4y_1 + y_2 \geq 1 \\ & y_2 \geq 3 \\ & y_1, y_2 \geq 0 \end{array}$$

6

Multipliers Approach

Working columnwise, since at optimum $\bar{c}_k \leq 0$ for all k = 1, ..., n + m:

$$\begin{cases} \pi_{1}a_{11} + \pi_{2}a_{21} \dots + \pi_{m}a_{m1} + \pi_{m+1}c_{1} \leq 0 \\ \vdots & \ddots & \vdots \\ \frac{\pi_{1}a_{1n}}{\pi_{1}a_{1,n+1}} + \frac{\pi_{2}a_{2n}}{\pi_{2}a_{2,n+1}} \dots + \frac{\pi_{m}a_{mn}}{\pi_{m}a_{m,n+1}} + \frac{\pi_{m+1}c_{n}}{\leq 0 \\ \vdots & \vdots & \vdots \\ \frac{\pi_{1}a_{1,n+m}}{\pi_{1}a_{1,n+m}}, & \frac{\pi_{2}a_{2,n+m}}{\pi_{2}a_{2,n+m}} \dots & \frac{\pi_{m}a_{m,n+m}}{\pi_{m}a_{m,n+m}} \leq 0 \\ \frac{\pi_{m+1}}{\pi_{1}b_{1}} + \frac{\pi_{2}b_{2}}{\pi_{2}a_{2,n+m}} \dots & \frac{\pi_{m}a_{m}a_{m,n+m}}{\pi_{m}b_{m}} \leq 0 \end{cases}$$

(from the last row, $\max \pi b$)

$$\max x_1b_1 + \pi_2b_2 \dots + \pi_mb_m$$

$$\pi_1a_{11} + \pi_2a_{21} \dots + \pi_ma_{m1} \le -c_1$$

$$\vdots \qquad \vdots$$

$$\pi_1a_{1n} + \pi_2a_{2n} \dots + \pi_ma_{mn} \le -c_n$$

$$\pi_1, \pi_2, \dots \pi_m \le 0$$

 $y = -\pi$

3

Example

$$\begin{array}{ll} \max 6x_1 + \ 8x_2 \\ 5x_1 + 10x_2 \leq 60 \\ 4x_1 + \ 4x_2 \leq 40 \\ x_1, x_2 \geq 0 \end{array}$$

$$\begin{cases} 5\pi_1 \ + \ 4\pi_2 \ + 6\pi_3 \le 0 \\ 10\pi_1 \ + \ 4\pi_2 \ + 8\pi_3 \le 0 \\ 1\pi_1 \ + \ 0\pi_2 \ + 0\pi_3 \le 0 \\ 0\pi_1 \ + \ 1\pi_2 \ + 0\pi_3 \le 0 \\ 0\pi_1 \ + \ 0\pi_2 \ + 1\pi_3 = 1 \\ 60\pi_1 \ + \ 40\pi_2 \end{cases}$$

$$y_1 = -\pi_1 \ge 0 y_2 = -\pi_2 \ge 0$$

. . .

Duality Recipe

	Primal linear program	Dual linear program
Variables	x_1, x_2, \ldots, x_n	y_1, y_2, \dots, y_m
Matrix	A	A^T
Right-hand side	b	\mathbf{c}
Objective function	$\max \mathbf{c}^T \mathbf{x}$	$\min \mathbf{b}^T \mathbf{y}$
Constraints	i th constraint has \leq \geq $=$	$egin{array}{l} y_i \geq 0 \ y_i \leq 0 \ y_i \in \mathbb{R} \end{array}$
	$ \begin{aligned} x_j &\ge 0 \\ x_j &\le 0 \\ x_j &\in \mathbb{R} \end{aligned} $	j th constraint has \geq \leq $=$

Outline

1. Derivation and Motivation

2. Theory

Symmetry

The dual of the dual is the primal:

Primal problem:

$$\max \quad z = c^T x$$
$$Ax \le b$$
$$x \ge 0$$

Let's put the dual in the standard form

Dual problem:

$$\begin{array}{ll}
\min & b^T y & \equiv -\max - b^T y \\
-A^T y & \leq -c \\
y & \geq 0
\end{array}$$

Dual Problem:

$$\min_{A^T y \ge c} w = b^T y \\
y \ge 0$$

Dual of Dual:

$$\begin{array}{ccc}
-\min & -c^T x \\
-Ax & \geq & -b \\
x & \geq & 0
\end{array}$$

Weak Duality Theorem

As we saw the dual produces upper bounds. This is true in general:

Theorem (Weak Duality Theorem)

Given:

(P)
$$\max\{c^T x \mid Ax \le b, x \ge 0\}$$

(D) $\min\{b^T y \mid A^T y \ge c, y \ge 0\}$

for any feasible solution x of (P) and any feasible solution y of (D):

$$c^T x \leq b^T y$$

Proof:

From (D)
$$c_j \leq \sum_{i=1}^m y_i a_{ij} \ \forall j$$
 and from (P) $\sum_{i=1}^n a_{ij} x_j \leq b_i \ \forall i$

From (D) $y_i \ge 0$ and from (P) $x_j \ge 0$

$$\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} y_{i} a_{ij} \right) x_{j} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) y_{i} \leq \sum_{i=1}^{m} b_{i} y_{i}$$

Strong Duality Theorem

Due to Von Neumann and Dantzig 1947 and Gale, Kuhn and Tucker 1951.

Theorem (Strong Duality Theorem)

Given:

(P)
$$\max\{c^T x \mid Ax \le b, x \ge 0\}$$

(D) $\min\{b^T y \mid A^T y \ge c, y \ge 0\}$

exactly one of the following occurs:

- 1. (P) and (D) are both infeasible
- 2. (P) is unbounded and (D) is infeasible
- 3. (P) is infeasible and (D) is unbounded
- 4. (P) has feasible solution, then let an optimal be: $x^* = [x_1^*, \dots, x_n^*]$ (D) has feasible solution, then let an optimal be: $y^* = [y_1^*, \dots, y_m^*]$, then:

$$c^T x^* = b^T y^*$$

Proof:

- all other combinations of 3 possibilities (Optimal, Infeasible, Unbounded) for (P) and 3 for (D) are ruled out by weak duality theorem.
- we use the simplex method. (Other proofs independent of the simplex method exist, eg, Farkas Lemma and convex polyhedral analysis)
- The last row of the final tableau will give us

$$z = z^* + \sum_{k=1}^{n+m} \bar{c}_k x_k = z^* + \sum_{j=1}^{n} \bar{c}_j x_j + \sum_{i=1}^{m} \bar{c}_{n+i} x_{n+i}$$

$$= z^* + \bar{c}_B x_B + \bar{c}_N x_N$$
(*)

In addition, $z^* = \sum_{j=1}^n c_j x_j^*$ (c_j , original values) because optimal value

- We define $y_i^* = -\bar{c}_{n+i}, i = 1, 2, ..., m$
- We claim that $(y_1^*, y_2^*, \dots, y_m^*)$ is a dual feasible solution satisfying $c^T x^* = b^T y^*$.

• Let's verify the claim:

We substitute in (*): i)
$$z = \sum_{j=1}^{n} c_j x_j$$
; ii) $\bar{c}_{n+i} = -y_i^*$; and iii) $x_{n+i} = b_i - \sum_{j=1}^{n} a_{ij} x_j$ for $i = 1, 2, \ldots, m$ ($n + i$ are the slack variables)

$$\sum_{j=1}^{n} c_j x_j = z^* + \sum_{j=1}^{n} \bar{c}_j x_j - \sum_{i=1}^{m} y_i^* \left(b_i - \sum_{j=1}^{n} a_{ij} x_j \right)$$
$$= \left(z^* - \sum_{i=1}^{m} y_i^* b_i \right) + \sum_{j=1}^{n} \left(\bar{c}_j + \sum_{i=1}^{m} a_{ij} y_i^* \right) x_j$$

This must hold for every (x_1, x_2, \dots, x_n) hence:

$$z^* = \sum_{i=1}^m b_i y_i^*$$

$$c_j = \bar{c}_j + \sum_{i=1}^m a_{ij} y_i^*, j = 1, 2, \dots, n$$

$$\Rightarrow y^* \text{ satisfies } c^T x^* = b^T y^*$$

Since $\bar{c}_k < 0$ for every $k = 1, 2, \dots, n + m$:

$$ar{c}_j \leq 0 \leadsto \qquad c_j - \sum_{i=1}^m y_i^* a_{ij} \leq 0 \leadsto \qquad \sum_{i=1}^m y_i^* a_{ij} \geq c_j \qquad j = 1, 2, \dots, n$$
 $ar{c}_{n+i} \leq 0 \leadsto \qquad y_i^* = -ar{c}_{n+i} \geq 0, \qquad i = 1, 2, \dots, m$

 $\implies y^*$ is also dual feasible solution

Complementary Slackness Theorem

Theorem (Complementary Slackness)

A feasible solution x^* for (P)

A feasible solution y* for (D)

Necessary and sufficient conditions for optimality of both:

$$\left(c_{j}-\sum_{i=1}^{m}y_{i}^{*}a_{ij}\right)x_{j}^{*}=0, \quad j=1,\ldots,n$$

If
$$x_j^* \neq 0$$
 then $\sum y_i^* a_{ij} = c_j$ (no surplus)
If $\sum y_i^* a_{ij} > c_j$ then $x_j^* = 0$

Proof:

$$z^* = c^T x^* \le y^* A x^* \le b^T y^* = w^*$$

Hence from strong duality theorem:

$$cx^* - v^*Ax^* = 0$$

In scalars

$$\sum_{j=1}^{n} \left(c_{j} - \sum_{i=1}^{m} y_{i}^{*} a_{ij} \right) \underbrace{x_{j}^{*}}_{\geq 0} = 0$$

Hence each term must be = 0

Proof in scalar form:

$$c_j x_j^* \leq \left(\sum_{i=1}^m a_{ij} y_i^*\right) x_j^* \quad j=1,2,\ldots,n \quad ext{from feasibility in D}$$
 $\left(\sum_{j=1}^n a_{ij} x_j^*\right) y_i^* \leq b_i y_i^* \quad i=1,2,\ldots,m \quad ext{from feasibility in P}$

Summing in i and in i:

$$\sum_{j=1}^{n} c_j x_j^* \le \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i^* \right) x_j^* = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j^* \right) y_i^* \le \sum_{i=1}^{m} b_i y_i^*$$

For the strong duality theorem the left hand side is equal to the right hand side and hence all inequalities become equalities.

$$\sum_{j=1}^{n} \left(c_{j} - \sum_{i=1}^{m} y_{i}^{*} a_{ij} \right) \underbrace{x_{j}^{*}}_{\geq 0} = 0$$

Duality - Summary

- Derivation:
 - Economic interpretation
 - Bounding Approach
 - Multiplier Approach
 - Recipe
 - Lagrangian Multipliers Approach (next time)
- Theory:
 - Symmetry
 - Weak Duality Theorem
 - Strong Duality Theorem
 - Complementary Slackness Theorem