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Revised Simplex Method
Efficiency IssuesMotivation

Complexity of single pivot operation in standard simplex:

• entering variable O(n)

• leaving variable O(m)

• updating the tableau O(mn)

Problems with this:

• Time: we are doing operations that are not actually needed
Space: we need to store the whole tableau: O(mn) floating point numbers

• Most problems have sparse matrices (many zeros)
sparse matrices are typically handled efficiently
the standard simplex has the ’Fill in’ effect: sparse matrices are lost

• accumulation of Floating Point Errors over the iterations
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Revised Simplex Method
Efficiency IssuesRevised Simplex Method

Several ways to improve wrt pitfalls in the previous slide, requires matrix description of the simplex.

max
n∑

j=1
cjxj

n∑
j=1

aijxj ≤ bi i = 1..m

xj ≥ 0 j = 1..n

max cT x max{cT x | Ax = b, x ≥ 0}
Ax = b
x ≥ 0

A ∈ Rm×(n+m)

c ∈ R(n+m), b ∈ Rm, x ∈ Rn+m

At each iteration the simplex moves from a basic feasible solution to another.

For each basic feasible solution:

• B = {1 . . .m} basis
• N = {m + 1 . . .m + n}
• AB = [a1 . . . am] basis matrix
• AN = [am+1 . . . am+n]

• xN = 0
• xB ≥ 0

5



Revised Simplex Method
Efficiency Issues


AN AB 0 b

cTN cTB 1 0



Ax = ANxN + ABxB = b
ABxB = b− ANxN

Basic feasible solution ⇐⇒ AB is non-singular

xB = A−1
B b− A−1

B ANxN
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for the objective function:

z = cT x = cTB xB + cTNxN

Substituting for xB from above:

z = cTB (A−1
B b− A−1

B ANxN) + cTNxN =

= cTBA
−1
B b + (cTN − cTBA

−1
B AN)xN

Collecting together:

xB = A−1
B b− A−1

B ANxN
z = cTBA

−1
B b + (cTN − cTB A−1

B AN︸ ︷︷ ︸
Ā

)xN

In tableau form, for a basic feasible solution corresponding to B we have:
A−1
B AN I 0 A−1

B b

cTN − cTBA
−1
B AN 0 1 −cTBA

−1
B b


We do not need to compute
all elements of Ā



Revised Simplex Method
Efficiency IssuesExample

max x1 + x2

−x1 + x2 ≤ 1
x1 ≤ 3

x2 ≤ 2
x1, x2 ≥ 0

max x1 + x2

−x1 + x2 + x3 = 1
x1 + x4 = 3

x2 + x5 = 2
x1, x2, x3, x4, x5 ≥ 0

Initial tableau

x1 x2 x3 x4 x5 −z b

−1 1 1 0 0 0 1
1 0 0 1 0 0 3
0 1 0 0 1 0 2
1 1 0 0 0 1 0

After two iterations

x1 x2 x3 x4 x5 −z b

1 0 −1 0 1 0 1
0 1 0 0 1 0 2
0 0 1 1 −1 0 2
0 0 1 0 −2 1 3

Basic variables x1, x2, x4. Non basic: x3, x5. From the initial tableau:

AB =

−1 1 0
1 0 1
0 1 0

 AN =

1 0
0 0
0 1

 xB =

x1
x2
x4

 xN =

[
x3
x5

]

cTB =
[
1 1 0

]
cTN =

[
0 0
]
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• Entering variable:
in std. we look at tableau, in revised we need to compute: cTN − cTBA

−1
B AN

1. find yT = cTBA
−1
B (by solving yTAB = cTB , the latter can be done more efficiently)

2. calculate cTN − yTAN
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Revised Simplex Method
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Step 1:

[
y1 y2 y3

] −1 1 0
1 0 1
0 1 0

 =
[
1 1 0

]
yTAB = cTB

[
1 1 0

] −1 0 1
0 0 1
1 1 −1

 =
[
−1 0 2

]
cTBA

−1
B = yT

Step 2:

[
0 0

]
−
[
−1 0 2

] 1 0
0 0
0 1

 =
[
1 −2

]
cTN − yTAN

(Note that they can be computed individually: cj − yTaj > 0)
Let’s take the first we encounter x3
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• Leaving variable
we increase variable by largest feasible amount θ

R1: x1 − x3 + x5 = 1 x1 = 1 + x3 ≥ 0
R2: x2 + 0x3 + x5 = 2 x2 = 2 ≥ 0
R3: − x3 + x4 − x5 = 2 x4 = 2− x3 ≥ 0

xB = x∗B − A−1
B ANxN

xB = x∗B − dθ
d is the column of A−1

B AN that corresponds to
the entering variable, ie, d = A−1

B a where a is the
entering column

3. Find θ such that xB stays positive:
Find d = A−1

B a (by solving ABd = a)

Step 3:d1
d2
d3

 =

−1 0 1
0 0 1
1 1 −1

10
0

 =⇒ d =

−10
1

 =⇒ xB =

12
2

−
−10

1

 θ ≥ 0

2− θ ≥ 0 =⇒ θ ≤ 2  x4 leaves



Revised Simplex Method
Efficiency Issues

• So far we have done computations, but now we save the pivoting update. The update of AB is
done by replacing the leaving column by the entering column

x∗B =

x1 − d1θ
x2 − d2θ

θ

 =

32
2

 AB =

−1 1 1
1 0 0
0 1 0



• Many implementations depending on how yTAB = cTB and ABd = a are solved. They are in
fact solved from scratch.

• many operations saved especially if many variables!

• special ways to call the matrix A from memory

• better control over numerical issues since A−1
B can be recomputed.
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Revised Simplex Method
Efficiency IssuesSolving the two Systems of Equations

ABx = b solved without computing A−1
B

(costly and likely to introduce numerical inaccuracy)

Recall how the inverse is computed:
For a 2× 2 matrix

A =

[
a b
c d

] the matrix inverse is

A−1 =
1
|A|

[
d −c
−b a

]T
=

1
ad − bc

[
d −b
−c a

]
For a 3× 3 matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33


the matrix inverse is

A−1 =
1
|A|



+

∣∣∣∣a22 a23

a32 a33

∣∣∣∣ − ∣∣∣∣a21 a23

a31 a33

∣∣∣∣ +

∣∣∣∣a21 a22

a31 a32

∣∣∣∣
−
∣∣∣∣a12 a13

a32 a33

∣∣∣∣ +

∣∣∣∣a11 a13

a31 a33

∣∣∣∣ − ∣∣∣∣a11 a12

a31 a32

∣∣∣∣
+

∣∣∣∣a12 a13

a22 a23

∣∣∣∣ − ∣∣∣∣a11 a13

a21 a23

∣∣∣∣ +

∣∣∣∣a11 a12

a21 a22

∣∣∣∣



T
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Revised Simplex Method
Efficiency IssuesEta Factorization of the Basis

Let B := AB , kth iteration
Bk be the matrix with col p differing from Bk−1
Column p is the a column appearing in Bk−1d = a solved at 3)
Hence:

Bk = Bk−1Ek

Ek is the eta matrix differing from id. matrix in only one column, which is set equal to d−1 1 1
1 0 0
0 1 0

 =

−1 1 0
1 0 1
0 1 0

1 −1
1 0

1


No matter how we solve yTBk−1 = cTB and Bk−1d = a, their update always relays on Bk = Bk−1Ek

with Ek available. Plus when initial basis by slack variable B0 = I and B1 = E1,B2 = E1E2 · · · :
Bk = E1E2 . . .Ek eta factorization

((((yTE1)E2)E3) · · · )Ek = cTB , uTE4 = cTB , vTE3 = uT , wTE2 = vT , yTE1 = wT

(E1(E2 · · ·Ekd)) = a, E1u = a, E2v = u, E3w = v, E4d = w

15



Revised Simplex Method
Efficiency IssuesExercise

Solve the systems yTE1E2E3E4 = [1 2 3] and E1E2E3E4d = [1 2 3]T with

E1 =

1 3 0
0 0.5 0
0 4 1

 E2 =

2 0 0
1 1 0
4 0 1

 E3 =

1 0 1
0 1 3
0 0 1

 E4 =

−0.5 0 0
3 1 0
1 0 1


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We use backward transformation and solve the sequence of linear systems:

uTE4 = [1 2 3], vTE3 = uT , wTE2 = vT , yTE1 = wT

uT

−0.5 0 0
3 1 0
1 0 1

 = [1, 2, 3]

Since the eta matrices have always one 1 in two columns then the solution can be read up easily.
From the third column we find u3 = 3. From the second column, we find u2 = 2. Substituting in
the first column, we find −0.5u1 + 3 ∗ 2 + 1 ∗ 3 = 1, which yields u1 = 16. The next syestem is:

vT

1 0 1
0 1 3
0 0 1

 = [16, 2, 3]

From the first column we get v1 = 16, from the second column v2 = 2 from the last column
v1 + 3v2 + v3 = 3, which yields v3 = −19. The next:

wT

2 0 0
1 1 0
4 0 1

 = [16, 2,−19]

...
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• Solving yTBk = cTB also called backward transformation (BTRAN)

• Solving Bkd = a also called forward transformation (FTRAN)

• Ei matrices can be stored by only storing the column and the position

• If sparse columns then can be stored in compact mode, ie only nonzero values and their indices
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Revised Simplex Method
Efficiency IssuesMore on LP

• Tableau method is unstable: computational errors may accumulate. Revised method has a
natural control mechanism: we can recompute A−1

B at any time

• Commercial and freeware solvers differ from the way the systems yTAB = cTB and ABd = a are
resolved
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Revised Simplex Method
Efficiency IssuesEfficient Implementations

• Dual simplex with steepest descent (largest increase)

• Linear Algebra:

• Dynamic LU-factorization using Markowitz threshold pivoting (Suhl and Suhl, 1990)
• sparse linear systems: Typically these systems take as input a vector with a very small number of

nonzero entries and output a vector with only a few additional nonzeros.

• Presolve, ie problem reductions: removal of redundant constraints, fixed variables, and other
extraneous model elements.

• dealing with degeneracy, stalling (long sequences of degenerate pivots), and cycling:

• bound-shifting (Paula Harris, 1974)
• Hybrid Pricing (variable selection): start with partial pricing, then switch to devex (approximate

steepest-edge, Harris, 1974)

• A model that might have taken a year to solve 10 years ago can now solve in less than 30
seconds (Bixby, 2002).
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Revised Simplex Method
Efficiency IssuesFurther topics in LP

• Ellipsoid method: cannot compete in practice but polynomial time (Khachyian, 1979)
• Interior point algorithm(s) (Karmarkar, 1984) competitive with simplex and polynomial in

some versions
• iterate through points interior to the feasibility region
• because of patents reasons, also known as barrier algorithm
• one single iteration is computationally more intensive than the simplex
• particularly competitive in presence of many constraints (eg, for m = 10, 000 may need less than

100 iterations)
• bad for post-optimality analysis  crossover algorithm to convert a sol of barrier method into a

basic feasible solutions for the simplex

• Lagrangian relaxation
• Column generation
• Decomposition methods:

• Dantzig Wolfe decomposition
• Benders decomposition
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Revised Simplex Method
Efficiency IssuesInterior Point Algorithm

1. Start at an interior point of the feasible region

2. Move in a direction that improves the objective function value at the fastest possible rate

3. Transform the feasible region to place the current point at the center of it
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Revised Simplex Method
Efficiency IssuesHow Large Problems Can We Solve?

Source: Bixby, 2002
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